Mostrar el registro sencillo del ítem

dc.contributor.authorValencia, Guillermo
dc.contributor.authorAcevedo Peñaloza, Carlos Humberto
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2021-12-07T15:42:27Z
dc.date.available2021-12-07T15:42:27Z
dc.date.issued2020-01-30
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1710
dc.description.abstractThis study investigated the influence of different biodiesel blends produced from residual sunflower oil and palm oil from agroindustry liquid waste on the characteristics of the combustion process, performance, and emissions in a single-cylinder diesel engine. For the analysis of the combustion process, a diagnostic model was developed based on the cylinder pressure signal, which allows the calculation of the heat release rate, the accumulated heat rate, and the temperature in the combustion chamber. This is to assess the influence of these parameters on engine emissions. The experiments on the diesel engine were carried out using five types of fuel: conventional diesel, two biodiesel blends of residual palm oil (PB5 and PB10), and two biodiesel blends formed with palm oil and sunflower oil residues (PB5SB5 and PB10SB5). The engine was running in four different modes, which covered its entire operating area. Experimental results show that the in-cylinder pressure curves decrease as the percentage of biodiesel in the fuel increases. Similarly, the results showed a decrease in the heat release rate for biodiesel blends. The diagrams of the accumulated heat release curves were larger for fuels with higher biodiesel content. This effect is reflected in the thermal efficiency of biodiesel blends since the maximum thermal efficiencies were 29.4%, 30%, 30.6%, 31.2%, and 31.8% for PB10SB5, PB5SB5, PB10, PB5, and diesel, respectively. The emission analysis showed that the blends of biodiesel PB5SB5 and PB10SB allowed a greater reduction in the emissions of CO, CO2, HC, and opacity of smoke in all the modes of operation tested, in comparison with the blends of biodiesel PB5 and PB10. However, NOx emissions increased. In general, biodiesel with the percentage of residual sunflower oil does not cause a significant change in the combustion process and engine performance, when compared to biodiesel that includes only residual palm oil.eng
dc.format.extent19 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherApplied Sciencesspa
dc.relation.ispartofApplied Sciences
dc.rights© 1996-2021 MDPI (Basel, Switzerland) unless otherwise statedeng
dc.sourcehttps://www.mdpi.com/2076-3417/10/3/907spa
dc.titleCombustion and performance study of low-displacement compression ignition engines operating with Diesel–Biodiesel blendseng
dc.typeArtículo de revistaspa
dcterms.referencesYoo, H.; Park, B.Y.; Cho, H.; Park, J. Performance Optimization of a Diesel Engine with a Two-Stage Turbocharging System and Dual-Loop EGR Using Multi-Objective Pareto Optimization Based on Diesel Cycle Simulation. Energies 2019, 12, 4223spa
dcterms.referencesTian, H.; Cui, J.; Yang, T.; Fu, Y.; Tian, J.; Long, W. Experimental Research on Controllability and Emissions of Jet-Controlled Compression Ignition Engine. Energies 2019, 12, 2936.spa
dcterms.referencesDhar, A.; Agarwal, A.K. Effect of Karanja biodiesel blend on engine wear in a diesel engine. Fuel 2014, 134, 81–89.spa
dcterms.referencesHirner, F.S.; Hwang, J.; Bae, C.; Patel, C.; Gupta, T.; Agarwal, A.K. Performance and emission evaluation of a small-bore biodiesel compression-ignition engine. Energy 2019, 183, 971–982.spa
dcterms.referencesKumar, N.; Varun, G.; Chauhan, S.R. Performance and emission characteristics of biodiesel from different origins: A review. Renew. Sustain. Energy Rev. 2013, 21, 633–658.spa
dcterms.referencesZahan, K.; Kano, M. Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies 2018, 11.spa
dcterms.referencesBari, S.; Hossain, S.N. Performance and emission analysis of a diesel engine running on palm oil diesel (POD). Energy Procedia 2019, 160, 92–99.spa
dcterms.referencesSajjadi, B.; Raman, A.A.A.; Arandiyan, H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew. Sustain. Energy Rev. 2016, 63, 62–92.spa
dcterms.referencesBerchmans, H.J.; Hirata, S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 2008, 99, 1716–1721.spa
dcterms.referencesThushari, P.G.I.; Babel, S. Biodiesel Production From Waste Palm Oil Using Palm Empty Fruit Bunch-Derived Novel Carbon Acid Catalyst. J. Energy Resour. Technol. 2018, 140, 1–10.spa
dcterms.referencesSumathi, S.; Chai, S.P.; Mohamed, A.R. Utilization of oil palm as a source of renewable energy in Malaysia. Renew. Sustain. Energy Rev. 2008, 12, 2404–2421.spa
dcterms.referencesKurnia, J.C.; Jangam, S.V.; Akhtar, S.; Sasmito, A.P.; Mujumdar, A.S. Advances in biofuel production from oil palm and palm oil processing wastes: A review. Biofuel Res. J. 2016, 3, 332–346.spa
dcterms.referencesSulaiman, S.A.; Taha, F.F.F. Drying of Oil Palm Fronds Using Concentrated Solar Thermal Power. Appl. Mech. Mater. 2014, 699, 449–454.spa
dcterms.referencesLam, S.S.; Tsang, Y.F.; Yek, P.N.Y.; Liew, R.K.; Osman, M.S.; Peng, W.; Lee, W.H.; Park, Y.-K. Co-processing of oil palm waste and waste oil via microwave co-torrefaction: A waste reduction approach for producing solid fuel product with improved properties. Process Saf. Environ. Prot. 2019, 128, 30–35.spa
dcterms.referencesCho, H.J.; Kim, J.-K.; Cho, H.-J.; Yeo, Y.-K. Techno-Economic Study of a Biodiesel Production from Palm Fatty Acid Distillate. Ind. Eng. Chem. Res. 2012, 52, 462–468.spa
dcterms.referencesLiew, W.; Muda, K.; Azraai, M.; Affam, A.; Loh, S. Agro-industrial waste sustainable management–a potential source of economic benefits to palm oil mills in Malaysia. J. Urban Environ. Eng. 2017, 11, 108–118.spa
dcterms.referencesAhmad Farid, M.A.; Hassan, M.A.; Taufiq-Yap, Y.H.; Ibrahim, M.L.; Othman, M.R.; Ali, A.A.M.; Shirai, Y. Production of methyl esters from waste cooking oil using a heterogeneous biomass-based catalyst. Renew. Energy. 2017, 114, 638–643.spa
dcterms.referencesAnuar, M.R.; Abdullah, A.Z. Ultrasound-assisted biodiesel production from waste cooking oil using hydrotalcite prepared by combustion method as catalyst. Appl. Catal. A Gen. 2016, 514, 214–223.spa
dcterms.referencesHong, I.K.; Jeon, H.; Kim, H.; Lee, S.B. Preparation of waste cooking oil based biodiesel using microwave irradiation energy. J. Ind. Eng. Chem. 2016, 42, 107–112.spa
dcterms.referencesRamírez, R.; Gutiérrez, A.S.; Eras, J.J.C.; Valencia, K.; Hernández, B.; Forero, J.D. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241, 118412.spa
dcterms.referencesSaydut, A.; Kafadar, A.B.; Tonbul, Y.; Kaya, C.; Aydin, F.; Hamamci, C. Comparison of the Biodiesel Quality Produced from Refined Sunflower (Helianthus Annuus L) Oil and Waste Cooking Oil. Energy Explor. Exploit. 2010, 28, 499–512.spa
dcterms.referencesSaifuddin, M.; Boyce, A.N. Biodiesel production from waste cooking sunflower oil and environmental impact analysis. Kuwait J. Sci. 2016, 43, 110–117.spa
dcterms.referencesElkelawy, M.; Alm-Eldin Bastawissi, H.; Esmaeil, K.K.; Radwan, A.M.; Panchal, H.; Sadasivuni, K.K.; Ponnamma, D.; Walvekar, R. Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends. Fuel 2019, 255spa
dcterms.referencesGupta, J.; Agarwal, M.; Dalai, A.K. Optimization of biodiesel production from mixture of edible and nonedible vegetable oils. Biocatal. Agric. Biotechnol. 2016, 8, 112–120.spa
dcterms.referencesDe Almeida, V.F.; García-Moreno, P.J.; Guadix, A.; Guadix, E.M. Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Process. Technol. 2015, 133, 152–160.spa
dcterms.referencesCosta, J.F.; Almeida, M.F.; Alvim-Ferraz, M.C.M.; Dias, J.M. Biodiesel production using oil from fish canning industry wastes. Energy Convers. Manag. 2013, 74, 17–23.spa
dcterms.referencesValencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21.spa
dcterms.referencesDiaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics. J. Energy Resour. Technol. 2017, 139.spa
dcterms.referencesOchoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700.spa
dcterms.referencesValencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermoeconomic optimization with PSO Algorithm of waste heat recovery systems based on Organic Rankine Cycle system for a natural gas engine. Energies 2019, 12, 4165.spa
dcterms.referencesGlassman, I. Combustion; Academic Press Inc.: Cambridge, MA, USA, 1987.spa
dcterms.referencesWoschni, G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Tech. Pap. 1967.spa
dcterms.referencesWoschni, G. Die berechnung der wandverluste und der thermischen belastung der bauteile von dieselmotoren. MTZ Mot. Z. 1970, 31, S491–S499.spa
dcterms.referencesConsuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Duarte Forero, J. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12.spa
dcterms.referencesIrimescu, A.; Di Iorio, S.; Merola, S.S.; Sementa, P.; Vaglieco, B.M. Evaluation of compression ratio and blow-by rates for spark ignition engines based on in-cylinder pressure trace analysis. Energy Convers. Manag. 2018, 162, 98–108.spa
dcterms.referencesAlptekin, E.; Canakci, M. Characterization of the key fuel properties of methyl ester–diesel fuel blends. Fuel 2009, 88, 75–80.spa
dcterms.referencesAgarwal, A.K.; Das, L.M. Biodiesel Development and Characterization for Use as a Fuel in Compression Ignition Engines. J. Eng. Gas Turbines Power. 2001, 123, 440–447.spa
dcterms.referencesRosha, P.; Mohapatra, S.K.; Mahla, S.K.; Cho, H.; Chauhan, B.S.; Dhir, A. Effect of compression ratio on combustion, performance, and emission characteristics of compression ignition engine fueled with palm (B20) biodiesel blend. Energy 2019, 178, 676–684.spa
dcterms.referencesAsokan, M.A.; Senthur Prabu, S.; Bade, P.K.K.; Nekkanti, V.M.; Gutta, S.S.G. Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine. Energy 2019, 173, 883–892.spa
dcterms.referencesMusthafa, M.M.; Kumar, T.A.; Mohanraj, T.; Chandramouli, R. A comparative study on performance, combustion and emission characteristics of diesel engine fuelled by biodiesel blends with and without an additive. Fuel 2018, 225, 343–348.spa
dcterms.referencesCan, Ö. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture. Energy Convers. Manag. 2014, 87, 676–686.spa
dcterms.referencesDueso, C.; Muñoz, M.; Moreno, F.; Arroyo, J.; Gil-Lalaguna, N.; Bautista, A.; Gonzalo, A.; Sánchez, J.L. Performance and emissions of a diesel engine using sunflower biodiesel with a renewable antioxidant additive from bio-oil. Fuel 2018, 234, 276–285.spa
dcterms.referencesCanakci, M. Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresour. Technol. 2007, 98, 1167–1175.spa
dcterms.referencesMurillo, S.; Míguez, J.L.; Porteiro, J.; Granada, E.; Morán, J.C. Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel 2007, 86, 1765–1771.spa
dcterms.referencesvspa
dcterms.referencesEmiro ˘glu, A.O.; ¸Sen, M. Combustion, performance and emission characteristics of various alcohol blends in a single cylinder diesel engine. Fuel 2018, 212, 34–40.spa
dcterms.referencesAbed, K.A.; Gad, M.S.; El Morsi, A.K.; Sayed, M.M.; Elyazeed, S.A. Effect of biodiesel fuels on diesel engine emissions. Egypt. J. Pet. 2019, 28, 183–188.spa
dcterms.referencesOng, H.C.; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Yusaf, T. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy. 2014, 69, 427–445.spa
dc.identifier.doihttps://doi.org/10.3390/app10030907
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol.10 No.3.(2020)spa
dc.relation.citationendpage19spa
dc.relation.citationissue3(2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume10spa
dc.relation.citesValencia Ochoa, G., Acevedo Penaloza, C., & Duarte Forero, J. (2020). Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends. Applied Sciences, 10(3), 907.
dc.relation.ispartofjournalApplied Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalbiodieseleng
dc.subject.proposalcombustion processeng
dc.subject.proposalemissionseng
dc.subject.proposaldiesel engineeng
dc.subject.proposalthermodynamic modeleng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem