Mostrar el registro sencillo del ítem

dc.contributor.authorGarcia, Juan Jose
dc.contributor.authorGarcia, Franklin
dc.contributor.authorBermúdez, José
dc.contributor.authorMachado, Luiz
dc.date.accessioned2021-11-24T15:56:29Z
dc.date.available2021-11-24T15:56:29Z
dc.date.issued2018-01
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1349
dc.description.abstractThis work presents a discussion on pressure drop of R-407C during two-phase flows, and the application of artificial neural network (ANN) to predict these pressure drops in a smooth copper tube, for 4.5 mm and 8.0 mm inner diameter. The ANN was trained using data from 127 experiments encountered in the literature. Diameter, mass flux, saturation pressure and local vapor quality were used as inputs, whereas the pressure drop was considered as output. The number of neurons and hidden layers were determined based on the accuracy of results. The trained ANN was able to estimate the experimental data with a MAPE (Mean Absolute Percentage Error) of 6.11%, and a correlation coefficient (R) of 0.999 for all data, using a configuration with 14 neurons in the hidden layer. The obtained results were within ±10% for 90% of all data, and ±30% for 99% of all data. Compared to the well established literature correlations for pressure drop, the ANN demonstrates how important this tool is to predict pressure drop accurately.eng
dc.format.extent32 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal of Refrigerationspa
dc.relation.ispartofInternational Journal of Refrigeration
dc.rights© 2017 Elsevier Ltd and IIR. All rights reserved.eng
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S0140700717303912spa
dc.titlePrediction of pressure drop during evaporation of R407C in horizontal tubes using artificial neural networkseng
dc.typeArtículo de revistaspa
dcterms.referencesAkdag, U., Komur, M.A., Akcay, S., 2016. Prediction of heat transfer on a flat plate subjected to a transversely pulsating jet using artificial neural networks. Applied Thermal Engineering 100, 412-420. http://dx.doi.org/10.1016/j.applthermaleng.2016.01.147.spa
dcterms.referencesAndrzejczyk, R., Muszynski, T., Dorao, C.A., 2017. Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5 mm diameter channel. Experimental Thermal and Fluid Science 83, 78-87. https://doi.org/10.1016/j.expthermflusci.2016.12.016spa
dcterms.referencesAprea, C., Greco, A., Maiorino, A., 2017. An application of the artificial neural network to optimise the energy performances of a magnetic refrigerator. International Journal of Refrigeration 82, 238-251. http://dx.doi.org/10.1016/j.ijrefrig.2017.06.015.spa
dcterms.referencesAprea, C., Greco, A., Rosato, A., 2008. Comparison of R407C and R417A heat transfer coefficients and pressure drops during flow boiling in a horizontal smooth tube. Energy Conversion and Management 49, 1629-1636. https://doi.org/10.1016/j.enconman.2007.11.003.spa
dcterms.referencesAvcı, H., Kumlutaş, D., Özer, Ö., Özşen, M., 2016. Optimisation of the design parameters of a domestic refrigerator using CFD and artificial neural networks. International Journal of Refrigeration 67, 227-238. http://dx.doi.org/10.1016/j.ijrefrig.2016.02.018.spa
dcterms.referencesAzizi, S., Ahmadloo, E., 2016. Prediction of heat transfer coefficient during condensation of R134a in inclined tubes using artificial neural network. Applied Thermal Engineering 106, 203- 210. http://dx.doi.org/10.1016/j.applthermaleng.2016.05.189.spa
dcterms.referencesAzizi, S., Ahmadloo, E., Awad, M.M., 2016. Prediction of void fraction for gas–liquid flow in horizontal, upward and downward inclined pipes using artificial neural network. International Journal of Multiphase Flow 87, 35-44. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.08.004.spa
dcterms.referencesAzzolin, M., Bortolin, S., Del Col, D., 2016. Flow boiling heat transfer of a zeotropic binary mixture of new refrigerants inside a single microchannel. International Journal of Thermal Sciences 110, 83-95. https://doi.org/10.1016/j.ijthermalsci.2016.06.026.spa
dcterms.referencesBarraza, R., Nellis, G., Klein, S., Reindl, D., 2016. Measured and predicted frictional pressure drop for boiling zeotropic mixed refrigerants in horizontal tubes. International Journal of Heat and Mass Transfer 98, 285-298. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.010spa
dcterms.referencesBassam, A., Álvarez del Castillo, A., García-Valladares, O., Santoyo, E., 2015. Determination of pressure drops in flowing geothermal wells by using artificial neural networks and wellbore simulation tools. Applied Thermal Engineering 75, 1217-1228. http://dx.doi.org/10.1016/j.applthermaleng.2014.05.048.spa
dcterms.referencesBelman-Flores, J., Ledesma, S., 2015. Statistical analysis of the energy performance of a refrigeration system working with R1234yf using artificial neural networks. Applied Thermal Engineering 82, 8-17. https://doi.org/10.1016/j.applthermaleng.2015.02.061.spa
dcterms.referencesBrutin, D., Ajaev, V.S., Tadrist, L., 2013. Pressure drop and void fraction during flow boiling in rectangular minichannels in weightlessness. Applied Thermal Engineering 51, 1317-1327. https://doi.org/10.1016/j.applthermaleng.2012.11.017.spa
dcterms.referencesCao, X., Li, Z.-Y., Shao, L.-L., Zhang, C.-L., 2016. Refrigerant flow through electronic expansion valve: Experiment and neural network modeling. Applied Thermal Engineering 92, 210-218. http://dx.doi.org/10.1016/j.applthermaleng.2015.09.062.spa
dcterms.referencesCavallini, A., Del Col, D., Rossetto, L., 2013. Heat transfer and pressure drop of natural refrigerants in minichannels (low charge equipment). International Journal of Refrigeration 36, 287-300. https://doi.org/10.1016/j.ijrefrig.2012.11.005.spa
dcterms.referencesChawla, J.M., 1967. Wärmeübergang und Druckabfall in waagerechten Rohren bei der Strömung von verdampfenden Kältemitteln. VDI-Verlagspa
dcterms.referencesCicchitti, A., Lombardi, C., Silvestri, M., Soldaini, G., Zavattarelli, R., 1960. Two-phase cooling experiments: pressure drop, heat transfer and burnout measurements, Other Information: Orig. Receipt Date: 31-DEC-60, p. Medium: X; Size: Pages: 58.spa
dcterms.referencesCong, T., Su, G., Qiu, S., Tian, W., 2013. Applications of ANNs in flow and heat transfer problems in nuclear engineering: A review work. Progress in Nuclear Energy 62, 54-71. http://dx.doi.org/10.1016/j.pnucene.2012.09.003.spa
dcterms.referencesDeng, S., Su, W., Zhao, L., 2016. A neural network for predicting normal boiling point of pure refrigerants using molecular groups and a topological index. International Journal of Refrigeration 63, 63-71. http://dx.doi.org/10.1016/j.ijrefrig.2015.10.025.spa
dcterms.referencesErdemir, D., Ayata, T., 2017. Prediction of temperature decreasing on a green roof by using artificial neural network. Applied Thermal Engineering 112, 1317-1325. https://doi.org/10.1016/j.applthermaleng.2016.10.145spa
dcterms.referencesFang, X.D., Xu, Y., Zhou, Z.R., 2011. New correlations of single- phase friction factor for turbulent pipe flow and evaluation of existing single- phase friction factor correlations. Nuclear engineering and design 241, 897-902. https://doi.org/10.1016/j.nucengdes.2010.12.019.spa
dcterms.referencesFannou, J.-L.C., Rousseau, C., Lamarche, L., Kajl, S., 2014. Modeling of a direct expansion geothermal heat pump using artificial neural networks. Energy and Buildings 81, 381-390. http://dx.doi.org/10.1016/j.enbuild.2014.06.040.spa
dcterms.referencesGarcia, J., Porto, M.P., Revellin, R., Bonjour, J., Machado, L., 2017. An experimental study on two-phase frictional pressure drop for R-407c in smooth horizontal tubes. International Journal of Refrigeration 73, 163-174. http://doi.org/10.1016/j.ijrefrig.2016.09.018.spa
dcterms.referencesGreco, A., Vanoli, G.P., 2006. Experimental two- phase pressure gradients during evaporation of pure and mixed refrigerants in a smooth horizontal tube. Comparison with correlations. International Journal of Heat And Mass 42, 709-725. https://doi.org/10.1007/s00231-005-0020-7spa
dcterms.referencesGuo, C., Wang, J., Du, X., Yang, L., 2016. Experimental flow boiling characteristics of R134a/R245fa mixture inside smooth horizontal tube. Applied Thermal Engineering 103, 901- 908. https://doi.org/10.1016/j.applthermaleng.2016.04.162.spa
dcterms.referencesGupta, E., Sharma, N., Batra, C.M., 2014. Neural network approach for analytical study of the reliability of refrigeration system. 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH), 511-514. https://doi.org/10.1109/cipech.2014.7018210.spa
dcterms.referencesHeimel, M., Lang, W., Almbauer, R., 2014. Performance predictions using Artificial Neural Network for isobutane flow in non-adiabatic capillary tubes. International Journal of Refrigeration 38, 281-289. http://dx.doi.org/10.1016/j.ijrefrig.2013.08.018.spa
dcterms.referencesJani, D.B., Mishra, M., Sahoo, P.K., 2016. Performance prediction of rotary solid desiccant dehumidifier in hybrid air-conditioning system using artificial neural network. Applied Thermal Engineering 98, 1091-1103. http://dx.doi.org/10.1016/j.applthermaleng.2015.12.112spa
dcterms.referencesKalani, H., Sardarabadi, M., Passandideh-Fard, M., 2017. Using artificial neural network models and particle swarm optimization for manner prediction of a photovoltaic thermal nanofluid based collector. Applied Thermal Engineering 113, 1170-1177. https://doi.org/10.1016/j.applthermaleng.2016.11.105.spa
dcterms.referencesKamar, H.M., Ahmad, R., Kamsah, N.B., Mohamad Mustafa, A.F., 2013. Artificial neural networks for automotive air-conditioning systems performance prediction. Applied Thermal Engineering 50, 63-70. http://dx.doi.org/10.1016/j.applthermaleng.2012.05.032.spa
dcterms.referencesKasera, S., Bhaduri, S.C., 2017. Performance of R407C as an Alternate to R22: A Review. Energy Procedia 109, 4-10. https://doi.org/10.1016/j.egypro.2017.03.032.spa
dcterms.referencesKreitzer, P.J., Hanchak, M., Byrd, L., 2013. Flow Regime Identification of Horizontal Two Phase Refrigerant R-134a Flow Using Neural Networks, ASME International Mechanical Engineering Congress and Exposition, San Diego, California, USAhttp://dx.doi.org/10.1115/IMECE2013- 62510.spa
dcterms.referencesKundu, A., Kumar, R., Gupta, A., 2014a. Flow boiling heat transfer characteristics of R407C inside a smooth tube with different tube inclinations. International Journal of Refrigeration 45, 1- 12. http://dx.doi.org/10.1016/j.ijrefrig.2014.06.009.spa
dcterms.referencesKundu, A., Kumar, R., Gupta, A., 2014b. Heat transfer characteristics and flow pattern during two-phase flow boiling of R134a and R407C in a horizontal smooth tube. Experimental Thermal and Fluid Science 57, 344-352. http://dx.doi.org/10.1016/j.expthermflusci.2014.05.020.spa
dcterms.referencesLedesma, S., Belman-Flores, J.M., 2014. Application of artificial neural networks for generation of energetic maps of a variable speed compression system working with R1234yf. Applied Thermal Engineering 69, 105-112. http://dx.doi.org/10.1016/j.applthermaleng.2014.04.050.spa
dcterms.referencesLedesma, S., Belman-Flores, J.M., Barroso-Maldonado, J.M., 2015. Analysis and modeling of a variable speed reciprocating compressor using ANN. International Journal of Refrigeration 59, 190-197. http://dx.doi.org/10.1016/j.ijrefrig.2015.08.009.spa
dcterms.referencesLuján, J.M., Climent, H., García-Cuevas, L.M., Moratal, A., 2017. Volumetric efficiency modelling of internal combustion engines based on a novel adaptive learning algorithm of artificial neural networks. Applied Thermal Engineering 123, 625-634. https://doi.org/10.1016/j.applthermaleng.2017.05.087.spa
dcterms.referencesMathioulakis, E., Panaras, G., Belessiotis, V., 2016. Artificial neural networks for the performance prediction of heat pump hot water heaters. International Journal of Sustainable Energy, 1-20. https://doi.org/10.1080/14786451.2016.1218495.spa
dcterms.referencesMauro, A.W., Quibén, J.M., Mastrullo, R., Thome, J.R., 2007. Comparison of experimental pressure drop data for two phase flows to prediction methods using a general model. International Journal of Refrigeration 30, 1358-1367. https://doi.org/10.1016/j.ijrefrig.2007.04.008.spa
dcterms.referencesMcAdams, W., Woods, W., Heroman, L., 1942. Vaporization inside horizontal tubes-II-benzeneoil mixtures. Trans. ASME 64, 193-200.spa
dcterms.referencesMohanraj, M., Jayaraj, S., Muraleedharan, C., 2012. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review. Renewable and Sustainable Energy Reviews 16, 1340-1358. http://dx.doi.org/10.1016/j.rser.2011.10.015.spa
dcterms.referencesMohanraj, M., Jayaraj, S., Muraleedharan, C., 2015. Applications of artificial neural networks for thermal analysis of heat exchangers – A review. International Journal of Thermal Sciences 90, 150-172. http://dx.doi.org/10.1016/j.ijthermalsci.2014.11.030.spa
dcterms.referencesMoosavi, M., Sedghamiz, E., Abareshi, M., 2014. Liquid density prediction of five different classes of refrigerant systems (HCFCs, HFCs, HFEs, PFAs and PFAAs) using the artificial neural network-group contribution method. International Journal of Refrigeration 48, 188-200. http://dx.doi.org/10.1016/j.ijrefrig.2014.09.007.spa
dcterms.referencesvspa
dcterms.referencesMüller-Steinhagen, H., Heck, K., 1986. A simple friction pressure drop correlation for two- phase flow in pipes. Chemical Engineering and Processing 20, 297-308. https://doi.org/10.1016/0255- 2701(86)80008-3.spa
dcterms.referencesNabipour, M., Keshavarz, P., 2017. Modeling surface tension of pure refrigerants using feedforward back-propagation neural networks. International Journal of Refrigeration 75, 217-227. http://dx.doi.org/10.1016/j.ijrefrig.2016.12.011.spa
dcterms.referencesPamitran, A.S., Choi, K.-I., Oh, J.-T., Hrnjak, P., 2010. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes. International Journal of Refrigeration 33, 578-588. http://dx.doi.org/10.1016/j.ijrefrig.2009.12.009.spa
dcterms.referencesPiasecka, M., 2015. Impact of selected parameters on refrigerant flow boiling heat transfer and pressure drop in minichannels. International Journal of Refrigeration 56, 198-212. https://doi.org/10.1016/j.ijrefrig.2015.03.024.spa
dcterms.referencesRashidi, M.M., Aghagoli, A., Raoofi, R., 2017. Thermodynamic analysis of the ejector refrigeration cycle using the artificial neural network. Energy 129, 201-215. https://doi.org/10.1016/j.energy.2017.04.089.spa
dcterms.referencesRoman, A.J., Kreitzer, P.J., Ervin, J.S., Hanchak, M.S., Byrd, L.W., 2016. Flow pattern identification of horizontal two-phase refrigerant flow using neural networks. International Communications in Heat and Mass Transfer 71, 254-264. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.033.spa
dcterms.referencesSaleh, B., Aly, A.A., 2016. Artificial neural network models for depicting mass flow rate of R22, R407C and R410A through electronic expansion valves. International Journal of Refrigeration 63, 113-124. http://dx.doi.org/10.1016/j.ijrefrig.2015.11.010.spa
dcterms.referencesSempértegui-Tapia, D.F., Ribatski, G., 2017. Two-phase frictional pressure drop in horizontal micro-scale channels: Experimental data analysis and prediction method development. International Journal of Refrigeration 79, 143-163. https://doi.org/10.1016/j.ijrefrig.2017.03.024.spa
dcterms.referencesShojaeefard, M.H., Zare, J., Tabatabaei, A., Mohammadbeigi, H., 2016. Evaluating different types of artificial neural network structures for performance prediction of compact heat exchanger. Neural Computing and Applications, 1-13. https://doi.org/10.1007/s00521-016-2302- zspa
dcterms.referencesSobhanifar, N., Ahmadloo, E., Azizi, S., 2015. Prediction of Two-Phase Heat Transfer Coefficients in a Horizontal Pipe for Different Inclined Positions With Artificial Neural Networks. Journal of Heat Transfer 137, 061009-061009-061006. https://doi.org/10.1115/1.4029865.spa
dcterms.referencesSun, L., Mishima, K., 2009. Evaluation analysis of prediction methods for two- phase flow pressure drop in mini- channels. International Journal of Multiphase Flow 35, 47-54. https://doi.org/10.1016/j.ijmultiphaseflow.2008.08.003.spa
dcterms.referencesTian, Z., Gu, B., Qian, C., Yang, L., Liu, F., 2015a. Electronic expansion valve mass flow rate prediction based on dimensionless correlation and ANN model. International Journal of Refrigeration 57, 1-10. http://dx.doi.org/10.1016/j.ijrefrig.2015.04.016.spa
dcterms.referencesTian, Z., Gu, B., Yang, L., Liu, F., 2014. Performance prediction for a parallel flow condenser based on artificial neural network. Applied Thermal Engineering 63, 459-467. http://dx.doi.org/10.1016/j.applthermaleng.2013.10.060.spa
dcterms.referencesTian, Z., Qian, C., Gu, B., Yang, L., Liu, F., 2015b. Electric vehicle air conditioning system performance prediction based on artificial neural network. Applied Thermal Engineering 89, 101- 114. http://dx.doi.org/10.1016/j.applthermaleng.2015.06.002.spa
dcterms.referencesVerma, T.N., Nashine, P., Singh, D.V., Singh, T.S., Panwar, D., 2017. ANN: Prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes. Applied Thermal Engineering 120, 219-227. https://doi.org/10.1016/j.applthermaleng.2017.03.126.spa
dcterms.referencesXu, Y., Fang, X., Li, D., Li, G., Yuan, Y., Xu, A., 2016. An experimental study of flow boiling frictional pressure drop of R134a and evaluation of existing correlations. International Journal of Heat and Mass Transfer 98, 150-163. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.018spa
dcterms.referencesXu, Y., Fang, X.D., Su, X.H., Zhou, Z.R., Chen, W.W., 2012. Evaluation of frictional pressure drop correlations for two- phase flow in pipes. Nuclear Engineering and Design 253, 86-97. https://doi.org/10.1016/j.nucengdes.2012.08.007.spa
dcterms.referencesYin, C., Rosendahl, L., Luo, Z., 2003. Methods to improve prediction performance of ANN models. Simulation Modelling Practice and Theory 11, 211-222. http://dx.doi.org/10.1016/S1569-190X(03)00044-3.spa
dcterms.referencesZendehboudi, A., Li, X., Wang, B., 2017. Utilization of ANN and ANFIS models to predict variable speed scroll compressor with vapor injection. International Journal of Refrigeration 74, 475-487. https://doi.org/10.1016/j.ijrefrig.2016.11.011.spa
dcterms.referencesZolfaghari, H., Yousefi, F., 2017. Thermodynamic properties of lubricant/refrigerant mixtures using statistical mechanics and artificial intelligence. International Journal of Refrigeration 80, 130-144. http://dx.doi.org/10.1016/j.ijrefrig.2017.04.025.spa
dc.identifier.doihttps://doi.org/10.1016/j.ijrefrig.2017.10.007
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVol.85 (2018)spa
dc.relation.citationendpage302spa
dc.relation.citationissue(2018)spa
dc.relation.citationstartpage292spa
dc.relation.citationvolume85spa
dc.relation.citesGarcia, J. J., Garcia, F., Bermúdez, J., & Machado, L. (2018). Prediction of pressure drop during evaporation of R407C in horizontal tubes using artificial neural networks. International Journal of Refrigeration, 85, 292-302.
dc.relation.ispartofjournalInternational Journal of Refrigerationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalR407Ceng
dc.subject.proposalEvaporationeng
dc.subject.proposalArtificial network neuraleng
dc.subject.proposalPressure dropeng
dc.subject.proposalSmooth horizontal tubeseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem