Show simple item record

dc.contributor.authorGalvis, Fabian
dc.contributor.authorMoreno Rozo, laura Yolima
dc.date.accessioned2021-12-09T20:41:04Z
dc.date.available2021-12-09T20:41:04Z
dc.date.issued2019-06
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1781
dc.description.abstractBackground: The expression of CTX-M β-lactamases belonging to groups 1 and 9 in Klebsiella pneumoniae produces high levels of resistance to ceftazidime, and they have a wide distribution worldwide. Aim: To identify and characterize the blaCTX-M-Group1 and blaCTX-M-Group9 genes in K. pneumoniae isolates resistant to ceftazidime in a hospital in San José de Cúcuta, Colombia. Material and Methods: Primers were designed for the identification of K. pneumoniae and blaCTX-M genes by PCR. Subsequently, the genetic relationship of these isolates was analyzed by REP-PCR. Results: A 38% of the 24 isolates identified by PCR as K. pneumoniae showed blaCTX-M-3. blaCTX-M-15 y blaCTX-M-32 genes (Group CTX-M-1) and 42% blaCTX-M14. blaCTX-M-24 y blaCTX-M-27 genes (Group CTX-M-9). The phylogenetic analysis grouped the K. pneumoniae isolates into 4 clusters, showing correlation in clusters I, II and IV, when comparing the genetic profiles with the type of sample and group of genes. Discussion: We found a similar frequency of blaCTX-M-Group 1 and blaCTX-M-Group 9 genes in isolates of K. pneumoniae resistant to ceftazidime. The correlation between the REP-PCR with the CTX-M groups and the type of sample revealed the presence of three clonal patterneng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista Chilena de Infectologiaspa
dc.relation.ispartofRevista chilena de infectología
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly citedeng
dc.sourcehttps://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182019000300304&lng=en&nrm=iso&tlng=enspa
dc.titleCaracterización molecular y detección de genes blaCTX-M grupos 1 y 9 en Klebsiella pneumoniae resistentes a ceftazidima, en un hospital de San José de Cúcuta, Colombiaeng
dc.typeArtículo de revistaspa
dcterms.referencesSchill F, Abdulmawjood A, Klein G, Reich F. Prevalence and characterization of extendedspectrum β-lactamase (ESBL) and AmpC β-lactamase producing Enterobacteriaceae in fresh pork meat at processing level in Germany. Int J Food Microbiol 2017; 257: 58-66. doi: https://doi.org/10.1016/j.ijfoodmicro.2017.06.010spa
dcterms.referencesEcheverri L, Cataño J. Klebsiella pneumoniae como patógeno intrahospitalario: epidemiología y resistencia. Latreia 2010; 23(3): 240-9. Disponible en: http://www.redalyc.org/html/1805/180518994006/spa
dcterms.referencesBello H, Trabal N, Ibáñez D, Reyes A, Domínguez M, Mella S, et al. β-Lactamasas de familias diferentes a TEM y SHV en cepas de Klebsiella pneumoniae subespecie pneumoniae aisladas en hospitales chilenos. Rev Med Chile 2005; 133 (6): 737-9. doi: http://dx.doi.org/10.4067/S0034-98872005000600018spa
dcterms.referencesArce Z, Alarcón E, Limo J, Llontop J, Valle, J. Detección de genes shv y tem en cepas de Escherichia coli productoras de β-lactamasas de espectro extendido procedentes de dos centros hospitalarios de Chiclayo-Perú: eneroagosto 2011. Rev Cuerpo Méd HNAAA 2012; 5 (3): 13-6. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=4040370spa
dcterms.referencesRivera M, Rodríguez C, Flores R, Serquén L, Arce Z. Betalactamasas de espectro extendido tipo TEM y CTX-M en Klebsiella spp y Escherichia coli aisladas de superficies de ambientes hospitalarios. Rev Peru Med Exp Salud Publica 2015; 32: 752-755. Disponible en: https://www.scielosp.org/pdf/rpmesp/2015.v32n4/752-755/esspa
dcterms.referencesGhiglione B, Rodríguez M, Curto L, Brunetti F, Dropa M, Bonomo R, et al. Defining substrate specificity in the CTX-M family: the role of Asp240 in ceftazidime hydrolysis. Antimicrob Agents Chemother 2018; 62 (6):e00116-18. doi: http://dx.doi.org/10.1128/AAC.00116-18.spa
dcterms.referencesNavarro F, Calvo J, Cantón R, Fernández-Cuenca F, Mirelis B. Detección fenotípica de mecanismos de resistencia en microorganismos gramnegativos. Enferm Infecc Microbiol Clin 2011; 29 (7): 524-34. doi: https://doi.org/10.1016/j.eimc.2011.03.011spa
dcterms.referencesBonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 2004; 48 (1): 1-14. doi: 10.1128/AAC.48.1.1-14.2004spa
dcterms.referencesCartelle M, del Mar M, Molina F, Moure R, Villanueva R, Bou G. High-level resistance to ceftazidime conferred by a novel enzyme, CTX-M-32, derived from CTX-M-1 through a single Asp240-Gly substitution. Antimicrob Agents Chemother 2004; 48(6): 2308-13. doi: https://doi.org/10.1128/AAC.48.6.2308-2313.2004.spa
dcterms.referencesTarlton N, Satoorian T, Panchal A, Borges C, Geisberg M and Riley L. Monoclonal antibody-mediated detection of CTX-M β-lactamases in Gram-negative bacteria. J Microbiol Methods 2018; 144: 37-43. doi: https://doi.org/10.1016/j.mimet.2017.09.017.spa
dcterms.referencesCantón R, González J, Galán J. CTX-M enzymes: origin and diffusion. Front. Microbiol 2012; 3: 1-19. doi: https://doi.org/10.3389/fmicb.2012.00110spa
dcterms.referencesCuenca F, Cerero L, Hernández A. Técnicas de tipificación molecular para la vigilancia y control de la infección. Enferm Infecc Microbiol Clin 2013; 31: 20-5. Disponible en: https://www.seimc.org/contenidos/ccs/revisionestematicas/microbiologiamolecular/ccs-2011-microbmolecular1.pdf.spa
dcterms.referencesCosta J, Stein C, Pfeifer Y, Brandt C, Pletz M and Makarewicz O. Mutagenesis of the CTX-M-type ESBL-is MIC-guided treatment according to the new EUCAST recommendations a safe approach? J Antimicrob Chemother 2015; 70 (9): 2528-35. doi: https://doi.org/10.1093/jac/dkv153.spa
dcterms.referencesKoroglu M, Ozbek A, Demiray T, Hafizoglu T, Guclu E, Altindis M, et al. Investigation of clonal relationships of K. pneumoniae isolates from neonatal intensive care units by PFGE and rep-PCR. J Infect Dev Ctries 2015; 9 (08): 829-36. doi: https://doi.org/10.3855/jidc.6326.spa
dcterms.referencesGalvis F, Carrillo M. Identificación y caracterización molecular de aislados de Burkholderia glumae: agente causante del añublo bacterial en el cultivo de arroz. Inf tecnol 2015; 26(3): 33-40. doi: http://dx.doi.org/10.4067/S0718-07642015000300006spa
dcterms.referencesBrumlik M, Bielawska-Drozd A, Zakowska D, Liang X, Spalletta R, Patra G, et al. Genetic diversity among Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis strains using repetitive element polymorphism-PCR. Pol J Microbiol 2004; 53 (4): 215-25. Disponible en: http://www.pjmonline.org/wp-content/uploads/archive/vol5342004215.pdf.spa
dcterms.referencesSkowron K, Sękowska A, Kaczmarek A, Grudlewska K, Budzyńska A, Białucha A, et al. Comparison of the effectiveness of dipping agents on bacteria causing mastitis in cattle. Ann Agric Environ Med 2019; 26 (1): 39-45. doi: https://doi.org/10.26444/aaem/82626.spa
dcterms.referencesMikucionyte G, Zamorano L, Vitkauskiene A, López-Causapé C, Juan C, Mulet X, et al. Nosocomial dissemination of VIM-2-producing ST235 Pseudomonas aeruginosa in Lithuania. Eur J Clin Microbiol Infect Dis 2016; 35: 195-200. doi: https://doi.org/10.1007/s10096-015-2529-0spa
dcterms.referencesGonzález A, Nieves B, Solórzano M, Cruz J, Puig J y Moreno M. Caracterización de cepas de Klebsiella pneumoniae productora de β-lactamasa de espectro extendido aisladas en dos unidades de cuidados intensivos. Rev Chilena Infectol 2013; 30 (4): 374-80. doi: http://dx.doi.org/10.4067/S0716-10182013000400004.spa
dcterms.referencesBustos G, Josa D, Perea J, Gualtero S, Ortiz J, Novoa A, et al. Factores relacionados con el control exitoso de un brote por Klebsiella pneumoniae productora de KPC-2 en una unidad de cuidado intensivo en Bogotá, Colombia. Infectio 2016; 20 (1): 25-32. doi: https://doi.org/10.1016/j.infect.2015.07.001spa
dcterms.referencesToro L, Muñoz S, Restrepo J. K. pneumoniae y betalactamasas. Un problema creciente. Medicina UPB 2009; 28(2): 135-41. Disponible en: https://revistas.upb.edu.co/index.php/Medicina/article/view/453/400spa
dcterms.referencesLartigue M, Poirel L, Aubert D, Nordmann P. In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring β-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob. Agents Chemother 2006; 50 (4): 1282-6. doi: https://doi.org/10.1128/AAC.50.4.1282-1286.2006spa
dcterms.referencesCha M, Kang C, Kim S, Chung D, Peck K, Lee N, Song J. High prevalence of CTX-M-15-type extended-spectrum β-lactamase among AmpC β-lactamase-producing Klebsiella pneumoniae isolates causing bacteremia in Korea. Microb Drug Resist 2018; 24 (7): doi: https://doi.org/10.1089/mdr.2017.0362.spa
dcterms.referencesCompain F, Dorchène D and Arthur M. Combination of amino acid substitutions leading to CTX-M-15-mediated resistance to the ceftazidime-avibactam combination. Antimicrob. Agents Chemother 2018; 62 (9):e00357-18. doi: https://doi.org/10.1128/AAC.00357-18spa
dcterms.referencesLee M, Ko K, Kang C, Chung D, Peck K, Song J. High prevalence of CTX-M-15-producing Klebsiella pneumoniae isolates in Asian countries: diverse clones and clonal dissemination. Int J Antimicrob Agents 2011; 38(2): 160-3. doi: https://doi.org/10.1016/j.ijantimicag.2011.03.020spa
dcterms.referencesConceicao T, Brizio A, Duarte A, Lito L, Cristino J, Salgado M. First description of CTX-M-15-producing Klebsiella pneumoniae in Portugal. Antimicrob. Agents Chemother 2005; 49 (1): 477-8. doi: https://doi.org/10.1128/AAC.49.1.477-478.2005spa
dcterms.referencesMoubareck C, Daoud Z, Hakimé N, Hamzé M, Mangeney N, Matta H, et al. Countrywide spread of community-and hospital-acquired extended-spectrum β-lactamase (CTX-M-15)-producing Enterobacteriaceae in Lebanon. J Clin Microbiol 2005; 43 (7): 3309-13. doi: https://doi.org/doi:10.1128/JCM.43.7.33093313.2005.spa
dcterms.referencesPitout J, Hossain A, Hanson N. Phenotypic and molecular detection of CTX-M-β-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol 2004; 42(12): 5715-21.doi: https://doi.org/10.1128/JCM.42.12.57155721.2004spa
dcterms.referencesEdelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L. Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob. Agents Chemother 2003; 47 (12): 3724-32. doi: https://doi.org/10.1128/AAC.47.12.3724-3732.2003spa
dcterms.referencesYu W, Winokur P, Von Stein D, Pfaller M, Wang J, Jones R. First description of Klebsiella pneumoniae harboring CTX-M β-lactamases (CTX-M-14 and CTX-M-3) in Taiwan. Antimicrob. Agents Chemother 2002; 46(4): 1098-100. doi: https://doi.org/10.1128/AAC.46.4.1098-1100.2002spa
dcterms.referencesVásquez M, Correa M, Estrada J, Castañeda L, Moreno M. Caracterización fenotípica y determinación del perfil de bandas plasmídicas de Klebsiella pneumoniae multirresisitente aisladas de diferentes centros hospitalarios de Medellín, Colombia. Actual Biol 2003; 25(79): 119-29. Disponible en: http://aprendeenlinea.udea.edu.co/revistas/index.php/actbio/article/view/329492/20785930spa
dcterms.referencesHasan C, Turlej-Rogacka A, Vatopoulos A, Giakkoupi P, Maatallah M, Giske C. Dissemination of blaVIM in Greece at the peak of the epidemic of 2005–2006: clonal expansion of Klebsiella pneumoniae clonal complex 147. Clin Microbiol Infect 2014; 20 (1): 34-7. doi: https://doi.org/10.1111/14690691.12187spa
dcterms.referencesZowawi H, Sartor A, Balkhy H, Walsh T, Al Johani S, AlJindan R, et al. Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf cooperation council: dominance of OXA-48 and NDM producers. Antimicrob. Agents Chemother 2014; 58 (6): 3085-90. doi: https://doi.org/10.1128/AAC.02050-13spa
dcterms.referencesIraz M, Özad A, Sandallı C, Doymaz M, Akkoyunlu Y, Saral A, et al. Distribution of β-lactamase genes among carbapenem-resistant Klebsiella pneumoniae strains isolated from patients in Turkey. Ann Lab Med 2015; 35 (6): 595-601. doi: https://doi.org/10.3343/alm.2015.35.6.595spa
dcterms.referencesLópez K, Díaz K, Espinoza M, Santamaría O, Serquén L, Canelo O, et al. Patrón de clonalidad mediante ERIC-PCR y REP-PCR de Escherichia coli y Klebsiella pneumoniae productores de betalactamasas de espectro extendido, aisladas de pacientes con infección urinaria intrahospitalaria. Hospital Regional Lambayeque, Perú. Horiz Med 2018; 18 (2): 11-8. doi: http://dx.doi.org/10.24265/horizmed.2018.v18n2.03spa
dcterms.referencesLow Y, Yap I, Jabar K, Yusof M, Chong C and Teh C. Genotypic and metabolic approaches towards the segregation of Klebsiella pneumoniae strains producing different antibiotic resistant enzymes. Metabolomics 2017; 13(5): 65. doi: https://doi.org/10.1007/s11306-017-1201-3spa
dcterms.referencesArdalan N, Jamaran S, Memari F, Davari K, Rostami B and Ramazanzadeh R. Risk factors associated with community-acquired CTX-M producing Klebsiella pneumoniae typing by Rep-PCR in Sanandaj, Iran. Biotech Res Asia 2016; 13 (3): 1311-7. doi: http://dx.doi.org/10.13005/bbra/2271.spa
dcterms.referencesNielsen J, Skov M, Jørgensen R, Heltberg O, Hansen D and Schønning K. Identification of CTX-M15-, SHV-28-producing Klebsiella pneumoniae ST15 as an epidemic clone in the Copenhagen area using a semi-automated Rep-PCR typing assay. Eur J Clin Microbiol Infect Dis 2011; 30 (6): 773-8. doi: https://doi.org/10.1007/s10096-011-1153-x.spa
dcterms.referencesGhasemian A, Shafiei M, Eslami M, Vafaei M, Nojoom F and Rajabi-Vardanjani H. Molecular typing of Klebsiella pneumoniae isolates using repetitive extragenic palindromic sequence-based PCR in a Hospital in Tehran, Iran. Int J Enteric Pathog 2018; 6 (1): 27-30. doi: https://doi.org/10.15171/ijep.2018.07spa
dc.coverage.citySan Jose De Cùcuta , Colombia
dc.identifier.doihttp://dx.doi.org/10.4067/S0716-10182019000300304
dc.publisher.placeSantiago de Chile , Chilespa
dc.relation.citationeditionVol.36 No.3.(2019)spa
dc.relation.citationendpage311spa
dc.relation.citationissue3 (2019)spa
dc.relation.citationstartpage304spa
dc.relation.citationvolume36spa
dc.relation.citesGalvis, F., & Moreno, L. (2019). Caracterización molecular y detección de genes blaCTX-M grupos 1 y 9 en Klebsiella pneumoniae resistentes a ceftazidima, en un hospital de San José de Cúcuta, Colombia. Revista chilena de infectología, 36(3), 304-311.
dc.relation.ispartofjournalMolecular characterization and detection of genes blaCTX-M groups 1 and 9 in Klebsiella pneumoniae resistant to ceftazidime, in a hospital in San José de Cúcuta, Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalblaCTX-Mspa
dc.subject.proposalceftazidimaspa
dc.subject.proposalKlebsiella pneumoniaeeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record