Mostrar el registro sencillo del ítem

dc.contributor.authorGelves, German
dc.contributor.authorAlvarado, Karen
dc.contributor.authorConsuegra, Jessika
dc.contributor.authorParada, D.
dc.contributor.authorSepulveda, Nestor
dc.contributor.authorConsuegra, Josep
dc.date.accessioned2021-10-25T21:59:39Z
dc.date.available2021-10-25T21:59:39Z
dc.date.issued2020-09
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/412
dc.description.abstractCurrently, virtual education has reached a significant boom in higher education institutions. The latter, considering health emergency due to coronavirus pandemic, which makes it difficult to re-open physical infrastructures. As a consequence of the above, there is concern about experimental development taught by higher education and research institutions, since the execution of the experimental component is still considered a challenge due to uncertainly of on-going infections. Currently, the University of Bremen, Germany has implemented an operational training simulator for the study of bioprocess based on mathematical equations and experimental confirmations. The software enables teaching of virtual handling and operation of bioreactors. Students and engineers can deal with real situations that arise in the plant operation. Fermentations in different modes to reflect its effects on productivity could be studied. The main purpose of this research is determining the best operating conditions for the ethanol continuous production using the BioProcess Trainer software. One of the most important findings suggest a bioreactor feed rate of 5 mL/min charged with 20 g/L of glucose to reach a productivity of 0.037 g/L.h. Results found here demonstrates the Bioprocess Trainer potential capacity not only in the study of industrial plant operating conditions but also regarding educational institutions since mentioned tool improves engineers’ expertise.eng
dc.format.extent11 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Physicsspa
dc.relation.ispartofJournal of Physics: Conference Series ISSN: 1742-6596, 2020 vol:1655 fasc: N/A págs: 1 - 11, DOI:10.1088/1742-6596/1655/1/012093
dc.rightsContent from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltdeng
dc.sourcehttps://iopscience.iop.org/article/10.1088/1742-6596/1655/1/012093spa
dc.titleUse of Operational Training Simulation in the Study of Ethanol Operating Conditions: A Powerful Tool for Education and Research Performance Improvementeng
dc.typeArtículo de revistaspa
dcterms.referencesGerlach I, Mandenius C and Hass V 2015 Operator training simulation for integrating cultivation and homogenisation in protein production Biotechnology Reports 6 91spa
dcterms.referencesGerlach I, Hass C and Mandenius C 2015 Conceptual Design of an Operator Training Simulator for a Bio-Ethanol Plant Processes 3 664spa
dcterms.referencesBlesgen A and Hass V 2010 Efficient biogas production through process simulation Energy Fuels 24 4721spa
dcterms.referencesGerlach I, Hass V, Brüning S and Mandenius S 2013 Virtual bioreactor cultivation for operator training and simulation: application to ethanol and protein production Journal of Chemical Technology and Biotechnology 88 2159spa
dcterms.referencesCapdevila K and Pagano G 2015 Simulation of the fermentation process to obtain bioethanol from rice residues Avances en Ciencias e Ingeniería 6 11spa
dcterms.referencesGerlach I, Brüning S, Gustavsson R, Mandenius C and Hass V 2014 Operator training in recombinant protein production using a structured simulator model Journal of Biotechnology 177 53spa
dcterms.referencesDey P, Pal P, Dilip J and Bhusan D 2020 Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process – a critical review Reviews in Chemical Engineering 36 333spa
dcterms.referencesZhai C, Palazoglu A, Wang S and Sun W 2017 Strategies for the Analysis of Continuous Bioethanol Fermentation under Periodical Forcing Industrial and Engineering Chemistry Research 56 1spa
dcterms.referencesCastaño H, Mejía C and Ríos Ó 2012 Producción de etanol a partir de harina de yuca utilizando diferentes estrategias en modo continuo Producción + Limpia 7(1) 88spa
dcterms.referencesFernandez C, Pantano N, Serrano E and Scaglia G 2020 Multivariable Tracking Control of a Bioethanol Process under Uncertainties Mathematical Problems in Engineering 2020 1spa
dcterms.referencesRolz C, de León R and Mendizábal A 2019 Co-production of ethanol and biodiesel from sweet sorghum juice in two consecutive fermentation steps Electronic Journal of Biotechnology 41 13spa
dcterms.referencesMahboubi A, Ylitervo P, Doyen W, De Wever H and Molenberghsb B 2017 Continuous Bioethanol Fermentation from Wheat Straw Hydrolysate with High Suspended Solid Content Using an Immersed Flat Sheet Membrane Bioreactor Bioresource Technology 241 1spa
dcterms.referencesShokrkar H, Abbasabadi M and Ebrahimi S 2018 Model-based evaluation of continuous bioethanol production plant Biofuels Bioproducts and Biorefering 13 1spa
dcterms.referencesOrtega F, Pérez O and López E 2016 Modelo Semifísico de Base Fenomenológica del Proceso Continuo de Fermentación Alcohólica Información Tecnológica 27(1) 21spa
dcterms.referencesUtomo Y, Molo A, Wonorahardo S, Sumari S, Santoso A, Kusumaningrum I and Susanti E 2019 Immobilization of Zymomonas mobilis in silica from the rice husk ash IOP Conf. Series:Earth and Environmental Science 230 1spa
dcterms.referencesBuehler E and Mesbah A 2016 Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture PLoS ONE 11 8spa
dcterms.referencesLópez P, Puebla H, Velázquez H and Aguilar R 2016 Comparison Tools for Parametric Identification of Kinetic Model for Ethanol Production using Evolutionary Optimization Approach International Journal of Chemical Reactor Engineering 14 1spa
dcterms.referencesAjbar A and Ali E 2017 Study of advanced control of ethanol production through continuous fermentation Journal of King Saud University – Engineering Sciences 29 1spa
dc.identifier.doi10.1088/1742-6596/1655/1/012093
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol. 1655, No. 1 (2020)spa
dc.relation.citationendpage11spa
dc.relation.citationissue1 (2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume1655spa
dc.relation.citesK Alvarado et al 2020 J. Phys.: Conf. Ser. 1655 012093
dc.relation.ispartofjournalJournal of Physicsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem