Mostrar el registro sencillo del ítem
Prediction of pressure drop during evaporation of R407C in horizontal tubes using artificial neural networks
dc.contributor.author | Garcia, Juan Jose | |
dc.contributor.author | Garcia, Franklin | |
dc.contributor.author | Bermúdez, José | |
dc.contributor.author | Machado, Luiz | |
dc.date.accessioned | 2021-11-24T15:56:29Z | |
dc.date.available | 2021-11-24T15:56:29Z | |
dc.date.issued | 2018-01 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1349 | |
dc.description.abstract | This work presents a discussion on pressure drop of R-407C during two-phase flows, and the application of artificial neural network (ANN) to predict these pressure drops in a smooth copper tube, for 4.5 mm and 8.0 mm inner diameter. The ANN was trained using data from 127 experiments encountered in the literature. Diameter, mass flux, saturation pressure and local vapor quality were used as inputs, whereas the pressure drop was considered as output. The number of neurons and hidden layers were determined based on the accuracy of results. The trained ANN was able to estimate the experimental data with a MAPE (Mean Absolute Percentage Error) of 6.11%, and a correlation coefficient (R) of 0.999 for all data, using a configuration with 14 neurons in the hidden layer. The obtained results were within ±10% for 90% of all data, and ±30% for 99% of all data. Compared to the well established literature correlations for pressure drop, the ANN demonstrates how important this tool is to predict pressure drop accurately. | eng |
dc.format.extent | 32 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | International Journal of Refrigeration | spa |
dc.relation.ispartof | International Journal of Refrigeration | |
dc.rights | © 2017 Elsevier Ltd and IIR. All rights reserved. | eng |
dc.source | https://www.sciencedirect.com/science/article/abs/pii/S0140700717303912 | spa |
dc.title | Prediction of pressure drop during evaporation of R407C in horizontal tubes using artificial neural networks | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Akdag, U., Komur, M.A., Akcay, S., 2016. Prediction of heat transfer on a flat plate subjected to a transversely pulsating jet using artificial neural networks. Applied Thermal Engineering 100, 412-420. http://dx.doi.org/10.1016/j.applthermaleng.2016.01.147. | spa |
dcterms.references | Andrzejczyk, R., Muszynski, T., Dorao, C.A., 2017. Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5 mm diameter channel. Experimental Thermal and Fluid Science 83, 78-87. https://doi.org/10.1016/j.expthermflusci.2016.12.016 | spa |
dcterms.references | Aprea, C., Greco, A., Maiorino, A., 2017. An application of the artificial neural network to optimise the energy performances of a magnetic refrigerator. International Journal of Refrigeration 82, 238-251. http://dx.doi.org/10.1016/j.ijrefrig.2017.06.015. | spa |
dcterms.references | Aprea, C., Greco, A., Rosato, A., 2008. Comparison of R407C and R417A heat transfer coefficients and pressure drops during flow boiling in a horizontal smooth tube. Energy Conversion and Management 49, 1629-1636. https://doi.org/10.1016/j.enconman.2007.11.003. | spa |
dcterms.references | Avcı, H., Kumlutaş, D., Özer, Ö., Özşen, M., 2016. Optimisation of the design parameters of a domestic refrigerator using CFD and artificial neural networks. International Journal of Refrigeration 67, 227-238. http://dx.doi.org/10.1016/j.ijrefrig.2016.02.018. | spa |
dcterms.references | Azizi, S., Ahmadloo, E., 2016. Prediction of heat transfer coefficient during condensation of R134a in inclined tubes using artificial neural network. Applied Thermal Engineering 106, 203- 210. http://dx.doi.org/10.1016/j.applthermaleng.2016.05.189. | spa |
dcterms.references | Azizi, S., Ahmadloo, E., Awad, M.M., 2016. Prediction of void fraction for gas–liquid flow in horizontal, upward and downward inclined pipes using artificial neural network. International Journal of Multiphase Flow 87, 35-44. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.08.004. | spa |
dcterms.references | Azzolin, M., Bortolin, S., Del Col, D., 2016. Flow boiling heat transfer of a zeotropic binary mixture of new refrigerants inside a single microchannel. International Journal of Thermal Sciences 110, 83-95. https://doi.org/10.1016/j.ijthermalsci.2016.06.026. | spa |
dcterms.references | Barraza, R., Nellis, G., Klein, S., Reindl, D., 2016. Measured and predicted frictional pressure drop for boiling zeotropic mixed refrigerants in horizontal tubes. International Journal of Heat and Mass Transfer 98, 285-298. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.010 | spa |
dcterms.references | Bassam, A., Álvarez del Castillo, A., García-Valladares, O., Santoyo, E., 2015. Determination of pressure drops in flowing geothermal wells by using artificial neural networks and wellbore simulation tools. Applied Thermal Engineering 75, 1217-1228. http://dx.doi.org/10.1016/j.applthermaleng.2014.05.048. | spa |
dcterms.references | Belman-Flores, J., Ledesma, S., 2015. Statistical analysis of the energy performance of a refrigeration system working with R1234yf using artificial neural networks. Applied Thermal Engineering 82, 8-17. https://doi.org/10.1016/j.applthermaleng.2015.02.061. | spa |
dcterms.references | Brutin, D., Ajaev, V.S., Tadrist, L., 2013. Pressure drop and void fraction during flow boiling in rectangular minichannels in weightlessness. Applied Thermal Engineering 51, 1317-1327. https://doi.org/10.1016/j.applthermaleng.2012.11.017. | spa |
dcterms.references | Cao, X., Li, Z.-Y., Shao, L.-L., Zhang, C.-L., 2016. Refrigerant flow through electronic expansion valve: Experiment and neural network modeling. Applied Thermal Engineering 92, 210-218. http://dx.doi.org/10.1016/j.applthermaleng.2015.09.062. | spa |
dcterms.references | Cavallini, A., Del Col, D., Rossetto, L., 2013. Heat transfer and pressure drop of natural refrigerants in minichannels (low charge equipment). International Journal of Refrigeration 36, 287-300. https://doi.org/10.1016/j.ijrefrig.2012.11.005. | spa |
dcterms.references | Chawla, J.M., 1967. Wärmeübergang und Druckabfall in waagerechten Rohren bei der Strömung von verdampfenden Kältemitteln. VDI-Verlag | spa |
dcterms.references | Cicchitti, A., Lombardi, C., Silvestri, M., Soldaini, G., Zavattarelli, R., 1960. Two-phase cooling experiments: pressure drop, heat transfer and burnout measurements, Other Information: Orig. Receipt Date: 31-DEC-60, p. Medium: X; Size: Pages: 58. | spa |
dcterms.references | Cong, T., Su, G., Qiu, S., Tian, W., 2013. Applications of ANNs in flow and heat transfer problems in nuclear engineering: A review work. Progress in Nuclear Energy 62, 54-71. http://dx.doi.org/10.1016/j.pnucene.2012.09.003. | spa |
dcterms.references | Deng, S., Su, W., Zhao, L., 2016. A neural network for predicting normal boiling point of pure refrigerants using molecular groups and a topological index. International Journal of Refrigeration 63, 63-71. http://dx.doi.org/10.1016/j.ijrefrig.2015.10.025. | spa |
dcterms.references | Erdemir, D., Ayata, T., 2017. Prediction of temperature decreasing on a green roof by using artificial neural network. Applied Thermal Engineering 112, 1317-1325. https://doi.org/10.1016/j.applthermaleng.2016.10.145 | spa |
dcterms.references | Fang, X.D., Xu, Y., Zhou, Z.R., 2011. New correlations of single- phase friction factor for turbulent pipe flow and evaluation of existing single- phase friction factor correlations. Nuclear engineering and design 241, 897-902. https://doi.org/10.1016/j.nucengdes.2010.12.019. | spa |
dcterms.references | Fannou, J.-L.C., Rousseau, C., Lamarche, L., Kajl, S., 2014. Modeling of a direct expansion geothermal heat pump using artificial neural networks. Energy and Buildings 81, 381-390. http://dx.doi.org/10.1016/j.enbuild.2014.06.040. | spa |
dcterms.references | Garcia, J., Porto, M.P., Revellin, R., Bonjour, J., Machado, L., 2017. An experimental study on two-phase frictional pressure drop for R-407c in smooth horizontal tubes. International Journal of Refrigeration 73, 163-174. http://doi.org/10.1016/j.ijrefrig.2016.09.018. | spa |
dcterms.references | Greco, A., Vanoli, G.P., 2006. Experimental two- phase pressure gradients during evaporation of pure and mixed refrigerants in a smooth horizontal tube. Comparison with correlations. International Journal of Heat And Mass 42, 709-725. https://doi.org/10.1007/s00231-005-0020-7 | spa |
dcterms.references | Guo, C., Wang, J., Du, X., Yang, L., 2016. Experimental flow boiling characteristics of R134a/R245fa mixture inside smooth horizontal tube. Applied Thermal Engineering 103, 901- 908. https://doi.org/10.1016/j.applthermaleng.2016.04.162. | spa |
dcterms.references | Gupta, E., Sharma, N., Batra, C.M., 2014. Neural network approach for analytical study of the reliability of refrigeration system. 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH), 511-514. https://doi.org/10.1109/cipech.2014.7018210. | spa |
dcterms.references | Heimel, M., Lang, W., Almbauer, R., 2014. Performance predictions using Artificial Neural Network for isobutane flow in non-adiabatic capillary tubes. International Journal of Refrigeration 38, 281-289. http://dx.doi.org/10.1016/j.ijrefrig.2013.08.018. | spa |
dcterms.references | Jani, D.B., Mishra, M., Sahoo, P.K., 2016. Performance prediction of rotary solid desiccant dehumidifier in hybrid air-conditioning system using artificial neural network. Applied Thermal Engineering 98, 1091-1103. http://dx.doi.org/10.1016/j.applthermaleng.2015.12.112 | spa |
dcterms.references | Kalani, H., Sardarabadi, M., Passandideh-Fard, M., 2017. Using artificial neural network models and particle swarm optimization for manner prediction of a photovoltaic thermal nanofluid based collector. Applied Thermal Engineering 113, 1170-1177. https://doi.org/10.1016/j.applthermaleng.2016.11.105. | spa |
dcterms.references | Kamar, H.M., Ahmad, R., Kamsah, N.B., Mohamad Mustafa, A.F., 2013. Artificial neural networks for automotive air-conditioning systems performance prediction. Applied Thermal Engineering 50, 63-70. http://dx.doi.org/10.1016/j.applthermaleng.2012.05.032. | spa |
dcterms.references | Kasera, S., Bhaduri, S.C., 2017. Performance of R407C as an Alternate to R22: A Review. Energy Procedia 109, 4-10. https://doi.org/10.1016/j.egypro.2017.03.032. | spa |
dcterms.references | Kreitzer, P.J., Hanchak, M., Byrd, L., 2013. Flow Regime Identification of Horizontal Two Phase Refrigerant R-134a Flow Using Neural Networks, ASME International Mechanical Engineering Congress and Exposition, San Diego, California, USAhttp://dx.doi.org/10.1115/IMECE2013- 62510. | spa |
dcterms.references | Kundu, A., Kumar, R., Gupta, A., 2014a. Flow boiling heat transfer characteristics of R407C inside a smooth tube with different tube inclinations. International Journal of Refrigeration 45, 1- 12. http://dx.doi.org/10.1016/j.ijrefrig.2014.06.009. | spa |
dcterms.references | Kundu, A., Kumar, R., Gupta, A., 2014b. Heat transfer characteristics and flow pattern during two-phase flow boiling of R134a and R407C in a horizontal smooth tube. Experimental Thermal and Fluid Science 57, 344-352. http://dx.doi.org/10.1016/j.expthermflusci.2014.05.020. | spa |
dcterms.references | Ledesma, S., Belman-Flores, J.M., 2014. Application of artificial neural networks for generation of energetic maps of a variable speed compression system working with R1234yf. Applied Thermal Engineering 69, 105-112. http://dx.doi.org/10.1016/j.applthermaleng.2014.04.050. | spa |
dcterms.references | Ledesma, S., Belman-Flores, J.M., Barroso-Maldonado, J.M., 2015. Analysis and modeling of a variable speed reciprocating compressor using ANN. International Journal of Refrigeration 59, 190-197. http://dx.doi.org/10.1016/j.ijrefrig.2015.08.009. | spa |
dcterms.references | Luján, J.M., Climent, H., García-Cuevas, L.M., Moratal, A., 2017. Volumetric efficiency modelling of internal combustion engines based on a novel adaptive learning algorithm of artificial neural networks. Applied Thermal Engineering 123, 625-634. https://doi.org/10.1016/j.applthermaleng.2017.05.087. | spa |
dcterms.references | Mathioulakis, E., Panaras, G., Belessiotis, V., 2016. Artificial neural networks for the performance prediction of heat pump hot water heaters. International Journal of Sustainable Energy, 1-20. https://doi.org/10.1080/14786451.2016.1218495. | spa |
dcterms.references | Mauro, A.W., Quibén, J.M., Mastrullo, R., Thome, J.R., 2007. Comparison of experimental pressure drop data for two phase flows to prediction methods using a general model. International Journal of Refrigeration 30, 1358-1367. https://doi.org/10.1016/j.ijrefrig.2007.04.008. | spa |
dcterms.references | McAdams, W., Woods, W., Heroman, L., 1942. Vaporization inside horizontal tubes-II-benzeneoil mixtures. Trans. ASME 64, 193-200. | spa |
dcterms.references | Mohanraj, M., Jayaraj, S., Muraleedharan, C., 2012. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review. Renewable and Sustainable Energy Reviews 16, 1340-1358. http://dx.doi.org/10.1016/j.rser.2011.10.015. | spa |
dcterms.references | Mohanraj, M., Jayaraj, S., Muraleedharan, C., 2015. Applications of artificial neural networks for thermal analysis of heat exchangers – A review. International Journal of Thermal Sciences 90, 150-172. http://dx.doi.org/10.1016/j.ijthermalsci.2014.11.030. | spa |
dcterms.references | Moosavi, M., Sedghamiz, E., Abareshi, M., 2014. Liquid density prediction of five different classes of refrigerant systems (HCFCs, HFCs, HFEs, PFAs and PFAAs) using the artificial neural network-group contribution method. International Journal of Refrigeration 48, 188-200. http://dx.doi.org/10.1016/j.ijrefrig.2014.09.007. | spa |
dcterms.references | v | spa |
dcterms.references | Müller-Steinhagen, H., Heck, K., 1986. A simple friction pressure drop correlation for two- phase flow in pipes. Chemical Engineering and Processing 20, 297-308. https://doi.org/10.1016/0255- 2701(86)80008-3. | spa |
dcterms.references | Nabipour, M., Keshavarz, P., 2017. Modeling surface tension of pure refrigerants using feedforward back-propagation neural networks. International Journal of Refrigeration 75, 217-227. http://dx.doi.org/10.1016/j.ijrefrig.2016.12.011. | spa |
dcterms.references | Pamitran, A.S., Choi, K.-I., Oh, J.-T., Hrnjak, P., 2010. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes. International Journal of Refrigeration 33, 578-588. http://dx.doi.org/10.1016/j.ijrefrig.2009.12.009. | spa |
dcterms.references | Piasecka, M., 2015. Impact of selected parameters on refrigerant flow boiling heat transfer and pressure drop in minichannels. International Journal of Refrigeration 56, 198-212. https://doi.org/10.1016/j.ijrefrig.2015.03.024. | spa |
dcterms.references | Rashidi, M.M., Aghagoli, A., Raoofi, R., 2017. Thermodynamic analysis of the ejector refrigeration cycle using the artificial neural network. Energy 129, 201-215. https://doi.org/10.1016/j.energy.2017.04.089. | spa |
dcterms.references | Roman, A.J., Kreitzer, P.J., Ervin, J.S., Hanchak, M.S., Byrd, L.W., 2016. Flow pattern identification of horizontal two-phase refrigerant flow using neural networks. International Communications in Heat and Mass Transfer 71, 254-264. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.033. | spa |
dcterms.references | Saleh, B., Aly, A.A., 2016. Artificial neural network models for depicting mass flow rate of R22, R407C and R410A through electronic expansion valves. International Journal of Refrigeration 63, 113-124. http://dx.doi.org/10.1016/j.ijrefrig.2015.11.010. | spa |
dcterms.references | Sempértegui-Tapia, D.F., Ribatski, G., 2017. Two-phase frictional pressure drop in horizontal micro-scale channels: Experimental data analysis and prediction method development. International Journal of Refrigeration 79, 143-163. https://doi.org/10.1016/j.ijrefrig.2017.03.024. | spa |
dcterms.references | Shojaeefard, M.H., Zare, J., Tabatabaei, A., Mohammadbeigi, H., 2016. Evaluating different types of artificial neural network structures for performance prediction of compact heat exchanger. Neural Computing and Applications, 1-13. https://doi.org/10.1007/s00521-016-2302- z | spa |
dcterms.references | Sobhanifar, N., Ahmadloo, E., Azizi, S., 2015. Prediction of Two-Phase Heat Transfer Coefficients in a Horizontal Pipe for Different Inclined Positions With Artificial Neural Networks. Journal of Heat Transfer 137, 061009-061009-061006. https://doi.org/10.1115/1.4029865. | spa |
dcterms.references | Sun, L., Mishima, K., 2009. Evaluation analysis of prediction methods for two- phase flow pressure drop in mini- channels. International Journal of Multiphase Flow 35, 47-54. https://doi.org/10.1016/j.ijmultiphaseflow.2008.08.003. | spa |
dcterms.references | Tian, Z., Gu, B., Qian, C., Yang, L., Liu, F., 2015a. Electronic expansion valve mass flow rate prediction based on dimensionless correlation and ANN model. International Journal of Refrigeration 57, 1-10. http://dx.doi.org/10.1016/j.ijrefrig.2015.04.016. | spa |
dcterms.references | Tian, Z., Gu, B., Yang, L., Liu, F., 2014. Performance prediction for a parallel flow condenser based on artificial neural network. Applied Thermal Engineering 63, 459-467. http://dx.doi.org/10.1016/j.applthermaleng.2013.10.060. | spa |
dcterms.references | Tian, Z., Qian, C., Gu, B., Yang, L., Liu, F., 2015b. Electric vehicle air conditioning system performance prediction based on artificial neural network. Applied Thermal Engineering 89, 101- 114. http://dx.doi.org/10.1016/j.applthermaleng.2015.06.002. | spa |
dcterms.references | Verma, T.N., Nashine, P., Singh, D.V., Singh, T.S., Panwar, D., 2017. ANN: Prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes. Applied Thermal Engineering 120, 219-227. https://doi.org/10.1016/j.applthermaleng.2017.03.126. | spa |
dcterms.references | Xu, Y., Fang, X., Li, D., Li, G., Yuan, Y., Xu, A., 2016. An experimental study of flow boiling frictional pressure drop of R134a and evaluation of existing correlations. International Journal of Heat and Mass Transfer 98, 150-163. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.018 | spa |
dcterms.references | Xu, Y., Fang, X.D., Su, X.H., Zhou, Z.R., Chen, W.W., 2012. Evaluation of frictional pressure drop correlations for two- phase flow in pipes. Nuclear Engineering and Design 253, 86-97. https://doi.org/10.1016/j.nucengdes.2012.08.007. | spa |
dcterms.references | Yin, C., Rosendahl, L., Luo, Z., 2003. Methods to improve prediction performance of ANN models. Simulation Modelling Practice and Theory 11, 211-222. http://dx.doi.org/10.1016/S1569-190X(03)00044-3. | spa |
dcterms.references | Zendehboudi, A., Li, X., Wang, B., 2017. Utilization of ANN and ANFIS models to predict variable speed scroll compressor with vapor injection. International Journal of Refrigeration 74, 475-487. https://doi.org/10.1016/j.ijrefrig.2016.11.011. | spa |
dcterms.references | Zolfaghari, H., Yousefi, F., 2017. Thermodynamic properties of lubricant/refrigerant mixtures using statistical mechanics and artificial intelligence. International Journal of Refrigeration 80, 130-144. http://dx.doi.org/10.1016/j.ijrefrig.2017.04.025. | spa |
dc.identifier.doi | https://doi.org/10.1016/j.ijrefrig.2017.10.007 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol.85 (2018) | spa |
dc.relation.citationendpage | 302 | spa |
dc.relation.citationissue | (2018) | spa |
dc.relation.citationstartpage | 292 | spa |
dc.relation.citationvolume | 85 | spa |
dc.relation.cites | Garcia, J. J., Garcia, F., Bermúdez, J., & Machado, L. (2018). Prediction of pressure drop during evaporation of R407C in horizontal tubes using artificial neural networks. International Journal of Refrigeration, 85, 292-302. | |
dc.relation.ispartofjournal | International Journal of Refrigeration | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | R407C | eng |
dc.subject.proposal | Evaporation | eng |
dc.subject.proposal | Artificial network neural | eng |
dc.subject.proposal | Pressure drop | eng |
dc.subject.proposal | Smooth horizontal tubes | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |