
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/370711234

SEMGROMI—a semantic grouping algorithm to identifying microservices using

semantic similarity of user stories

Article in PeerJ Computer Science · May 2023

DOI: 10.7717/peerj-cs.1380

CITATIONS

2
READS

91

4 authors:

Eduard gilberto Puerto

University of the Andes (Venezuela)

21 PUBLICATIONS 147 CITATIONS

SEE PROFILE

Fredy Humberto Vera-Rivera

Universidad Francisco de Paula Santander

35 PUBLICATIONS 98 CITATIONS

SEE PROFILE

Hernán Astudillo

Universidad Técnica Federico Santa María

208 PUBLICATIONS 1,819 CITATIONS

SEE PROFILE

Mauricio Gaona

Universidad del Valle (Colombia)

15 PUBLICATIONS 57 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mauricio Gaona on 18 May 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/370711234_SEMGROMI-a_semantic_grouping_algorithm_to_identifying_microservices_using_semantic_similarity_of_user_stories?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/370711234_SEMGROMI-a_semantic_grouping_algorithm_to_identifying_microservices_using_semantic_similarity_of_user_stories?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduard-Puerto?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduard-Puerto?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-the-Andes-Venezuela?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduard-Puerto?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fredy-Vera-Rivera?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fredy-Vera-Rivera?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-Francisco-de-Paula-Santander?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fredy-Vera-Rivera?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hernan-Astudillo-2?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hernan-Astudillo-2?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-Tecnica-Federico-Santa-Maria?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hernan-Astudillo-2?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauricio-Gaona-3?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauricio-Gaona-3?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-del-Valle-Colombia?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauricio-Gaona-3?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauricio-Gaona-3?enrichId=rgreq-ea7c7a4f695ce14a0bb7a876ddf450f1-XXX&enrichSource=Y292ZXJQYWdlOzM3MDcxMTIzNDtBUzoxMTQzMTI4MTE1OTU2NzI5MUAxNjg0NDE4NjkzNDg3&el=1_x_10&_esc=publicationCoverPdf

SEMGROMI—a semantic grouping
algorithm to identifying microservices
using semantic similarity of user stories
Fredy H. Vera-Rivera1, Eduard Gilberto Puerto Cuadros1, Boris Perez1,
Hernán Astudillo2,4 and Carlos Gaona3

1 Grupo de Investigación GIA, Universidad Francisco de Paula Santander, Cúcuta, Norte de
Santander, Colombia

2 Departamento de Informática, Universidad Técnica Federico Santa María, Santiago, Santiago,
Chile

3 Grupo de Investigación GEDI, Universidad del Valle, Cali, Valle del Cauca, Colombia
4 Instituto de Tecnología para la Innovación en Salud y Bienestar, Universidad Andrés Bello, Viña
del Mar, Chile

ABSTRACT
Microservices is an architectural style for service-oriented distributed computing,
and is being widely adopted in several domains, including autonomous vehicles,
sensor networks, IoT systems, energy systems, telecommunications networks and
telemedicine systems. When migrating a monolithic system to a microservices
architecture, one of the key design problems is the “microservice granularity
definition”, i.e., deciding how many microservices are needed and allocating
computations among them. This article describes a semantic grouping algorithm
(SEMGROMI), a technique that takes user stories, a well-known functional
requirements specification technique, and identifies number and scope of candidate
microservices using semantic similarity of the user stories’ textual description, while
optimizing for low coupling, high cohesion, and high semantic similarity. Using the
technique in four validation projects (two state-of-the-art projects and two industry
projects), the proposed technique was compared with domain-driven design (DDD),
the most frequent method used to identify microservices, and with a genetic
algorithm previously proposed as part of the Microservices Backlog model. We found
that SEMGROMI yields decompositions of user stories to microservices with high
cohesion (from the semantic point of view) and low coupling, the complexity was
reduced, also the communication between microservices and the estimated
development time was decreased. Therefore, SEMGROMI is a viable option for the
design and evaluation of microservices-based applications. The proposed semantic
similarity-based technique (SEMGROMI) is part of the Microservices Backlog
model, which allows to evaluate candidate microservices graphically and based on
metrics to make design-time decisions about the architecture of the microservices-
based application.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Natural Language and
Speech, World Wide Web and Web Science, Sentiment Analysis
Keywords Microservices, Micro-services granularity, Semantic similarity, User stories, Services
computing, Micro-services decompositions

How to cite this article Vera-Rivera FH, Puerto Cuadros EG, Perez B, Astudillo H, Gaona C. 2023. SEMGROMI—a semantic grouping
algorithm to identifying microservices using semantic similarity of user stories. PeerJ Comput. Sci. 9:e1380 DOI 10.7717/peerj-cs.1380

Submitted 16 November 2022
Accepted 13 April 2023
Published 12 May 2023

Corresponding author
Fredy H. Vera-Rivera,
fredyhumbertovera@ufps.edu.co

Academic editor
Luca Ardito

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.1380

Copyright
2023 Vera-Rivera et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1380
mailto:fredyhumbertovera@�ufps.�edu.�co
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1380
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
The development of software systems for modern technologies has seen exponential
growth in the last decade (Tanveer, 2015). The demands for information processing
continue to grow, requiring specialized software with strong capabilities in terms of
security, reliability, robustness and interoperability with other systems, especially with
mobile applications and with a smart world that is evolving every day. Services enable
communication between heterogeneous software systems, devices and applications.
Enterprise transaction processing is accomplished by connecting disparate software
systems through business services. Microservices architecture allows large applications to
be implemented and deployed as a collection of cloud-run services, and is a topic of great
interest in both academia and industry (Newman, 2015).

A key concept in microservices design is granularity (Vera-Rivera et al., 2021), which
describes all the microservices that make up the system and the size (number of services or
operations) of each of them. Hassan, Bahsoon & Kazman (2020) pointed out that
granularity is determined by both the size of the service and the amount of functionality it
exposes. Not surprisingly, defining the “right” level of granularity for a microservice is an
active research topic.

Granularity can be achieved and then improved by joining or splitting microservices.
The problem of microservice granularity is presented as a problem of boundary (size)
identification for the microservice itself (Homay et al., 2020). The microservice requires
two properties to be defined: (i) a specific and decoupled purpose, and (ii) added value to
the system. Granularity can be beneficial if it increases the modularity of the system
(flexibility, scalability, maintainability, and traceability) while reducing complexity
(dependency, communication, and computation).

In this article, we address the granularity problem by proposing a semantic grouping
algorithm called SEMGROMI. This proposal focuses on grouping user stories into
microservices considering cohesion (high), coupling (low), and complexity (low) among
the identified microservices. The technique presented in this article is semi-automatic,
where the software architect identifies and analyzes the resulting solution and makes
design-time decisions about that solution based on metrics. SEMGROMI is part of the
Microservices Backlog model (Vera-Rivera et al., 2021).

The next section of the article introduces the Microservices Backlog (MB) model. An
overview of related work on methods or techniques for defining microservices granularity
is presented in “RelatedWork”. The methodology and evaluation methods are described in
“Methodology”. After that, “SEMGROMI: Semantic Grouping Algorithm” presents the
semantic similarity grouping algorithm, SEMGROMI, in detail “Validation” describes the
results of the evaluation methods. Finally, we discuss the results of the technique and
summarize and conclude our discussion in “Discussion” and “Conclusions”.

MICROSERVICES BACKLOG
In Vera-Rivera et al. (2021), we proposed the Microservices Backlog (MB), a method for
graphically analyzing microservices granularity at design time; allowing architects to
analyze and make build decisions about the application and its dependencies. MB answers

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 2/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

three key questions: (1) How do you determine and evaluate the granularity of
microservices? (2) How to determine the number of user stories assigned to each
microservice, and (3) How to determine the optimal number of microservices that will be
part of the application? These activities make it possible to improve the granularity of the
microservices to achieve low coupling, high cohesion, and low complexity properties.
These design-time metrics have been adapted and computed to evaluate the granularity of
a microservice-based application (Vera-Rivera et al., 2021). The problem of assigning user
stories to microservices has high complexity, increasing the number of user stories
significantly increases the execution time of the genetic algorithm.

This article describes SEMGROMI, a semantic similarity-based grouping technique that
overcomes the runtime limitations of MB, allowing the granularity of microservices to be
defined with a drastic reduction in execution time, while achieving results with similar
coupling, complexity, and cohesion. We validated SEMGROMI with the same three
projects used to validate MB, namely Cargo Tracking (Baresi, Garriga & De Renzis, 2017;
Li et al., 2019), JPetStore (Jin et al., 2019; Saidani et al., 2019, Ren et al., 2018) and Foristom
Conferences (Vera-Rivera et al., 2021). We have also evaluated it with Sinplafut (Vera-
Rivera, Vera-Rivera & Gaona-Cuevas, 2019), an industrial case study with 92 user stories.
Design time metrics were adapted and calculated to evaluate the granularity level of each
microservice in the proposed decomposition.

The main contributions of this work are: (i) a semantic similarity-based grouping
algorithm for aggregating user stories into microservices, and (ii) design-time metrics
adapted and used for both identifying microservices and evaluating the technique itself.
(iii) an improved runtime for decomposing user stories into microservices compared to a
genetic algorithm.

The Microservice Backlog (MB), from a set of functional requirements expressed as user
stories within a product backlog or release planning, allows the granularity of
microservices to be analyzed graphically. MB provides suggested architectures for
microservices-based applications, allowing architects or development teams to evaluate the
granularity or size of microservices, considering at design time their complexity, coupling,
cohesion, calls and requests between microservices, and estimated development time. This
allows architects and developers to find an implementation strategy (Vera-Rivera et al.,
2021).

The architect creates the project and submits the user story data (i.e., identifier, name,
description, estimated points, estimated development time, scenario, and observations)
from a CSV file. The user then defines dependencies between user stories (HU) according
to the business logic. A trace between HUi and HUj is defined when HUi calls or executes
HUj. Users and architects can add up these user stories and generate an automatic

decomposition into microservices (using a genetic algorithm or the SEMGROMI grouping
algorithm), or define the decomposition manually. The system calculates the metrics for
analyzing the application using the metrics calculator component. With these metrics, you
can analyze the proposed architectures of the project at design time and make decisions
Vera-Rivera et al. (2021).

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 3/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

The genetic algorithm considers coupling, complexity, semantic similarity and cohesion
metrics to automatically distribute user stories to microservices. It tries to find the best
combination and assignment of user stories to microservices, thus minimizing the
granularity metric (Vera-Rivera et al., 2020). It is important to note that semantics and
conceptual similarity play a big role in several topics around architecture, including
architecture recovery, refactoring (e.g., Feature Envy, Move Method, Extract Class), and
design principles (single responsibility principle). For this reason, the grouping algorithm
SEMGROMI considers semantic similarity to identify the topic to which the user story
refers and to group into microservices those that refer to the same topic. The details of the
algorithm are presented later in the article.

RELATED WORK
According to Vera-Rivera, Gaona & Astudillo (2021), the problem of microservice
identification has been approached from several perspectives, including clustering in
machine learning, domain engineering, genetic programming and semantic similarity as
the most studied. The granularity of microservices is evaluated using metrics, in particular,
to measure performance and to measure the degree of coupling. These two metrics are the
most widely used for this purpose. Table 1 shows a comparative analysis of related work.

Machine learning clustering includes clustering K-means (Baresi, Garriga & De Renzis,
2017; Ren et al., 2018), scale-weighted K-means (Abdullah, Iqbal & Erradi, 2019), graph-
based clustering (Mazlami, Cito & Leitner, 2017), hierarchical clustering (Al-Debagy &
Martinek, 2019; Nunes, Santos & Rito Silva, 2019) and affinity propagation (Al-Debagy &
Martinek, 2020).

Other techniques also used to identify microservices are domain engineering and
domain-driven design (DDD) (Josélyne et al., 2018; Krause et al., 2020), COSMIC function
points (Vural, Koyuncu & Misra, 2018), functional decomposition (Tyszberowicz et al.,
2018; Baresi, Garriga & De Renzis, 2017), class-based extraction model (Mazlami, Cito &
Leitner, 2017), data flow-driven decomposition algorithm (Chen, Li & Li, 2017), functional
partitioning through heuristics and microservices discovery algorithms (De Alwis et al.,
2018), process mining (Taibi & Syst, 2019), and service cutter, a method for decomposing a
service (Gysel et al., 2016).

In terms of genetic programming techniques to address microservice granularity, the
most commonly used are: (i) NSGAII, a non-dominated sorting genetic algorithm II—(Jin
et al., 2019; De Alwis et al., 2019; Saidani et al., 2019) and (ii) multi-objective genetic
algorithm (Christoforou, Odysseos & Andreou, 2019).

Semantic similarity has also been used (Baresi, Garriga & De Renzis, 2017; Taibi & Syst,
2019; Al-Debagy & Martinek, 2019); intuitively, high semantic similarity correlates with
high cohesion because it groups together services related to the same concept or domain
(Perepletchikov, Ryan & Frampton, 2007; Candela et al., 2016).

Baresi, Garriga & De Renzis (2017) proposed a lightweight semantic analysis process to
support the identification of candidate microservices. The solution is based on the
semantic similarity of the predicted/available functionality described by the OpenAPI

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 4/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

specifications. The process is supported by a fitness function to perform a mapping of the
available OpenAPI specifications to the entries of a reference vocabulary.

Taibi & Syst (2019) proposed a three-step mining approach to identify business
processes in monolithic solutions: (i) The DISCO (extracting distributionally related words
using co-occurrences) tool is used to identify business processes. (ii) A set of microservices
is proposed based on business processes with similar behavior. This behavior is related to
the execution paths of the processes. Care is taken to avoid circular dependencies. And
(iii) the quality of the decomposition is evaluated using a set of metrics proposed by them.

Al-Debagy & Martinek (2020) propose a method consisting of several steps, starting
with the operation names extracted from the OpenAPI specifications. The second step is
the process of converting the operation names into word representation using word
embedding models. The third step is the clustering of semantically similar operation
names to create candidate microservices.

These methods are mainly used for scenarios where monolithic architectures are
migrating to microservices architectures and focus mainly on the design phase. Cohesion,

Table 1 Related works microservices granularity definition (Vera-Rivera et al., 2021).

Year Articles Metrics Quality Att. Technique, method

2022 Semgromi Complexity, coupling, cohesion,
granularity, performance:
microservices calls.

Modularity,
maintainability,
functionality,
performance.

Hierarchical clustering, semantic similarity (Natural
processing language),

2021 Genetic
programming

Complexity, coupling, cohesion,
granularity, performance:
microservices calls.

Modularity,
maintainability,
functionality,
performance.

Genetic programming, semantic similarity (Natural
processing language)

2020 2 Cohesion, granularity None Domain-driven design, architectural design via dynamic
software visualization. Clustering using affinity
propagation algorithm, and clustering of semantically
similar.

2019 12 Coupling, cohesion, granularity,
computational resource,
performance, source code.

Scalability, performance,
functionality,
modularity,
maintainability.

Machine learning: K-means, dataflow driven
descomposition, DISCO, non-dominated sorting genetic
algorithm, hierarchical clustering, semantic similarity.

2018 6 Coupling, cohesion, complexity,
granularity, computational
resource, performance

Scalability, performance,
availability.

Domain engineering, domain-driven design, domain-driven
design COSMIC function points, functional
decomposition, heuristics used for functional splitting,
microservice discovery algorithms, decomposition pattern.

2017 7 Performance Scalability, performance,
reliability,
maintainability

Vertical decomposition, balance cost quality assurance vs
deployment, architecture definition language (ADL),
semantic similarity, clustering k-means, DISCO, graph-
based clustering algorithm, virtual machine image
synthesis and analysis

2016 2 Coupling, security, and scalability
impact.

Scalability, security Self-adaptative solution. Decomposition from system
requirements—security vs scalability.

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 5/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

coupling and performance metrics were the most commonly used metrics to assess
granularity; most techniques are manual, with only a few automated or semi-automated.

Few methods support the development of microservices architectures from scratch
(greenfield development). Source code, call graphs, logs and use case descriptions are the
most commonly used inputs for this development. However, none of the surveyed work
has used user stories as input to define microservices. User stories define microservice
operations or services as requirements. Finally, none of the surveyed studies use data from
agile practices or agile software development (Vera-Rivera, Gaona & Astudillo, 2021).

For a more detailed comparative analysis of the related works please see Vera-Rivera,
Gaona & Astudillo (2021).

METHODOLOGY
Design science research (Hevner et al., 2004) was used to conduct this research. This
research paradigm aims to improve the creation of innovative artifacts through a
continuous and iterative process, in this case the grouping algorithm itself. Our evaluation
process consists of six research activities. The adaptation of this paradigm to our problem
is shown in Fig. 1.

1. Identify and frame the problem: Review the current state of studies related to ours to
identify gaps, and identify metrics to evaluate the granularity of microservices
(Vera-Rivera, Gaona Cuevas & Astudillo, 2019).

2. Design grouping algorithm: Once the metrics have been identified, the grouping
algorithm is designed. The algorithm has six parts: (1) semantic similarity calculator,
(2) semantic grouper, (3) call and request calculator, (4) dependency analyser, (5)
coupling grouper, and (6) metric calculator.

Figure 1 Research model. Full-size DOI: 10.7717/peerj-cs.1380/fig-1

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 6/29

http://dx.doi.org/10.7717/peerj-cs.1380/fig-1
http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

3. Create grouping algorithm: It was implemented in Python using the artificial
intelligence and natural language processing libraries Spacy (Spacy.io, 2020) for vector
algebra and distance between points.

4. Evaluation of a case study: The evaluation was carried out in two academic projects
(Cargo Tracking (Baresi, Garriga & De Renzis, 2017) and JPetStore (Jin et al., 2019)) and
two industry projects (Foristom Conferences and Sinplafut (Vera-Rivera, Vera-Rivera &
Gaona-Cuevas, 2019)).

5. Compare the results of the algorithm with other methods: We compared the
decompositions proposed by our algorithm with those proposed by other state-of-the-
art microservices identification methods: domain-driven design (DDD), service cutter
(Gysel et al., 2016), Microservices identification trough interface analysis (MITIA)
(Baresi, Garriga & De Renzis, 2017), and our own genetic programming technique
(Vera-Rivera, Gaona & Astudillo, 2021). We compared these approaches using coupling,
cohesion, complexity, granularity, development time and performance metrics.

6. Proposal for an algorithm to group user stories into microservices: After carrying out
evaluations and appropriate adjustments, the algorithm for grouping user stories into
microservices is proposed in this article.

SEMGROMI: SEMANTIC GROUPING ALGORITHM
The problem is to distribute k microservices n user stories, grouping stories with the
highest semantic similarity, i.e., grouping stories that refer to the same topic. The grouped
stories should also have low coupling and high cohesion. There is no fixed number of
microservices. It is not convenient to determine in advance how many microservices the
application must have.

To solve this problem, and taking into account the above considerations, the grouping
algorithm (see Fig. 2) is a semi-automatic approach where the user or architect can
iteratively analyze the proposed solution and run it repeatedly until the goals of low
coupling, high cohesion and high semantic similarity are achieved. The grouping
algorithm has three parts: (1) defining parameters, (2) grouping user stories by semantic
similarity, and (3) grouping microservices by semantic similarity.

Algorithm parameters
The grouping algorithm has a number of input parameters:

� Semantic similarity threshold: Since the semantic similarity between two texts is a value
between 0 and 1 (with one being the same or very similar), this is the minimum
acceptable similarity value above which stories will be grouped; its initial default value is
0.85. This value indicates the percentage of similarity that exists between user stories;
they are considered to be similar if the semantic similarity value is greater than 85%.
This value can be adjusted by the user or the architect. The semantic similarity threshold
indicates how similar the texts must be to be grouped, a value closer to 1 indicates that
the semantic similarity must be higher to be grouped into the same microservice;

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 7/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

therefore, more microservices are obtained. Smaller values will group more stories into
fewer microservices.

� Coupling threshold: the minimum acceptable value of the degree of coupling between the
stories to be grouped; its initial default value is 0:5. The microservices whose distance is
greater than the coupling threshold are grouped together. If the value is close to 1:0,
more microservices will be obtained because few will exceed that value. On the other
hand, if its value is close to 0:0, only one microservice will be obtained, because all of

Figure 2 Grouping algorithm design. Full-size DOI: 10.7717/peerj-cs.1380/fig-1

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 8/29

http://dx.doi.org/10.7717/peerj-cs.1380/fig-1
http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

them exceed that value. This parameter can be changed by the user, initially and
according to the tests performed its value is 0:5.

� Language: the natural language in which the user stories are written; currently only
Spanish and English are supported.

� Use entity lemmatization vs full text: whether to use the full text of the user stories or
only entity lemmas to calculate semantic similarity.

Group user stories by semantic similarity
User stories are grouped into candidate microservices according to their semantic
similarity, in three steps as follows.

A user story describes the functionality that will be part of the software system, it will be
value to a user or customer Cohn (2004, 2005). We defined a template for the user stories
definition, according to Beck (2000), as follows: User story identifier, Name, Description,
Sprint, Date, Priority, Estimated points, Estimated development time, End date, Actor or
role, Developer, Additional details (photo, image, document, video), Task list, Restrictions,
Acceptance criteria, Definition of done, and Dependencies.

This information is used to define the dependencies between the user stories, to
calculate the evaluation metrics, and define the SEMGROMI algorithm.

Semantic similarity among user stories
User stories are written in prose and define the functional requirement that the application
must implement; their description details the users who will use the functional
requirement and the actions that the system must perform on the application’s business
logic. The name and description of all user stories are merged into a single text; verbs,
articles, adjectives and prepositions are removed from the text, leaving only nouns, because
nouns correspond to the entities involved in the user story. The entities are the objects on
which the action to be performed by the application is performed. The topics of the text
were identified by counting the number of times an entity is repeated. The most repeated
words were selected. These words are stored in a string for semantic similarity calculations.
The similarity between user stories is calculated using the frequency of each domain entity
in each user story, resulting in a semantic similarity dictionary between user stories as
shown in Eq. (1):

DSS ¼ f, “hu1 � hu2”; a1�2 . ; . . . ; , “huj � huk”; aj�k. g (1)

where:

� DSS: the semantic similarity dictionary among user stories.

� huj and huk: the user stories’ identifier; it is used as dictionary key, which is formed by
concatenating the identifiers of the user stories that are compared.

� aj�k are the dictionary values, it is the semantic similarity value between the huj and huk
user stories (obtained by Spacy), which is in the 0..1 interval: the closer to 1, the more
similar the user stories are.

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 9/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

Semantic similarity among user stories was implemented with the Spacy natural
language processing library (Spacy.io, 2020), which uses artificial neural networks and was
designed to be used in production.

For example, given the following user stories, their semantic similarity is calculated in
the following way:

Id: Hu1
Name: Create voyage of Cargo.
Description: As a user I need to create a Voyage for a given cargo, specifying the

locations needed to reach its destination.
Id: Hu2
Name: Handle Cargo Event
Description: As a user I need to create a cargo event in a location indicating the date

when the event ends.
Id: Hu3
Name: Get locations
Description: As a user I need to obtain a list of available locations.
Now we show how the semantic similarity between user stories is calculated:

1. Join name and description.
Text1: Create voyage of Cargo. As a user I need to create a Voyage for a given cargo,
specifying the locations needed to reach its destination.
Text2: Handle Cargo Event. As a user I need to create a cargo event in a location
indicating the date when the event ends.
Text3: Get locations. As a user I need to obtain a list of available locations.

2. We removed verbs, articles, adjectives and prepositions from the text, leaving only
nouns.
Text1: voyage cargo. user voyage cargo, locations destination.
Text2: Cargo Event. user cargo event location date event.
Text3: locations. user list locations.

3. The topics of the text were identified by counting the number of times an entity is
repeated.
Text1: Voyage(2), cargo(2), user(1), locations(1), destination(1) then Text1: Voyage
cargo user
Text2: Cargo(2), event(3), user(1), location(1), date(1) then Text2: Event cargo user
Text3: Locations(2), user(1), list(1) then Text3: Locations user list

4. Calculate the semantic similarity.

DSS ¼ ½, “Hu1 � Hu2”; 0:87. ; , “Hu1 � H3”; 0:65. ; , “Hu2 � Hu3”; 0:55. �

With the semantic similarity dictionary we proceed with the grouping process.

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 10/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

Grouping user stories
The grouping process is similar to hierarchical clustering (Han, Kamber & Jian, 2012) with
some variations; from the list of user stories, the similarity between each pair of user stories
HUi and HUj is computed, and if it exceeds the semantic similarity threshold, they are

included in the same microservice, otherwise they are left in different microservices. In this
iterative process, each user story is compared to each candidate microservice and grouped
where its semantic similarity is highest; if the story is not similar to any of the candidate
microservices, a new microservice containing that story is added.

The semantic similarity of each microservice is computed using the assignment of user
stories to each microservice and the semantic similarity dictionary (see Eq. (2)), and the
semantic similarity of the entire application (Eq. (3)).

SSi ¼ 1=c
Xm

j¼1;k¼jþ1
aj�k (2)

where:

1. SSi: semantic similarity of the i� th microservice.

2. c: number of comparisons made to calculate the semantic similarity of the microservice’s
user stories. It is used to calculate the average semantic similarity of the microservice.
For example, for a microservice that has two user stories assigned to it ðhu1; hu2Þ, the
semantic similarity between hu1 and hu2 is calculated once, a single comparison ðc ¼ 1Þ.
If the microservice has three user stories, it must compare ðhu1; hu2Þ, ðhu1; hu3Þ, and
ðhu2; hu3Þ, corresponding to three comparisons ðc ¼ 3Þ.

3. m: number of microservice’s user stories.

4. aj�k corresponds to the dictionary value, they are the semantic similarity values between
the huj and huk.

SsT ¼ 100=n
Xn
i¼1

SSi (3)

where:

1. SsT : the total semantic similarity of the application, it was the average of the semantic
similarity of each microservice. To obtain a semantic similarity value between 0 and 100,
we multiply the average by 100.

2. SSi: semantic similarity of the i� th microservice.

3. n: number of microservices of the application.

Group microsevices using interdependence
For each pair MSi and MSj, the algorithm computes the number of times MSi calls MSj
ðcallsiÞ and vice versa, ðrequestiÞ. If both values are greater than zero, then microservices
MSi and MSj are said to be interdependent and must therefore be merged into one. This

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 11/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

process is performed iteratively for each microservice; since the resulting microservices
may have interdependence, the designer can repeat the process (if desired). if we adopt
such rule as it is, the system will end up with a single microservice.

In some real cases the interdependence between microservices must be accepted (a
threshold value), in each iteration the user evaluates the solution obtained and decides
whether to run the algorithm again or to accept that solution.

Group microservices by coupling distance
The microservices whose distance is greater than the coupling grouping threshold will be
grouped (remember that the initial default value of this parameter is 0.5, but it can be
modified). It tries to reduce the high communication or calls between the microservices of
the application; if two microservices have many dependencies, they should be grouped
together, thus reducing the coupling. If two microservices have many calls, their
dependency is high; if one microservice changes, it is possible that the other will have to
change, so they have high coupling. The goal is to reduce that high dependency.

Computing the coupling between microservices

For each pair of microservices, the algorithm calculates their coupling CpD, based on the
calls and requests between them, see Eq. (4).

CpDi�j ¼ ðcallsi�j þ requesti�jÞ=total calls (4)

where:

� CpDi�j: coupling distance between microservices i and j.

� callsi�j: number of times microservice i calls microservice j (i.e., i’s inputs).

� requesti�j: number of times microservice j calls microservice i (i.e., i, outputs).

� total calls: the total number of calls among the application microservices.

Group microservices by semantic similarity

After reducing the interdependent microservices and reducing the microservices with the
largest coupling, the semantic similarity of the microservices is checked. If any
microservices are semantically similar, they are grouped together. This increases the
cohesion of the microservices because it groups the microservices that are related to the
same topic or theme. This process is described in more detail below:

1. Identify the entities of the microservices: For each microservice, the name and
description of all associated user stories are combined into a global text that is
lemmatized to identify its domain entities (as denoted by nouns).

2. Computes the semantic similarity between the microservice entities: The frequency of
each entity in each microservice is calculated, and the two entities with the highest
frequency are selected to perform the semantic comparisons between the microservices.
This process uses the machine learning technique of text classification, which
automatically assigns tags or categories to text. The result is the semantic similarity

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 12/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

between each pair of microservices, which is computed iteratively to create a semantic
similarity matrix.

3. Group microservices by semantic similarity: Microservices are grouped using the same
algorithm that groups user stories, but now using the semantic similarity between

Algorithm 1 SEMGROMI: semantic grouping algorithm of microservices

// Process A - Define parameters as input data

input: list[UserStories], list[dependences], similarityParameter, couplingParameter, language, semanticOn

output: list[microservice, metrics]

begin

// Process B - Group user stories by semantic similarity

listEntities½userStory; text; lemmas� identifyEntitiesFrequencyðlist½UserStory�Þ;
listMs½microservice�

groupByEntityFrequency(listEntities, semanticOn, similarityParameter);

// Process C - Group interdependent microservices

matrixCalls calculateCallsRequestðlistMSÞ;
if interdependentMS then

listMSCandidate groupbyInterdepentMicroservicesðlistMS;matrixCallsÞ;
else

// Process D - Group microservices by coupling distance

distanceMatrix calculateCouplingDistanceðlistMS;matrixCallsÞ;
if distance > couplingParameter then

listMSCandidate groupbyCouplingDistanceðlistMS; distanceMatrixÞ;
else

// Process E - Group microservices by semantic similarity

matrixMSEntities identifyEntitiesFrequencyðlistMSÞ;
listMSCandidate ;

groupBySemanticSimilarity(listaMS, matrixMSEntities);

end

end

end

end

// Process F - Calculate metrics

metrics calculateMetricsðlistMSCandidateÞ;
drawMicroservicesBacklog();

return list[ListMSCandidate, metrics]

end

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 13/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

microservices (as defined above). For each pair of microservices, they are joined if their
semantic similarity value is above the semantic similarity grouping threshold; its initial
and default value is 0.85, but can be changed by the designer.

Calculate metrics and evaluate candidate microservices
The technique calculates the metrics and draws the microservices backlog diagram to
evaluate the candidate microservices. The user evaluates the obtained solution, if it does
not meet the desired requirements, if it still has high coupling, low cohesion and high
complexity, he can repeat the microservices grouping process until he finds an adequate
solution.

The resulting full pseudo-code of the algorithm is shown in Algorithm 1.

VALIDATION
The proposed technique was validated with actual projects from a state-of-the-art review
(Vera-Rivera, Gaona & Astudillo, 2021; Vera-Rivera, Gaona Cuevas & Astudillo, 2019). We
did not find a catalog of projects with user stories available for testing and comparing state-
of-the-art methods, but we were able to use four interesting candidates: two educational
projects (Cargo Tracking (Baresi, Garriga & De Renzis, 2017; Li et al., 2019) and JPetStore
(Jin et al., 2019; Saidani et al., 2019; Ren et al., 2018)) and two industry projects (Foristom
Conferences (Vera-Rivera et al., 2021) and Sinplafut (Vera-Rivera, Vera-Rivera &
Gaona-Cuevas, 2019)). In general, it’s hard to find test data from software systems
developed with microservices that also include a requirements document or user stories.
Therefore, we had to recover the user stories from the available documentation for the
study cases.

Evaluation methodology
The technique was subjected to an observational and analytical evaluation with these cases,
following the recommendations of Hevner et al. (2004). The evaluation compared the
metrics of the decompositions obtained by other methods described in the literature:
Domain-Driven Design (DDD) (Evans, 2015), Service Cutter (Gysel et al., 2016),
Microservices Identification through Interface Analysis (MITIA) (Baresi, Garriga & De
Renzis, 2017), and Identification of Candidate Services of Monolithic Systems based on
Execution Traces (Jin et al., 2019). Since DDD is currently the most widely used method
for microservice identification, we used it as a kind of “sanity check” to verify that
SEMGROMI’s decomposition was consistent and relatively close.

The analytical evaluation included both static and dynamic measurements. Metrics for
coupling, complexity, cohesion, dependencies, performance, and size of the proposed
decomposition (or microservices-based application) were compared between the result of
our technique and other state-of-the-art approaches. These metrics were computed at
design time from extracted user stories and their dependencies; the same user stories,

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 14/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

dependencies, and computations were used in all tests. The evaluation process was as
follows

1. The state-of-the-art examples and industry projects were analyzed and described.

2. The user stories of each example and project were identified to obtain the “product
backlog”.

3. User story dependencies were identified according to data flow, calls, invocations
between user stories or business logic.

4. Decompositions were obtained with Microservices Backlog (using the previous genetic
algorithm and this new grouping algorithm), and the decompositions obtained with the
other methods were uploaded to the system.

5. The metric calculator obtained the metrics and the dependency graph of the
Microservices Backlog of the candidate microservices for each decomposition.

6. The metrics for each decomposition were evaluated and compared.

The evaluation data set (projects)
The project details are presented in the Table 2, which summarizes for each project (1) the
number of user stories (2) the total number of story points, jointly estimated by the co-
authors of this article, and (3) the total estimated development effort (in hours), an
indication of the complexity and size of the project.

The evaluation metrics
Several metrics have been adapted from Bogner, Wagner & Zimmermann (2017), Rud,
Schmietendorf & Dumke (2006), and our own previous work (Vera-Rivera, Gaona &
Astudillo, 2021) to compare the decompositions obtained by each method. Microservices
Backlog calculates metrics for coupling, cohesion, granularity, complexity, development
time, and performance. The metrics used are

• Granularity—N: Number of microservices of the decomposition or system.

• Coupling ðCpTÞ: the absolute importance of the microservice ðAISÞ, absolute dependence
of the microservice ðADSÞ, and microservices interdependence ðSIYÞ.
AISi is the number of clients invoking at least one operation ofMSi; to calculate the total
value of AIS at the system level ðAisTÞ the vector norm is calculated. See Eq. (5).

Table 2 Projects for evaluating the grouping algorithm

Name User stories Points Dev. time (H)

Cargo tracking 14 51 77

JPet store 22 73 115

Foristom conferences 29 235 469

Sinplafut 92 302 604

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 15/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

AisT ¼ jAIS�!j ¼ ffi
AIS21 þ AIS22 þ � � � þ AIS2N

q
(5)

ADSi is the number of other microservices on which the MSi depends. To calculate the
total value of ADS at the system level ðAdsTÞ the ADS��!

vector norm is calculated (See Eq.
(6)). Then:

AdsT ¼ jADS��!j ¼ ffi
ADS21 þ ADS22 þ � � � þ ADS2N

q
(6)

SIYi defines the number of pairs of microservices that depend bi-directionally on each
other divided by the total number of microservices (Eq. (7)).

SiyT ¼ jSIY�!j ¼ ffi
SIY2

1 þ SIY2
2 þ � � � þ SIY2

N

q
(7)

Calculating the norm of the vector Cp
�!

we have the coupling value for the application
ðCpTÞ, Eq. (8):

CpT ¼ 10 � j Cp�!j ¼ ffi
SIY2

1 þ SIY2
2 þ � � � þ SIY2

N

q
(8)

where Cp
�! ¼ ½AisT;AdsT; SiyT�, we amplify CpT by 10, in such a way that its dimension is

like the dimension of the other metrics.

• Cohesion—Lack of cohesion ðCohTÞ: the number of pairs of microservices not having any
dependency between them, adapted from Candela et al. (2016). Lack of cohesion of a
microservice is the number of pairs of microservices that have no interdependency
between them. The LC of MSi has been defined by us as the number of pairs of
microservices that have no interdependency between MSi. The lack of cohesion degree
ðCohiÞ of each microservice i is the ratio of LC and the total number of microservices in
the application (Eq. (9)), and CohT is the vector norm of the vector consisting of the Coh
value of each microservice of the application (Eq. (10)).

Cohi ¼ LCi=N (9)

CohT ¼ jCoh��!j ¼ ffi
Coh21 þ Coh22 þ � � � þ Coh2N

q
(10)

where Coh
��! ¼ ½Coh1;Coh2; . . . ;CohN �

• Cohesion—Total Semantic similarity ðSsTÞ: the average of the semantic similarity of each
microservice (see Eqs. (2) and (3)).

• Granularity—Weighted Service Interface Count ðWSICiÞ: is the number of exposed
interface operations of the microservice i (Hirzalla, Cleland-Huang & Arsanjani, 2009).
We assume that each user story is associated with a single operation, so we adapt this
metric as the number of user stories associated with a microservice, and WsicT is the
highest WSICi of the system decomposition (Eq. (11)).

WsicT ¼ MaxðWSIC1 þWSIC2 þ � � � þWSICNÞ (11)

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 16/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

• Performance—Calls: the total number of invocations between microservices.
• Performance—Avg:Calls: average of calls that a microservice makes to another: Calls=N .
• Complexity—Story Points Max:ðPiÞ: estimated effort needed to develop a user story;
Max:ðPiÞ is the largest number of story points associated with any microservice.

• Complexity—Cognitive complexity points ðCxTÞ: estimated difficulty of developing and
maintaining a microservice-based application, using its estimated story points,
relationships, and dependencies among microservices (see more details in Vera-Rivera
et al. (2021)).

Cx ¼
 XN

1

Cgi

!
þMaxðP1; . . . ;PNÞ þ ðN �WsicTÞ þ

 XN
1

Pfi

!
þ
 XN

1

SIYi

!
(12)

CxT ¼ Cx=Cx0 (13)

where: CxT : Cognitive complexity points of the system.

i: ith microservices.

Cgi: Pi � ðCallsi þ RequestiÞ, Callsi are the outputs of MSi and Requesti are the inputs of
MSi.

Pi: Total user story points of MSi. MaxðP1; . . . ;PNÞ Maximum Pi of the system.

Pfi: Number of nodes used sequentially from a call that makes a microservice to other
microservices, counted from the i� th microservice; A larger depth implies a greater
complexity of implementing and maintaining the application.

Cx0: The base case where the application has one microservice, one user story with one
estimated story point. Then Cg1 ¼ 0, MaxðP1Þ ¼ 1, N ¼ 1, WsicT ¼ 1, Pf1 ¼ 0, SIY ¼ 0,
and Cx ¼ 2. Therefore Cx0 ¼ 2.

• Development Time—ðTiÞ: estimated development time (in hours) for microservice i,
calculated by adding the estimated time of each user story in it. The longest development
time is used to compare the decompositions.

• Granularity—ðGmÞ: indicator of how good or bad the system decomposition is,
according to its coupling ðCpTÞ, cohesion ðCohTÞ, number of user stories associated with
the microservice ðWsicTÞ, points of cognitive complexity ðCxTÞ, and semantic similarity
ðSsTÞ; it is calculated as the norm of the vector with these metrics

MT
��! ¼ ½CpT;CohT;CxT;WsicT; ð100� SsTÞ�.

Gm ¼ jMT
��!j ¼ ffi

CpT2 þ CohT2 þ CxT2 þWsicT2 þ ð100� SsTÞ2
q

(14)

Microservices are developed around business functions, and ideally each microservice is
managed by a separate team. For this evaluation, we have assumed that each microservice
is developed independently at the same time, so that the estimated development time ðTÞ
of the system is the longest estimated development time of the microservices in the
application. This is a simplification, as in real life a development team may develop

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 17/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

multiple microservices, and multiple microservices may be developed sequentially; this
limitation will be considered in future work (Vera-Rivera et al., 2021).

For further detailed explanation and formalization of these metrics, see Vera-Rivera
et al. (2021).

Objective function
In the proposed genetic algorithm of the microservices backlog (Vera-Rivera et al., 2021),
the adaptation function combines the metrics of coupling ðCpTÞ, cohesion ðCohTÞ,
granularity ðWsicTÞ, complexity ðCxTÞ, and semantic similarity ðSsTÞ. We test several
objective functions (see Eq. (15)). Among the objective functions (F1 to F8) of the genetic
algorithm, we select the best result for comparison with Semgromi.

F1 ¼
ffi
ð10CpTÞ2 þ CxT2 þWsicT2 þ ð100� SsTÞ2

q
F2 ¼

ffi
ð10CpTÞ2 þWsicT2 þ ð100� SsTÞ2

q
F3 ¼

ffi
CxT2 þ ð100� SsTÞ2

q
F4 ¼

ffi
ð10CpTÞ2 þ CohT2 þ ð100� SsTÞ2

q
F5 ¼

ffi
ð10CpTÞ2 þ ð100� SsTÞ2

q
F6 ¼

ffi
ð10CpTÞ2 þ CohT2 þWsicT2 þ ð100� SsTÞ2

q
F7 ¼

ffi
ð10CpTÞ2 þ CxT2 þ ð100� SsTÞ2

q
F8 ¼

ffi
ð10CpTÞ2 þ CohT2 þWsicT2

q

(15)

The genetic algorithm seeks to find the best combination, the best allocation of user
stories to microservices in such a way that the objective function is smaller; it is iterative, in
each iteration the best individuals are selected, each one has a chromosome, which is
crossed with another individual to generate the new population (reproduction), some
mutations are generated to find the optimal solution to the problem. In genetic selection
processes, the strongest survive; in the case of the problem of automatic generation of the
assignment of user stories to microservices, the n individuals that best fit the conditions of
the problem survive; they correspond to the assignments that involve a smaller objective
function. The objective functions were used in the evaluation projects (Cargo Tracking,
JPet Store, Foristom Conferences, and Sinplafut), we selected the best results and
compared it with Semgromi and the state-of-the-art methods.

Evaluation results
The detailed results of using the proposed technique on the project dataset are shown in
Table 3. Figure 3 summarizes coupling ðCpTÞ, lack of cohesion ðCohTÞ, microservice
weight ðWsicTÞ, and calls among microservices.

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 18/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

We analyze results for each metric below.

� Number of microservices in the system: All the methods analysed converged on almost
the same number: CargoTracking three or four microservices, JPetStore to four or five
microservices, Foristom Conferences to four or five microservices, and Sinplafut to nine
or 11 microservices. Semgromi algorithm in some projects required microservice join
operations to converge to the expected number of microservices, as did the genetic
algorithm.

� Coupling ðCpTÞ: had the lowest value for the genetic algorithm in all four projects, while
Semgromi algorithm was lower than DDD and state of the art in only two projects.

� Lack of Cohesion Metric ðCohTÞ: Both the genetic and Semgromi algorithms had similar
but higher values than DDD and state-of-the-art methods.

� Highest number of stories associated with a microservice ðWsicTÞ: In three out of four
projects, the genetic algorithm had a lower value than DDD and the state-of-the-art
methods, but Semgromi algorithm in two out of four projects the values are very close.

Table 3 Results for evaluation projects

Project Method N Gm CpT CohT SsT W CxT T MP Cl AC

Cargo Genetic 3 85.8 3.16 1.16 70.9 6 74.0 35 23 3 1.0

Tracking Semgromi 4 185.2 4.69 1.50 88.4 9 178.5 54 35 8 2.0

DDD 4 156.6 5.29 1.50 74.1 6 145.0 39 27 9 2.3

Sevice Cutter 3 206.8 3.16 1.15 74.4 10 202.5 61 41 8 2.7

MITIA 4 203.1 6.78 1.06 76.7 5 190.0 30 19 12 3.0

Jpet Store Genetic 5 104.7 1.41 1.79 86.5 9 102.5 54 35 3 0.6

Semgromi 5 143.6 2.83 1.79 86.6 6 140.5 32 20 7 1.4

DDD 4 203.7 3.46 1.50 85.3 8 200.0 36 22 9 2.3

Execution Traces 4 179.7 3.46 1.50 84.1 7 175.5 31 19 8 2.0

Foristom Genetic 4 56.3 0.00 1.50 74.4 8 49.5 134 67 0 0

Semgromi 5 470.0 4.90 1.79 73.9 13 466.5 176 90 7 1.4

DDD 4 428.0 3.16 1.50 75.7 9 426.0 167 83 6 1.5

Sinplafut Genetic 13 792.1 7.35 3.33 86.6 13 788.5 98 49 24 1.8

Semgromi 11 819.9 9.59 3.02 86.9 16 814.0 116 58 24 2.2

DDD 9 926.9 10.58 2.31 84.4 19 920.5 150 75 23 2.6

Architec 5 723.0 3.74 1.79 82.9 34 721.0 254 127 9 1.8

Note:
Genetic: genetic algorithm of microservice backlog (Vera-Rivera et al., 2021).
Semgromi: semantic grouping algorithm of microservice backlog.
DDD: domain-driven design.
Service cutter: (Gysel et al., 2016).
MITIA: (Baresi, Garriga & De Renzis, 2017).
Execution traces: (Jin et al., 2019).
Architec: solution proposed by the architect or development team.
SsT value measured in percentage (%).
W: WsicT.
Cl: calls.
AC: average calls.
MP: Max. Pi.
T value measured in hours.

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 19/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

Figure 3 Graphical results of the metrics. Full-size DOI: 10.7717/peerj-cs.1380/fig-3

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 20/29

http://dx.doi.org/10.7717/peerj-cs.1380/fig-3
http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

� Calls between microservices: An indicator of application performance: the more calls
between them, the more performance is affected, as algorithms have to be executed in
different containers or machines, resulting in higher latency and longer execution times.
In three of the four projects, the genetic algorithm gave a lower value, while in two of the
four projects, Semgromi algorithm showed very small differences compared to DDD
and state-of-the-art methods.

� Cognitive complexity ðCxTÞ: it was significantly lower (Fig. 4) for the distribution
obtained by the genetic algorithm in the four projects, whereas the Semgromi algorithm
was lower than DDD and the state-of-the-art methods in only two projects (JPetStore
and Sinplafut), and in the other two projects had similar complexity.

� Granularity (Gm): had results (Fig. 5) very similar to those obtained in complexity, with
the genetic algorithm obtaining less complexity than DDD and the state-of-the-art
methods; similarly, the Semgromi algorithm yield leses Gm in some projects (JPetStore
and SSinplafut) and had a closely similar result in the others.

The global comparative analysis (Fig. 6) summarizes the results and comparisons
between the genetic algorithm, the Semgromi algorithm and DDD. In the analyzed
metrics, we conclude that the results obtained by the genetic algorithm and the Semgromi
algorithm of Microservice Backlog are good alternatives to determine the granularity of the

Figure 4 Cognitive complexity analysis. Full-size DOI: 10.7717/peerj-cs.1380/fig-4

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 21/29

http://dx.doi.org/10.7717/peerj-cs.1380/fig-4
http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

system’s microservices, with comparable or better results than the current state-of-the-art
techniques.

DISCUSSION
The SEMGROMI results are coherent from a functional and architectural point of view.
The identified microservices can be implemented in this way. The candidate microservices
have low coupling, low complexity, high cohesion and high semantic similarity.

The results show that SEMGROMI gives very similar or better results than DDD:
similar number of microservices, lower coupling, lower lack of cohesion, lower number of
stories associated with a microservice ðWsicTÞ, lower granularity metric ðGmÞ, lower
complexity by having fewer points associated with the microservice, and lower estimated
development time. The development time is the longest of all the microservices. Since
improvements in development time imply savings in project cost, a better decomposition
leads to a reduction in project cost and computational resource usage.

These results are promising because DDD is the most widely used method for
identifying microservices and their granularity. DDD is a manual method, where steps and
procedures have to be followed to obtain the candidate microservices. We have proposed
two semi-automatic algorithms, with little user involvement, that allow a faster, metric-
driven definition of microservices. The decomposition is obtained automatically and is not
based on the architect’s experience; although valuable, the user can participate, adapt,
modify and compare the decomposition obtained by the method, improving the system
using the proposed metrics.

Figure 5 Granularity metric analysis. Full-size DOI: 10.7717/peerj-cs.1380/fig-5

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 22/29

http://dx.doi.org/10.7717/peerj-cs.1380/fig-5
http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

According to the empirical evaluation, the lowest coupling was obtained with the
Genetic Algorithm and then with the Semgromi Algorithm; the highest cohesion was
obtained with the Genetic Algorithm and DDD. The grouping algorithm (SEMGROMI)
shows close values, especially for cohesion. The lowest number of user stories assigned to a
microservice was obtained by the genetic algorithm. The lowest granularity was obtained

Figure 6 Comparative analysis of the results. Full-size DOI: 10.7717/peerj-cs.1380/fig-6

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 23/29

http://dx.doi.org/10.7717/peerj-cs.1380/fig-6
http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

by the genetic algorithm, and the grouping algorithm (SEMGROMI) and DDD obtained
similar results.

The lowest number of calls corresponds to our previous genetic algorithm, followed by
DDD, which is close to our new grouping algorithm (SEMGROMI). This metric represents
the degree of dependency of a microservice as part of an application; a higher value implies
more latency (which affects performance) and more dependencies, as calls require the
execution of operations in other microservices.

These metrics are estimates; they were calculated at design time from information
contained in user stories and their dependencies. We look for microservices to be
autonomous and independent, that they work by themselves, in a real system
microservices need others to work, increasing the coupling, the calls define the number of
times that one microservice must use another, while the request define how many times
other microservices use the microservice, SEMGROMI allows us to analyze this metrics at
design time.

Future work will need to validate them and determine how accurate they are with an
application already in production. This validation is beyond the scope of this work.

To get better results than DDD, the joining and unjoining operations were fundamental;
although in some cases similar or better results than DDD are obtained, we should always
check that the user stories are associated in the right place; for example, the semantic
similarity algorithm assumes that the training session is semantically very similar to the
user session, but they are two different things. User review is important to analyze and
evaluate the automatic results, suggest improvements, and get better results.

The scope of this work was defined the functional requirements specified as user stories
following agile methodologies, these requirements detail the operations or services that the
microservices must implement; the non-functional requirements, that may affect the
proposed solution, were not considered. In agile methodologies the functional
requirements can be managed as constraints of the user stories; these points will be
considered as future work.

An important difference between the genetic algorithm and SEMGROMI in the
Sinplafut case study was the execution time: the problem is complex, since increasing the
number of user stories significantly increases the execution time. The average genetic
algorithm took about 11.5 h in Sinplafut compared to the other case studies where the
average execution time was 9.7 min; while SEMGROMI took about 1.5 min in Sinplafut
and almost instantaneous in the other case studies. It was possible to identify that the
calculation of metrics and semantic analysis are the ones that represent the highest
computational cost of Microservices Backlog. Future work will address the computational
cost with parallel computing, which was used and tested to generate the population of the
genetic algorithm, it is intended to parallelize the calculation of the metrics and the
calculation of the semantic similarity. The tests were performed using a core-i7 computer,
with 16 gigabytes of Ram.

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 24/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

CONCLUSIONS
This study proposes an algorithm for semi-automatically grouping user stories into
microservices, which is part of the Microservices Backlog model. It is compared to other
methods for identifying microservices, such as domain-driven design, service cutter,
microservices identification through interface analysis (MITIA), and our genetic
programming method proposed in previous work.

As part of this study, three contributions are presented: (i) an algorithm to identify and
evaluate the granularity of microservices, including the establishment of user stories
associated with a microservice and thus the number of microservices associated with the
application, (ii) identification and adaptation of a set of metrics to measure the complexity
of microservices according to their coupling, cohesion, and size; and (iii) a mathematical
formalization of a microservices-based application in terms of user stories and metrics.

The grouping algorithm (SEMGROMI) assigns n user stories to k microservices,
grouping stories with the highest semantic similarity, i.e., grouping stories that refer to the
same topic. It also groups the microservices that have the highest degree of coupling. The
value of k is not fixed.

These results are promising because our method achieves better results than the other
methods in many characteristics, especially with DDD, which is the most widely used
method to identify microservices and their granularity. DDD is a manual method, and our
proposed algorithm is an automatic method with little user involvement. After more
rigorous validation, our model can become a useful and valuable tool for developers and
architects.

The next steps of this research include: (i) validating the proposed algorithms in a real-
world case study (work in progress), (ii) building the database of software projects with
their user stories and microservices and validating the model with them, and (iii)
validating the microservices backlog model in expert judgment.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Colombia’s Ministry of Science and Technology
(Minciencias-Colciencias) through doctoral scholarship “753-Formación de capital
humano de alto nivel para el departamento Norte de Santander”; by the Francisco de Paula
Santander University (Cúcuta, Colombia) through the doctoral studies commission
number 14 of 2016; by the Universidad del Valle (Cali, Colombia); and by ANID (Chile)
through Anillo ACT210021 Aconcagua. There was no additional external funding received
for this study. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Colombia’s Ministry of Science and Technology (Minciencias-Colciencias):
753-Formación de capital humano de alto nivel para el departamento Norte de Santander.

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 25/29

http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

Francisco de Paula Santander University (Cúcuta, Colombia): 14 of 2016.
Universidad del Valle (Cali, Colombia).
ANID (Chile) through Anillo: ACT210021.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Fredy H. Vera-Rivera conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.
� Eduard Gilberto Puerto Cuadros conceived and designed the experiments, performed
the experiments, analyzed the data, performed the computation work, authored or
reviewed drafts of the article, and approved the final draft.
� Boris Perez conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
� Hernán Astudillo conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
� Carlos Gaona conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The datasets are available in the Supplemental Files and the code is available at
BitBucket: https://bitbucket.org/freve9/microservicesbacklog/.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1380#supplemental-information.

REFERENCES
Abdullah M, Iqbal W, Erradi A. 2019. Unsupervised learning approach for web application auto-

decomposition into microservices. Journal of Systems and Software 151:243–257
DOI 10.1016/j.jss.2019.02.031.

Al-Debagy O, Martinek P. 2019. A new decomposition method for designing microservices.
Periodica Polytechnica Electrical Engineering and Computer Science 63(4):274–281
DOI 10.3311/PPee.13925.

Al-Debagy O, Martinek P. 2020. Extracting microservices’ candidates from monolithic
applications: interface analysis and evaluation metrics approach. In: 2020 IEEE 15th
International Conference of System of Systems Engineering (SoSE). Piscataway: IEEE, 289–294.

Baresi L, Garriga M, De Renzis A. 2017. Microservices identification through interface analysis.
In: European Conference on Service-Oriented and Cloud Computing—Lecture Notes in Computer
Science. 10465:Cham: Springer, 19–33.

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 26/29

http://dx.doi.org/10.7717/peerj-cs.1380#supplemental-information
https://bitbucket.org/freve9/microservicesbacklog/
http://dx.doi.org/10.7717/peerj-cs.1380#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1380#supplemental-information
http://dx.doi.org/10.1016/j.jss.2019.02.031
http://dx.doi.org/10.3311/PPee.13925
http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

Beck K. 2000. Extreme programming explained: embrace change. Boston: Addison Wesley.

Bogner J, Wagner S, Zimmermann A. 2017. Automatically measuring the maintainability of
service- and microservice-based systems. In: Proceedings of the 27th International Workshop on
Software Measurement and 12th International Conference on Software Process and Product
Measurement on—IWSM Mensura ’17. 107–115.

Candela I, Bavota G, Russo B, Oliveto R. 2016. Using cohesion and coupling for software
remodularization: is it enough? ACM Transactions on Software Engineering and Methodology
25(3):1–28 DOI 10.1145/2928268.

Chen R, Li S, Li Z. 2017. From monolith to microservices: a dataflow-driven approach. In: 2017
24th Asia-Pacific Software Engineering Conference (APSEC). Piscataway: IEEE, 466–475.

Christoforou A, Odysseos L, Andreou A. 2019. Migration of software components to
microservices: matching and synthesis. In: Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering. Setúbal: SCITEPRESS—Science and
Technology Publications, 134–146.

Cohn M. 2004. User stories applied for agile software development. Boston: Addison Wesley.
Pearson Education Inc.

Cohn M. 2005. Agile estimating and planning. Noida: Pearson Education India.

De Alwis AAC, Barros A, Fidge C, Polyvyanyy A. 2019. Business object centric microservices
patterns. In: On the Move to Meaningful Internet Systems: OTM 2019 Conferences: Confederated
International Conferences: CoopIS, ODBASE, C&TC 2019. Lecture Notes in Computer Science.
Cham: Springer, 476–495.

De Alwis AAC, Barros A, Polyvyanyy A, Fidge C. 2018. Function-splitting heuristics for discovery
of microservices in enterprise systems. In: Pahl C, Vukovic M, Yin J, Yu Q, eds. Service-Oriented
Computing. Cham: Springer International Publishing, 37–53.

Evans E. 2015. Domain-driven design reference—definitions and pattern summaries. Indianapolis:
Dog Ear Publishing.

Gysel M, Kölbener L, GierscheW, Zimmermann O. 2016. Service cutter: a systematic approach to
service decomposition. In: IFIP International Federation for Information Processing 2016. Cham:
Springer, 185–200.

Han J, Kamber M, Jian P. 2012. Data mining: concepts and techniques. Third Edition. Amsterdam:
Elsevier.

Hassan S, Bahsoon R, Kazman R. 2020. Microservice transition and its granularity problem: a
systematic mapping study. Software: Practice and Experience 50(9):1–31 DOI 10.1002/spe.2869.

Hevner AR, March ST, Park J, Ram S. 2004. Design science in information systems research.MIS
Quarterly 28(1):75–105 DOI 10.2307/25148625.

Hirzalla M, Cleland-Huang J, Arsanjani A. 2009. A metrics suite for evaluating flexibility and
complexity in service oriented architectures. Berlin: Springer, 41–52.

Homay A, de Sousa M, Zoitl A, Wollschlaeger M. 2020. Service granularity in industrial
automation and control systems. In: 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). Piscataway: IEEE, 132–139.

Jin W, Liu T, Cai Y, Kazman R, Mo R, Zheng Q. 2019. Service candidate identification from
monolithic systems based on execution traces. IEEE Transactions on Software Engineering
47(5):1 DOI 10.1109/TSE.2019.2910531.

Josélyne MI, Tuheirwe-Mukasa D, Kanagwa B, Balikuddembe J. 2018. Partitioning
microservices—a domain engineering approach. In: Proceedings of the 2018 International

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 27/29

http://dx.doi.org/10.1145/2928268
http://dx.doi.org/10.1002/spe.2869
http://dx.doi.org/10.2307/25148625
http://dx.doi.org/10.1109/TSE.2019.2910531
http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

Conference on Software Engineering in Africa—SEiA ’18. New York, NY, USA: ACM Press,
43–49.

Krause A, Zirkelbach C, Hasselbring W, Lenga S, Kroger D. 2020. Microservice decomposition
via static and dynamic analysis of the monolith. In: Proceedings—2020 IEEE International
Conference on Software Architecture Companion, ICSA-C 2020. Piscataway: IEEE, 9–16.

Li S, Zhang H, Jia Z, Li Z, Zhang C, Li J, Gao Q, Ge J, Shan Z. 2019. A dataflow-driven approach
to identifying microservices from monolithic applications. Journal of Systems and Software
157(2):110380 DOI 10.1016/j.jss.2019.07.008.

Mazlami G, Cito J, Leitner P. 2017. Extraction of microservices from monolithic software
architectures. In: 2017 IEEE International Conference on Web Services (ICWS). Piscataway:
IEEE, 524–531.

Newman S. 2015. Building microservices. Sebastopol: O’Reilly Media, Inc.

Nunes L, Santos N, Rito Silva A. 2019. From a monolith to a microservices architecture: an
approach based on transactional contexts. DOI 10.1007/978-3-030-29983-5_3.

Perepletchikov M, Ryan C, Frampton K. 2007. Cohesion metrics for predicting maintainability of
service-oriented software. In: Seventh International Conference on Quality Software (QSIC 2007).
Piscataway: IEEE, 328–335.

Ren Z, WangW,Wu G, Gao C, ChenW, Wei J, Huang T. 2018.Migrating web applications from
monolithic structure to microservices architecture. In: Internetware ’18: Proceedings of the Tenth
Asia-Pacific Symposium on Internetware. New York, NY, USA: Association for Computing
Machinery, 1–10.

Rud D, Schmietendorf A, Dumke RR. 2006. Product metrics for service-oriented infrastructures.
In: Conference: Applied Software Measurement. Proceedings of the International Workshop on
Software Metrics and DASMA Software Metrik Kongress (IWSM/MetriKon 2006).

Saidani I, Ouni A, Mkaouer MW, Saied A. 2019. Towards automated microservices extraction
using muti-objective evolutionary search. In: 17th International Conference Service-Oriented
Computing. Lectures Notes in Computer Science. Cham: Springer, 58–63.

Spacy.io. 2020. Models · spaCy models documentation. Available at https://spacy.io/models.

Taibi D, Syst K. 2019. From monolithic systems to microservices: a decomposition framework
based on process mining. In: International Conference on Cloud Computing and Service Science
—CLOSER 2019, (March).

Tanveer M. 2015. Agile for large scale projects—a hybrid approach. In: 2015 National Software
Engineering Conference (NSEC). Piscataway: IEEE, 14–18.

Tyszberowicz S, Heinrich R, Liu B, Liu Z. 2018. Identifying microservices using functional
decomposition. In: Feng X, Müller-Olm M, Yang Z, eds. International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications, Lecture Notes in Computer
Science. Vol. 10998. Cham: Springer International Publishing, 50–65.

Vera-Rivera FH, Gaona C, Astudillo H. 2021.Defining and measuring microservice granularity—
a literature overview. PeerJ Computer Science 7(3):695 DOI 10.7717/peerj-cs.695.

Vera-Rivera FH, Gaona Cuevas CM, Astudillo H. 2019. Desarrollo de aplicaciones basadas en
microservicios: tendencias y desafíos de investigación. Revista Ibérica de Sistemas e Tecnologias
de Informação E23:107–120.

Vera-Rivera FH, Puerto E, Astudillo H, Gaona C. 2021. Microservices backlog: a genetic
programming technique for identification and evaluation of microservices from user stories.
IEEE Access 9:117178–117203 DOI 10.1109/ACCESS.2021.3106342.

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 28/29

http://dx.doi.org/10.1016/j.jss.2019.07.008
http://dx.doi.org/10.1007/978-3-030-29983-5_3
https://spacy.io/models
http://dx.doi.org/10.7717/peerj-cs.695
http://dx.doi.org/10.1109/ACCESS.2021.3106342
http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/

Vera-Rivera FH, Puerto-Cuadros E, Astudillo H, Gaona-Cuevas CM. 2020. Microservices
backlog—a model of granularity specification and microservice identification. In: 2020
International Conference on Services Computing (SCC-2020), Honolulu, USA.

Vera-Rivera FH, Vera-Rivera JL, Gaona-Cuevas CM. 2019. Sinplafut: a microservices—based
application for soccer training. Journal of Physics: Conference Series 1388(2):012026
DOI 10.1088/1742-6596/1388/1/012026.

Vural H, Koyuncu M, Misra S. 2018. A case study on measuring the size of microservices. In:
Laganá A, Gavrilova ML, Kumar V, Mun Y, Tan CJK, Gervasi O, eds. International Conference
on Computational Science and Its Applications—ICCSA 2018, Lecture Notes in Computer Science.
Berlin: Springer, 454–463.

Vera-Rivera et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1380 29/29

View publication stats

http://dx.doi.org/10.1088/1742-6596/1388/1/012026
http://dx.doi.org/10.7717/peerj-cs.1380
https://peerj.com/computer-science/
https://www.researchgate.net/publication/370711234

	SEMGROMI—a semantic grouping algorithm to identifying microservices using semantic similarity of user stories
	Introduction
	Microservices backlog
	Related work
	Methodology
	Semgromi: semantic grouping algorithm
	Validation
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

