Mostrar el registro sencillo del ítem

dc.contributor.authorValencia, Guillermo
dc.contributor.authorCárdenas-Gutiérrez, Javier Alfonso
dc.contributor.authorDuarte Forero, Jorge
dc.date.accessioned2021-11-22T14:25:05Z
dc.date.available2021-11-22T14:25:05Z
dc.date.issued2020-01-01
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1213
dc.description.abstractIn this article, an organic Rankine cycle (ORC) was integrated into a 2-MW natural gas engine to evaluate the possibility of generating electricity by recovering the engine’s exhaust heat. The operational and design variables with the greatest influence on the energy, economic, and environmental performance of the system were analyzed. Likewise, the components with greater exergy destruction were identified through the variety of different operating parameters. From the parametric results, it was found that the evaporation pressure has the greatest influence on the destruction of exergy. The highest fraction of exergy was obtained for the Shell and tube heat exchanger (ITC1) with 38% of the total exergy destruction of the system. It was also determined that the high value of the heat transfer area increases its acquisition costs and the levelized cost of energy (LCOE) of the thermal system. Therefore, these systems must have a turbine technology with an efficiency not exceeding 90% because, from this value, the LCOE of the system surpasses the LCOE of a gas turbine. Lastly, a life cycle analysis (LCA) was developed on the system operating under the selected organic working fluids. It was found that the component with the greatest environmental impact was the turbine, which reached a maximum value of 3013.65 Pts when the material was aluminum. Acetone was used as the organic working fluid.eng
dc.format.extent23 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherResourcesspa
dc.relation.ispartofResources
dc.rights© 1996-2021 MDPI (Basel, Switzerland) unless otherwise statedeng
dc.sourcehttps://www.mdpi.com/2079-9276/9/1/2spa
dc.titleExergy, economic, and life-cycle assessment of orc system for waste heat recovery in a natural gas internal combustion engineeng
dc.typeArtículo de revistaspa
dcterms.referencesBarrozo, F.; Valencia, G.; Cárdenas, Y. An economic evaluation of renewable and conventional electricity generation systems in shopping center using HOMER Pro. Contemp. Eng. Sci. 2017, 10, 1287–1295.spa
dcterms.referencesZhang, H.; Guan, X.; Ding, Y.; Liu, C. Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. J. Clean. Prod. 2018, 183, 1207–1215.spa
dcterms.referencesValencia, G.; Acevedo, C.; Duarte, J. Thermoeconomic optimization with PSO Algorithm of waste heat recovery systems based on Organic Rankine Cycle system for a natural gas engine. Energies 2019, 21, 4165.spa
dcterms.referencesValencia, G.; Fontalvo, A.; Cárdenas, Y.; Duarte, J.; Isaza, C. Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC. Energies 2019, 12, 2378.spa
dcterms.referencesZhai, H.; An, Q.; Shi, L.; Lemort, V.; Quoilin, S. Categorization and analysis of heat sources for Organic Rankine Cycle systems. Renew. Sustain. Energy Rev. 2016, 64, 790–805.spa
dcterms.referencesLiu, X.; Liang, J.; Xiang, D.; Yang, S.; Qian, Y. A proposed coal-to-methanol process with CO2 capture combined Organic Rankine Cycle (ORC) for waste heat recovery. J. Clean. Prod. 2016, 129, 53–64.spa
dcterms.referencesGholamian, E.; Habibollahzade, A.; Zare, V. Development and multi-objective optimization of geothermal-based Organic Rankine Cycle integrated with thermoelectric generator and proton exchange membrane electrolyzer for power and hydrogen production. Energy Convers. Manag. 2018, 174, 112–125.spa
dcterms.referencesYao, S.; Zhang, Y.; Yu, X. Thermo-economic analysis of a novel power generation system integrating a natural gas expansion plant with a geothermal ORC in Tianjin, China. Energy 2018, 164, 602–614.spa
dcterms.referencesDimitrova, Z.; Lourdais, P.; Maréchal, F. Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain. Energy 2015, 86, 574–588.spa
dcterms.referencesVivian, J.; Manente, G.; Lazzaretto, A. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources. Appl. Energy 2015, 156, 727–746.spa
dcterms.referencesYu, H.; Feng, X.; Wang, Y. A new pinch based method for simultaneous selection of working fluid and operating conditions in an Organic Rankine Cycle (ORC) recovering waste heat. Energy 2015, 90, 36–46.spa
dcterms.referencesInvernizzi, C.M.; Iora, P.; Preißinger, M.; Manzolini, G. HFOs as substitute for R-134a as working fluids in ORC power plants: A thermodynamic assessment and thermal stability analysis. Appl. Therm. Eng. 2016, 103, 790–797.spa
dcterms.referencesMavrou, P.; Papadopoulos, A.I.; Stijepovic, M.Z.; Seferlis, P.; Linke, P.; Voutetakis, S. Novel and conventional working fluid mixtures for solar Rankine cycles: Performance assessment and multi-criteria selection. Appl. Therm. Eng. 2015, 75, 384–396.spa
dcterms.referencesRahbar, K.; Mahmoud, S.; Al-Dadah, R.K.; Moazami, N.; Mirhadizadeh, S.A. Review of organic Rankine cycle for small-scale applications. Energy Convers. Manag. 2017, 134, 135–155.spa
dcterms.referencesKarellas, S.; Braimakis, K. Energy–exergy analysis and economic investigation of a cogeneration and trigeneration ORC–VCC hybrid system utilizing biomass fuel and solar power. Energy Convers. Manag. 2016, 107, 103–113.spa
dcterms.referencesPang, K.-C.; Chen, S.-C.; Hung, T.-C.; Feng, Y.-Q.; Yang, S.-C.; Wong, K.-W.; Lin, J.-R. Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat. Energy 2017, 133, 636–651.spa
dcterms.referencesWang, J.; Diao, M.; Yue, K. Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method. Energy 2017, 141, 97–107.spa
dcterms.referencesMahmoudi, S.M.S.; Ghavimi, A.R. Thermoeconomic analysis and multi objective optimization of a molten carbonate fuel cell—Supercritical carbon dioxide—Organic Rankin Cycle integrated power system using liquefied natural gas as heat sink. Appl. Therm. Eng. 2016, 107, 1219–1232.spa
dcterms.referencesZhang, Q.; Ogren, R.M.; Kong, S.-C. Thermo-economic analysis and multi-objective optimization of a novel waste heat recovery system with a transcritical CO2 cycle for offshore gas turbine application. Energy Convers. Manag. 2018, 172, 212–227.spa
dcterms.referencesLiu, C.; He, C.; Gao, H.; Xie, H.; Li, Y.; Wu, S.; Xu, J. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment. Energy 2013, 56, 144–154.spa
dcterms.referencesCioccolanti, L.; Rajabi Hamedani, S.; Villarini, M. Environmental and energy assessment of a small-scale solar Organic Rankine Cycle trigeneration system based on compound parabolic collectors. Energy Convers. Manag. 2019, 198, 111829.spa
dcterms.referencesDing, Y.; Liu, C.; Zhang, C.; Xu, X.; Li, Q.; Mao, L. Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid. Energy 2018, 145, 52–64.spa
dcterms.referencesHeberle, F.; Schifflechner, C.; Brüggemann, D. Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics 2016, 64, 392–400.spa
dcterms.referencesSun, W.; Yue, X.; Wang, Y. Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven by low-temperature waste heat. Energy Convers. Manag. 2017, 135, 63–73.spa
dcterms.referencesMateu-Royo, C.; Mota-Babiloni, A.; Navarro-Esbrí, J.; Peris, B.; Molés, F.; Amat-Albuixech, M. Multi-objective optimization of a novel reversible High-Temperature Heat Pump-Organic Rankine Cycle (HTHP-ORC) for industrial low-grade waste heat recovery. Energy Convers. Manag. 2019, 197, 111908.spa
dcterms.referencesVan Kleef, L.M.T.; Oyewunmi, O.A.; Markides, C.N. Multi-objective thermo-economic optimization of Organic Rankine Cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques. Appl. Energy 2019, 251, 112513.spa
dcterms.referencesShi, L.; Shu, G.; Tian, H.; Deng, S. A review of modified Organic Rankine Cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR). Renew. Sustain. Energy Rev. 2018, 92, 95–110.spa
dcterms.referencesValencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC. Appl. Sci. 2019, 9, 4071.spa
dcterms.referencesDa Silva, J.A.M.; Seifert, V.; de Morais, V.O.B.; Tsolakis, A.; Herreros, J.; Torres, E. Exergy evaluation and ORC use as an alternative for efficiency improvement in a CI-engine power plant. Sustain. Energy Technol. Assess. 2018, 30, 216–223.spa
dcterms.referencesAbam, F.I.; Ekwe, E.B.; Effiom, S.O.; Ndukwu, M.C. A comparative performance analysis and thermo-sustainability indicators of modified low-heat Organic Rankine Cycles (ORCs): An exergy-based procedure. Energy Rep. 2018, 4, 110–118.spa
dcterms.referencesKarvountzis-Kontakiotis, A.; Pesiridis, A.; Zhao, H.; Alshammari, F.; Franchetti, B.; Pesmazoglou, I.; Tocci, L. Effect of an ORC Waste Heat Recovery System on Diesel Engine Fuel Economy for Off-Highway Vehicles; SAE Technical Paper; SAE: Warrendale, PA, USA, 2017.spa
dcterms.referencesOchoa, G.V.; Peñaloza, C.A.; Rojas, J.P. Thermoeconomic modelling and parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under differentworking fluids. Appl. Sci. 2019, 9, 4526.spa
dcterms.referencesKhoo, H.H. LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resour. Conserv. Recycl. 2019, 145, 67–77.spa
dcterms.referencesShyam Mishra, R.; Khan, Y. Exergy and energy analysis of modified organic rankine cycle for reduction of global warming and ozone depletion. Int. J. Res. Eng. Innov. 2017, 1, 1–12.spa
dcterms.referencesOchoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700.spa
dcterms.referencesWater, G.P. Jenbacher 612 GS-N. L 2MW. Tech. Specif. 2011, 1–4. Available online: http://kts-eng.com/assets/files/J-612.pdf (accessed on 28 December 2019).spa
dcterms.referencesBarrozo, F.; Ochoa, G.V.; Cárdenas, Y.D. Hybrid PV & Wind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemp. Eng. Sci. 2017, 26, 1269–1278.spa
dcterms.referencesZare, V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138.spa
dcterms.referencesEl-Emam, R.S.; Dincer, I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 2013, 59, 435–444.spa
dcterms.referencesCalise, F.; Capuozzo, C.; Carotenuto, A.; Vanoli, L. Thermoeconomic analysis and off-design performance of an organic Rankine cycle powered by medium-temperature heat sources. Sol. Energy 2014, 103, 595–609.spa
dcterms.referencesVoros, N.G.; Kiranoudis, C.T.; Maroulis, Z.B. Solar energy exploitation for reverse osmosis desalination plants. Desalination 1998, 115, 83–101.spa
dcterms.referencesValencia, G.; Benavides, A.; Cárdenas, Y. Economic and Environmental Multiobjective Optimization of a Wind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region. Energies 2019, 12, 2119.spa
dcterms.referencesShengjun, Z.; Huaixin, W.; Tao, G. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 2011, 88, 2740–2754.spa
dcterms.referencesBhatt, A.; Bradford, A.; Abbassi, B.E. Cradle-to-grave life cycle assessment (LCA) of low-impact-development (LID) technologies in southern Ontario. J. Environ. Manag. 2019, 231, 98–109.spa
dcterms.referencesInternational Organization for Standardization (ISO). Environmental Management The ISO 14000 Family of International Standards ISO in Brief ISO and the Environment; ISO: Geneva, Switzerland, 2009.spa
dcterms.referencesArvanitoyannis, I.S. Life cycle assessment (LCA)—Principles and guidelines. Waste Manag. Food Ind. 2008, 14040, 97–132.spa
dcterms.referencesKost, C.; Schlegl, T.; Thomsen, J.; Nold, S.; Mayer, J.; Hartmann, N.; Senkpiel, C.; Philipps, S.; Lude, S.; Saad, N. Fraunhofer ISE: Levelized cost of electricity—Renewable energy technologies, March 2018. arXiv 2018, arXiv:cs/9605103.spa
dcterms.referencesValencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 655.spa
dcterms.referencesDiaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903.spa
dcterms.referencesValencia, G.; Vanegas, M.; Villicana, E. Disponibilidad Geográfica y Temporal de la Energía Solar en la Costa Caribe Colombiana; Sello editorial de la Universidad del Atlántico: Barranquilla, Colombia, 2016.spa
dc.identifier.doihttps://doi.org/10.3390/resources9010002
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol.9 No.1.(2020)spa
dc.relation.citationendpage23spa
dc.relation.citationissue1(2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume9spa
dc.relation.citesValencia Ochoa, G., Cárdenas Gutierrez, J., & Duarte Forero, J. (2020). Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine. Resources, 9(1), 2.
dc.relation.ispartofjournalResourcesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalorganic Rankine cycleeng
dc.subject.proposalorganic working fluidseng
dc.subject.proposalLCOEeng
dc.subject.proposalthermodynamic analysiseng
dc.subject.proposaleconomic analysiseng
dc.subject.proposalLCAeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem