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ABSTRACT The microservice granularity directly affects the quality attributes and usage of computational 

resources of the system, determining optimal microservice granularity is an open research topic. 

Microservices granularity is defined by the number of operations exposed by the microservice, the number 

of microservices that compose the whole application, and its complexity and dependencies. This paper 

describes "Microservice Backlog (MB)", a semiautomatic model for defining and evaluating the granularity 

of microservice-based applications; MB uses genetic programming technique to calculate at design time the 

granularity of each microservice from the user stories in the "product backlog" or release planning; the genetic 

algorithm combined coupling, cohesion, granularity, semantic similarity, and complexity metrics to define 

the number of microservices, and the user stories associated with each microservice. MB decomposes the 

candidate microservices, allowing to analyze graphically the size of each microservice, as well as its 

complexity, dependencies, coupling, cohesion metrics, and the number of calls or requests between 

microservices. The resulting decomposition (number of microservices and their granularity) performed by 

MB shows less coupling, higher cohesion, less complexity, fewer user stories associated with each 

microservice, and fewer calls among microservices. MB was validated against three existing methods, using 

two state-of-the-art applications (Cargo Tracking and JPet-Store), and one real-life applications (Foristom 

Conferences). The development team and/or architect can use metrics to identify the critical points of the 

system and determine at design time how the microservice-based application will be implemented. 

INDEX TERMS Service-oriented systems engineering, Service computing, Software design, Software 

architecture, Web services, Micro-services granularity, Microservices decompositions, Genetic algorithms, 

Software metrics. 

I. INTRODUCTION 

The complexity involved in software development has been 

addressed with the use of agile methodologies and practices 

that were born from the agile manifesto and its principles, in 

contrast to traditional forms [1]. Last years, software 

companies have been practicing agile development methods 

[2]; according to the 14th annual state of agile report [3], 

accelerating software delivery and enhancing ability to 

manage changing priorities remain the top reasons stated for 

adopting agile; the more used agile techniques were daily 

standup, retrospectives, sprint/iteration planning, 

sprint/iteration review, and short iterations; the most 

engineering practices employed were unit testing, coding 

standards, continuous integration, refactoring, and continuous 

delivery. Sprint/iteration planning is usually done in a product 

backlog, which lists the functional requirements of the 

application as user stories, along with their priorities and 

estimated time and story points [4]. The microservices 

architecture facilitates permanent, faster, and automated 
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updates using DevOps practices, achieving shorter, 

automated, widely tested deliveries, and refactoring [5].  

Microservices are single-responsibility units (granules) that 

encapsulate data and processing logic, they are deployed 

remotely; these remote units are services that can be deployed, 

changed, substituted, and scaled independently of each other 

[6]. The quality of a microservice-based system is influenced 

by the granularity of its microservices since their size and 

number directly affect the system’s quality attributes. The 

optimal size or granularity of a microservice directly affects 

application performance, maintainability, storage 

(transactions and distributed queries), and usage and 

consumption of computational resources (mainly in the cloud, 

the usual platform to deploy and execute microservices) [7]. 

Although the size of microservice or optimal granularity is a 

discussion topic, few patterns, methods, or models exist to 

determine how small a microservice should be. 

Hassan et al. [8] stated that a granularity level determines 

“the service size and the scope of functionality a service 

exposes [9]”. Granularity adaptation entails merging or 

decomposing microservices thereby moving to a finer or more 

coarse-grained granularity level. Homay et al. [10] stated that 

“the problem in finding service granularity is to identify a 

correct boundary (size) for each service in the system. In other 

words, each service in the system needs to have a concrete 

purpose, as decoupled as possible, and add value to the system. 

A service has a good granularity if it maximizes system 

modularity while minimizing the complexity. Modularity in 

the sense of flexibility, scalability, maintainability, and 

traceability, whereas complexity in terms of dependency, 

communication, and data processing”.  

The definition of microservices granularity is presented in 

the following problem context, first in migrations from 

monolith to microservices or decompositions, second in the 

development of microservices-based applications from 

scratch, and third in the development of microservices-based 

applications composing existing services. The migrations 

from monolith to microservices have been widely studied, 

migrations have a great interest to both academia and industry, 

while the other two approaches have been studied very few 

[11]. 

The problem addressed in this research focused on the 

design of microservices-based applications from scratch, 

which begins when the development team or architect, after 

performing an analysis, determines that the application needs 

to be implemented using the microservices architecture, in the 

context of agile software development. The development team 

establishes the functional requirements as user stories in the 

product backlog, establishing its priorities and estimates; from 

the product backlog, the development team needs to identify 

the number of microservices to be implemented and associate 

the user stories to each microservice maintaining low 

coupling, high cohesion, and low complexity among 

microservices.  

Furthermore, we introduce the Microservices Backlog 

(MB), a model that allows software architects or development 

team to graphically analyze the microservices granularity; MB 

focus on three relevant activities: 1) Determining and 

evaluating the granularity of microservices, 2) establishing the 

number of user stories assigned to each microservice, and 3) 

establishing the optimal number of microservices that will be 

part of the application. These activities will support 

microservices' low coupling, high cohesion, and low 

complexity properties. Design time metrics were adapted and 

calculated to evaluate decomposition or microservice-based 

applications.  

MB was evaluated in three projects, two state-of-the-art 

case studies (Cargo Tracking and JPet-Store) and one real-life 

case studies (Foristom Conferences). Comparing the proposed 

decomposition against domain-driven design (DDD) and 

state-of-the-art methods; MB yields microservices-based 

applications with lower coupling, less complexity, less 

communication, and dependencies among microservices, 

fewer user stories associated with a microservice, and higher 

semantic coherence among the user stories in a microservice. 

We have been working on this problem, in [12], a first 

approximation of the MB was proposed, which used a genetic 

algorithm with coupling, cohesion, and granularity metrics; 

this genetic algorithm did not consider the semantic similarity 

between user stories and microservices, it did not use 

complexity metrics. This paper extends that work 

considerably including analysis of the semantic similarity 

among entities of the user stories and microservices, a 

cognitive complexity metric to evaluate decompositions was 

proposed, and additional validations (initially with Cargo 

Tracking application, now also with Jpet-Store and the real-

life case studies Foristom Conferences.   

The main contributions from this work were: 1) a model for 

determining and evaluating the granularity of microservices at 

design time, establishing the number of user stories assigned 

to a microservice and the number of microservices that are part 

of the application, ensuring that microservices have low 

coupling, low complexity, high cohesion, and fewer 

dependencies; 2) identified and adapted metrics of 

complexity, coupling, cohesion, size of the microservice, 

development time, and calls between microservices; 3) 

mathematical formalization of a microservice-based 

application in terms of user stories and metrics, and 4) we 

update the previous genetic algorithm to assign user stories to 

microservices, including semantic similarity and complexity; 

although MB can also be used in migrations. 

The remainder of this paper is organized as follows, 

section II related works; section III Methodology and 

evaluation methods used; section IV our approach; section V 

discussing results; section VI limitations and future works 

and Section VII, summarizes our conclusions.  
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II. RELATED WORKS 

We identified several methods, methodologies, and techniques 

to determine microservices granularity through a systematic 

literature review [11]. The most used techniques included 

machine learning clustering, semantic similarity, genetic 

programming, and domain engineering. Table I details the 

papers by year compared with our approach. 

Additionally, Service Cutter is a method and tool 

framework for service decomposition [13], in it, coupling 

information is extracted from software engineering artifacts. 

This approach is more appropriate for SOA applications, but 

it has been used for comparative analysis in the surveyed 

works.  

Other authors proposed patterns to address microservice 

development, such as Richardson [14] proposed 

decomposition patterns, Zimmermann et al. [15] proposed a 

microservice API patter (MAP) for API design and evolution, 

with five categories: (1) foundation, (2) responsibility, (3) 

structure, (4) quality, and (5) evolution.  These patterns are an 

important reference for developing microservice-based 

applications. However, there is no specific pattern to 

determine the number and size of microservices. 

 

TABLE I 

RELATED WORKS TO THE MICROSERVICE GRANULARITY PROBLEM 

Year Papers Metrics Quality attributes Technique, method, or methodology description Input data 

2020 Microservice 
Backlog – Our 

approach 

Complexity, coupling, 
cohesion, granularity, 

performance: 

microservices calls. 

Modularity. 
Maintainability. 

Functionality. 

Performance. 

Genetic algorithm. Semantic similarity (Natural 
processing language).  

User stories 

2020 2  

[16], [17]. 

Cohesion, granularity. None - Domain-driven design, architectural design via 

dynamic software visualization. 

- Clustering using affinity propagation algorithm, 
and clustering of semantically similar 

- Source code 

- Runtime logs 

2019 

 

12 

[18], [19], [20], 
[21], [22], [23], 

[24], [25], [26], 

[27], [28], [29]. 

Coupling, cohesion, 

granularity, 
computational resource, 

performance, source code,  

Scalability. 

Performance. 
Functionality. 

Modularity.  

Maintainability. 

 

- Machine learning, scale weighted k-means. 

- Dataflow-driven decomposition algorithm. 
- Process-mining approach, DISCO used to 

identify the business processes. 

- Search-based functional atom grouping 

algorithm. Non-dominated sorting genetic 

algorithm-II. 

- Set of rule-based decisions, adaptation of the 
four-step rule set (4SRS) method. 

- Word embedding and hierarchical clustering of 

semantic similarity. 
- Microservice discovery algorithms. 

- clustering algorithm applied to aggregate 

domain entities. 
- Service granularity cost analysis-based method, 

cost analysis function. 

- Validation framework for microservice 
decompositions. 

- Ontology scheme search-based techniques, 

multi-objective genetic algorithm. 

- Non-dominated sorting genetic algorithm-II 

(NSGA II). 

- Access logs 

- Dataflow 
diagram,  

- Use cases. 

- Execution logs. 

- Execution traces 

from logs. 

- OpenApi 
specification 

- Source code 

- Database  
- Execution call 

graphs- 

- Component and 
microservices 

properties. 

 
 

2018 6 
[30], [31], [32], 

[33], [34],  [35]. 

Coupling, cohesion, 
complexity, granularity, 

computational resource, 

performance,  

Scalability. 
Performance. 

Availability. 

- Domain engineering, domain-driven design. 
- Domain-driven design COSMIC function points. 

- Functional decomposition. 

- Heuristics used for functional splitting, 
microservice discovery algorithms. 

- Decomposition pattern. 

- Use cases 
- Source code, 

database, 

execution call 
graphs. 

- Scenario 

statements, 
workflow, BPEL 

description. 

 
2017 7 

[36], [37], [38], 

[39], [40],  [41], 
[42] 

Performance. Scalability. 

Performance. 

Reliability. 
Maintainability 

- Vertical decomposition in self-contained systems. 

- Balance cost quality assurance vs deployment. 

- Comparing the same microservices in a single 
container and in two containers. 

- Architecture definition language (ADL). 

- Semantic similarity, clustering k-means, 
DISCO. 

- Graph-based clustering algorithm. 

- Virtual machine image synthesis and analysis. 

- OpenApi 

specification. 

- Source code. 

2016 2 

[43], [44]. 

Coupling, security, and 

scalability impact. 

Scalability. 

Security 
 

Self-adaptative solution. 

Decomposition from system requirements – 
security vs scalability 

None 
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None of the reviewed works used agile software 

development artifacts as inputs, (i.e. user stories, product 

backlog, release planning, Kanban boards) to define or assess 

microservices’ granularity.  

The most addressed quality attributes in the reviewed 

papers were scalability and performance (runtime 

characteristics), and modularity and maintainability (software 

artifact characteristics) were the least addressed. Only one 

paper [18] addressed both runtime and software artifact 

characteristics. No papers addressed functionality, 

performance, modularity, and maintainability at the same 

time. 

Some papers use metrics to evaluate microservices 

granularity, including coupling, cohesion, number of calls, 

number of requests, and response time, although few methods 

or techniques use complexity as a metric: thus, [25] used 

Number of singleton clusters and maximum cluster size, and  

[31] used COSMIC function points (Common Software 

Measurement International Consortium). Cognitive 

complexity was not considered by related works. 

III. METHODOLOGY AND EVALUATION METHODS 

We used design science research, following the paradigm of 

Hevner et al. [45] The design-science paradigm seeks to 

extend the boundaries of human and organizational 

capabilities by creating new and innovative artifacts (see 

figure 1). The proposed artifact was the Microservice backlog 

model. 

 

FIGURE 1. Research model.  Design science research framework. 
Adapted from Hevner et al. [45]. 

 

The research process began with the design and 

development of MB, which was iteratively evaluated in a field 

study through a static and dynamic analysis; with each 

evaluation, it was improved and corrected until obtaining an 

optimal proposal. The construction of MB is based on the 

following theoretical foundations: software engineering, 

artificial intelligence, cloud computing, service computing, 

and agile software development.  

The stakeholders were software architects, software 

development teams, and project leaders, who want to develop 

or migrate a microservice-based application; the microservice 

backlog model allows them to define the microservice 

granularity and evaluate the application architecture. 

The research process is detailed below:  

1. Problem context definition: we defined the problem 

context: microservices granularity, microservices 

decompositions and migrations from monolith to 

microservices, and development of microservices-

based applications. 

2. Theoretical foundations and state of the art: we 

performed a systematic literature review, identified, 

adapted, and proposed metrics for defining the 

microservices granularity; and identified the related 

works. 

3. Design MB: We design the Microservices Backlog 

and proposed a formal specification of the granularity 

model. 

4. Develop MB: We built the intelligent granularity 

model and implemented the genetic algorithm 

technique to decompose the product backlog into 

microservices. We implemented an algorithm to 

evaluate metrics for microservices decompositions or 

microservice-based applications. 

5. Evaluation of MB:  We evaluated the model using 

state-of-the-art examples (Cargo Tracking and JPet 

Store) and one real-life project (Foristom 

Conferences). The evaluation compared 

decomposition yield by MB versus decompositions by 

other methods: Domain-driven design (DDD) [46], 

Service Cutter [13], Microservices Identification 

Through Interface Analysis (MITIA) [47], and Service 

Candidate Identification from Monolithic Systems 

based on Execution Traces (Execution Traces) [18]. 

We took the decompositions proposed by MITIA and 

Execution traces about state-of-the-art examples, next 

we identified the operations associated with each 

microservice, then the operations were associated with 

user stories. Traditionally, the user stories specify the 

functional requirements of the application, the user 

stories are implemented as operations.  

Since DDD is the most widely used method for 

microservices identification, the evaluation of the real-

life project verified that the obtained decomposition 

was consistent and close to DDD. 
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6. Propose MB: Based on metrics and analytical 

evaluation including adjustment through the research 

process, then MB was proposed as an intelligent 

specification and granularity evaluation model.  

A. EVALUATION METHODS 

As recommended by Hevner et al. [45] we used observational 

and analytical evaluation methods to assess MB. The 

observational method was a field study, which we used and 

monitored the microservice backlog model in three projects, 

the projects are detailed in section V.  

The analytical methods were both static and dynamic 

analysis. We calculated metrics of complexity, coupling, 

cohesion, dependencies, performance, and size of the 

proposed decomposition (or microservice-based 

application), then we compared it with other approaches. The 

metrics were calculated from the user stories data and their 

dependencies at design time. 

We carried out the evaluation process as follow: 

1. We analyzed and described the state-of-the-art 

examples and the real-life project. 

2. The user stories of each project were specified. 

3. We defined the dependencies among user stories. 

Which were identified according to the business 

logic, dataflow, invocations, or calls between 

operations or uses stories. 

4. We got the decomposition through MB and the 

decompositions of the state-of-the-art approaches. 

5. For each decomposition, the metric calculator 

algorithm calculated the metrics and draw the graph 

or diagram. 

6. We evaluated the decompositions and compared the 

metrics. 

The evaluation aim was to verify that MB allowed to define 

the appropriate granularity of the microservices and to 

compare the cognitive complexity, coupling, cohesion, and 

dependencies of the decompositions. 

IV. MICROSERVICES BACKLOG 

Microservice Backlog is a model (see figure 2), designed to 

graphically analyze the microservices granularity, starting 

from a set of functional requirements expressed as user stories 

within a product backlog (prioritized and characterized list of 

functionalities that an application must contain). The model 

specifies the architecture of microservices-based applications. 

After this, the architect or development team can evaluate the 

appropriate granularity or size of each microservice 

considering some characteristics such as complexity, 

coupling, cohesion, development time, and use of 

computational resources at design time. This way, the 

architect or developer can find a strategy for its 

implementation.  

 

FIGURE 2.  Microservices Backlog model. Semi-automatic decomposition from user stories to microservices. 

MB was implemented in a web application (Django - Python) 

and consists of the following components (see figure 2): 

A. Formal specification of the granularity model.  

B. Parameterize component.  

C. Grouping component, which implements the 

grouping techniques. 

D. Metric calculator component. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

 

VOLUME XX, 2017 3 

E. Microservices Backlog diagram and 

decomposition evaluator. 

A. FORMAL SPECIFICATION OF THE GRANULARITY 
MODEL 

The formal specification corresponds to the mathematical 

expressions that allow to calculate the metrics and to evaluate 

the objective function of the granularity model. The formal 

specification is given in terms of the metrics of coupling 

(CpT), cohesion (CohT), number of stories associated to the 

microservice (WsicT), cognitive complexity (CxT), semantic 

similarity (SsT), and the granularity metric (Gm). 

Additionally, for the evaluation process, metrics of complexity 

(P: story points), communication, performance and estimated 

development time are included. 

According to Hassan et al. [8] and Homay et al. [10] 

microservice granularity definition (see introduction), a 

relationship between the microservice granularity with 

coupling, modularity and complexity of the system is evident. 

Changing the size and scope of microservices implies changes 

in the coupling, modularity, and complexity of the system. In 

this case, granularity corresponds to defining the number of 

user stories associated with a microservice (service size) and 

the number of microservices that comprising the application 

(application size). 

A microservice can have a low granularity (smaller size), 

but when interacting with other microservices the coupling 

increases, if the coupling is very high, it is a bad decision to 

maintain that granularity in the microservice-based system, 

then the microservice should be joined with other 

microservices to reduce the coupling, when joining with other 

microservices its granularity increases, because it will have 

more associated operations to expose. With the proposed 

model, we seek to determine the appropriate granularity in 

such a way that its coupling is low, that it has few 

dependencies and little communication with other 

microservices, being consistent with the theoretical definition. 

Microservices should have a specific purpose, therefore, 

services / operations / stories that refer to the same purpose 

should be grouped in the same microservice, hence the 

importance of semantic similarity, if user stories that refer to 

the same thing, which have a high semantic similarity should 

be grouped in the same microservice, thus being an indicator 

of high cohesion.  

The specification formal of the granularity model will be 

given in terms of the metrics and the granularity metric (Gm). 

Let microservice-based application (MSBA) as: 

 

𝑀𝑆𝐵𝐴 = (𝑀𝑆, 𝑀𝑇⃗⃗ ⃗⃗⃗ )       (1) 

 

Where MS is a set of microservices, MS = {ms1, ms2, …, 

msn} and 𝑀𝑇⃗⃗ ⃗⃗⃗  is a vector of the metrics calculated for MSBA.  

 

𝑀𝑇⃗⃗ ⃗⃗⃗ = [𝐶𝑝𝑇, 𝐶𝑜ℎ𝑇, 𝑊𝑠𝑖𝑐𝑇, 𝐶𝑥𝑇, (100 −  𝑆𝑠𝑇)]     (2) 

 

Where CpT is the coupling, CohT is the cohesion, WsicT is 

the greater number of user stories associated with a 

microservice, CxT is the cognitive complexity points, and SsT 

is the semantic similarity, which are metrics for MSBA. These 

metrics were adapted from state-of-the-art approaches [48], 

[49], and [50]. We proposed the cognitive complexity points 

as a complexity metric. 

SsT corresponds to the value of the semantic similarity 

obtained by the Spacy library, which is a value between zero 

and one, the closer to one is, the greater semantic similarity it 

has; for this model, we amplify the similarity value, it is a 

number between 0 and 100 (percentage) in such a way that its 

dimension is like the dimension of the other variables. 

Equation (2) included (100 - SsT) to invert its relationship, 

having greater semantic similarity when similarity is close to 

0; then, this expression is used to calculate Gm and is 

minimized in the objective function of the genetic algorithm. 

The microservices has associated user stories and metrics, 

then: 

𝑚𝑠𝑖 = (𝐻𝑈𝑖 , 𝑀𝑇𝑆𝑖)       (3) 

Where msi is the i-th microservice, HUi is the set of user 

stories associated with the i-th microservice, then HUi = {hu1, 

hu2, …, hum}. MTSi is a set of metrics calculated for msi. 

 

1. COUPLING OF MSBA (CpT) 

The coupling determines the degree of dependence of one 

software component with another. Coupling is defined by 

three metrics: absolute importance of the microservice (AIS), 

absolute dependence of the microservice (ADS), and 

microservices interdependence (SIY). These metrics are 

calculated based on the dependencies of the user stories for 

each microservice. 

The absolute importance of the microservice (AIS): AIS 

is the number of other microservices that invoke at least one 

operation of a microservice’s interface [50]. AISi is the number 

of clients invoking at least one operation of MSi. At the system 

level, the 𝐴𝐼𝑆⃗⃗ ⃗⃗ ⃗  vector is defined, which contains the calculated 

AIS value for each microservice. 

To calculate the total value of AIS at the system level (AisT), 

the vector norm is calculated. Where n is the number of 

microservices of the MSBA, thus: 

 

𝐴𝐼𝑆⃗⃗ ⃗⃗ ⃗ = [𝐴𝐼𝑆1 , 𝐴𝐼𝑆2 , . . . , 𝐴𝐼𝑆𝑛]       (4) 

𝐴𝑖𝑠𝑇 =  |𝐴𝐼𝑆⃗⃗ ⃗⃗ ⃗ |  = √𝐴𝐼𝑆1
2  +  𝐴𝐼𝑆2

2 + . . . + 𝐴𝐼𝑆𝑛
22
     (5) 

 

The absolute dependence of the microservice (ADS): 

ADS is the number of other microservices that microservice 

depends on. The number of microservices from which invokes 

at least one operation [50]. ADSi is the number of other 

microservices on which the MSi depends. To calculate the total 

value of ADS at the system level (AdsT) the 𝐴𝐷𝑆⃗⃗ ⃗⃗ ⃗⃗   vector norm 

is calculated. Then: 
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𝐴𝐷𝑆⃗⃗ ⃗⃗ ⃗⃗  = [𝐴𝐷𝑆1 , 𝐴𝐷𝑆2 , . . . , 𝐴𝐷𝑆𝑛]           (6) 

                𝐴𝑑𝑠𝑇 = |𝐴𝐷𝑆⃗⃗ ⃗⃗ ⃗⃗  | = √𝐴𝐷𝑆1
2  +  𝐴𝐷𝑆2

2  + . . . + 𝐴𝐷𝑆𝑛
22
         (7) 

 

Microservice interdependence (SIY): SIY is the number 

of interdependent microservices pairs [50]. SIY defines the 

number of pairs of microservices that depend bi-directionally 

on each other divided by the total number of microservices. At 

the system level, the vector 𝑆𝐼𝑌⃗⃗ ⃗⃗ ⃗  was defined: 

 

𝑆𝐼𝑌⃗⃗ ⃗⃗ ⃗ = [𝑆𝐼𝑌1 , 𝑆𝐼𝑌2 , . . . , 𝑆𝐼𝑌𝑛]       (8) 

𝑆𝑖𝑦𝑇 =  |𝑆𝐼𝑌⃗⃗ ⃗⃗ ⃗ |  = √𝑆𝐼𝑌1
2  +  𝑆𝐼𝑌2

2  + . . . + 𝑆𝐼𝑌𝑛
22
     (9) 

 

Let the 𝐶𝑝⃗⃗ ⃗  vector as the MSBA level coupling metric, 

calculating the norm of the vector 𝐶𝑝⃗⃗ ⃗  we have the coupling 

value for the application (CpT): 

 

𝐶𝑝⃗⃗ ⃗ = [𝐴𝑖𝑠𝑇, 𝐴𝑑𝑠𝑇, 𝑆𝑖𝑦𝑇]         (10) 

           𝐶𝑝𝑇 =  10 ∗ |𝐶𝑝⃗⃗ ⃗ |  = 10 ∗  √𝐴𝑖𝑠𝑇2  +  𝐴𝑑𝑠𝑇2  +  𝑆𝑖𝑦𝑇22
     (11) 

 

We amplify CpT by 10, in such a way that its dimension is 

like the dimension of the other variables of 𝑀𝑇⃗⃗ ⃗⃗⃗ . 

Figure 3 shows an example of the coupling metric 

calculation for a hypothetical case in which there are 3 

microservices forming MSBA. As follows ms1 = {hu1, hu2}, 

ms2 = {hu3} and ms3={hu4}. Where hu1 has as dependencies 

{hu3, hu4}, hu2 has {hu4}, hu3 has {hu1} and hu4 has no 

dependencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. Example of metrics calculation. 

 

2. COHESION OF MSBA (CohT) 

Cohesion and coupling are two contrasting properties. A 

solution balancing high cohesion and low coupling. We used 

the lack of cohesion (LC), lack of cohesion grade (Coh), and 

semantic similarity (SsT) for measuring the cohesion of 

MSBA. 

Lack of cohesion (LC): LC measured the number of pairs 

of microservices not having any dependency between them, 

adapted from [49]. LC of MSi was defined by us as the number 

of pairs of microservices not having any interdependency 

between MSi.  

Lack of cohesion grade (Coh): The degree of cohesion 

Coh of each microservice is defined as the proportion of the 

lack of cohesion metric divided by the total number of 

microservices that are part of the application.  

 

𝐶𝑜ℎ𝑖 =  𝐿𝐶𝑖  / 𝑛      (12) 

 

Where n is the number of microservices. At the system 

level, the vector 𝐶𝑜ℎ⃗⃗ ⃗⃗ ⃗  was defined, calculating the norm of the 

vector, we have the cohesion grade for the application (CohT): 

 

𝐶𝑜ℎ⃗⃗ ⃗⃗ ⃗ = [𝐶𝑜ℎ1 , 𝐶𝑜ℎ2 , . . . , 𝐶𝑜ℎ𝑛]        (13) 

𝐶𝑜ℎ𝑇 =  |𝐶𝑜ℎ⃗⃗ ⃗⃗ ⃗ |  = √𝐶𝑜ℎ1
2  +  𝐶𝑜ℎ2

2+. . . + 𝐶𝑜ℎ𝑛
22
     (14) 

Figure 3 shows the cohesion metric calculation example for 

the hypothetic case. 

 

Semantic Similarity of MSBA (SsT): According to 

Cojocaru et al. [27] “semantic similarity uses lexical distance 

assessment algorithms to flag the services that contain 

unrelated components or unrelated actions hindering 

cohesion”.  

SsT was calculated using the natural process language 

library Spacy [51], in which the similarity is determined by 

comparing word vectors or “word embeddings”, multi-

dimensional meaning representations of a word. We 

calculated the semantic similarity between each user story, 
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joining the name and the description of the user story. We 

calculated SsT as follow: 

1. We selected the nouns from the name and description of 

the user story. 

2. We identified the lemmas of the noun in each user story.  

3. We defined a dictionary that contains the semantic 

similarity values among the user stories as follow: 

 

𝐷𝑆𝑆 = {< "ℎ𝑢1 − ℎ𝑢2", 𝑎1−2 >, < "ℎ𝑢1 − ℎ𝑢3", 𝑎1−3 >, . . . , < "ℎ𝑢𝑗 − ℎ𝑢𝑘", 𝑎𝑗−𝑘 >}

              (15) 

Where:  

“huj - huk” is the dictionary´s key, which is formed by the 

concatenation of the user stories’ identifiers. 

aj-k is the dictionary´s value, which corresponds to the 

semantic similarity value obtained by spacy among user 

stories j and k, it is a float number between 0 and 1. 

4. We calculated the semantic similarity (SSi) of MSi as the 

average of the semantic similarity values between its user 

stories. The total semantic similarity of MSBA was the 

semantic similarity average of the microservices. For 

obtaining a value of semantic similarity between 0 and 

100 we multiplied the average by 100. 

 

𝑆𝑆𝑖 =
1

𝑐
∑ 𝑎𝑗−𝑘

𝑚
𝑗=1,𝑘=𝑗+1      (16) 

𝑆𝑠𝑇 =
100

𝑛
 ∑ 𝑆𝑆𝑖

𝑛
𝑖=1      (17) 

 

Where: 

m is the number of user stories of the i-th microservice. 

c is the number of comparisons done to calculate SS; it is the 

number of combinations between the microservice user 

stories.  

n is the number of microservices of MSBA. 

 

3. GRANULARITY OF MSBA (WsicT) 

The granularity corresponds to the size of each microservice 

and the size of the application. We used the granularity metrics 

listed below. 

The number of microservices (n): The number of 

microservices that are part of the system or MSBA.  

Weighted service interface count (WSIC): WSIC is the 

number of exposed interface operations of MSi [52]. For our 

model, a user story is related to an operation (one-to-one); so, 

we adapt this metric as the number of user stories associated 

with the microservice. Other authors called this metric the 

operation number. We adapt WSIC as the number of user 

stories assigned to each microservice. We defined WsicT as 

the maximum number of user stories associated with a 

microservices, so WsicT is the maximum WSIC of MSBA, then 

 

𝑊𝑠𝑖𝑐𝑇 = 𝑀𝑎𝑥(𝑊𝑆𝐼𝐶1 , 𝑊𝑆𝐼𝐶2 , . . . , 𝑊𝑆𝐼𝐶𝑛)    (18) 

 

Also, figure 3 illustrates the calculation of WsicT. 

 

4. PERFORMANCE 

Estimating the performance of an application at design time is 

difficult and imprecise. We used the number of calls and 

requests between microservices for estimating the 

performance.  

We assume that if there are more calls and requests between 

the microservices, then the communication, latency, and 

response time of the application is increased, therefore the 

performance of the application is directly affected. The aim 

may be to have microservices that do not have communication 

between them and work independently. Therefore, we define 

two metrics: 

Calls of a microservice (Callsi): Calls corresponds to the 

number of invocations of MSi to another microservices of 

MSBA.  

Requests of a microservice (requesti): Request 

corresponds to the number of invocations of other 

microservices to MSi of MSBA. 

Average of calls of MSBA (Avg. Calls): Avg. Calls are the 

average of calls among microservices of MSBA.  

 

𝐴𝑣𝑔. 𝐶𝑎𝑙𝑙𝑠 =
1

𝑛
 ∑ 𝐶𝑎𝑙𝑙𝑠𝑖

𝑛
𝑖=1   (19) 

Where: 

n is the number of microservices of MSBA. 

 

Figure 3 presents an example of the calculation of the 

request and calls for a MSBA. 

 

5. COMPLEXITY OF MSBA (CxT) 

Measuring complexity is fundamental for developing 

microservice-based applications. If the complexity is high, 

then the cost of change is higher. So, the used complexity 

metrics are detailed below. 

User story points (P): The user story points are an 

estimated point of the effort needed to develop the user story. 

The story points are an indicator of the speed of development 

of the team; then we defined Pi as the user story points of MSi 

as follow:  

𝑃𝑖 = ∑ 𝑃𝐻𝑗
𝑚
𝑗=1     (20) 

Where: 

Pi is the total of user story points of MSi. 

m is the number of user stories of MSi. 

PHj is the estimated user story points of j-th user story of MSi. 

 

Cognitive complexity points (CxT): We proposed a metric 

of cognitive complexity points (CxT) as follows: Points were 

added according to the complexity of the microservice, its 

relationships, and dependencies. The difficulty of developing 

and maintaining a microservice-based application was 

estimated. The starting point was the estimation of story points 

made by the development team.  

CxT was based on the complexity of a graph and its depth. 

We started from a base case, which corresponds to the least 

complexity. This case would be a single microservice, with 

one user story and one estimated story point for its 
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development. For this case Cx0 = 2. CxT corresponds to the 

number of times that the application is more complex in 

relation to the base case. Formally CxT was defined as follows: 

 

𝐶𝑥 = (( ∑ 𝐶𝑔𝑖
𝑛
𝑖=1  ) +  𝑀𝑎𝑥(𝑃1 , … , 𝑃𝑛) + (𝑛 ∗ 𝑊𝑠𝑖𝑐𝑇) + (∑ 𝑃𝑓𝑖

𝑛
𝑖=1 ) + (∑ 𝑆𝐼𝑌𝑖  

𝑛
𝑖=1 )) (21) 

 

𝐶𝑥𝑇 =
𝐶𝑥

𝐶𝑥0
       (22) 

 
Where: 

CxT = Cognitive complexity points of MSBA. 

i = i-th microservice 

Cgi = Pi * (Callsi + Requesti), Callsi are the outputs of MSi and 

Requesti are the inputs of MSi. 

Pi = Total user story points of MSi. According to (20) 

Max(P1, …, Pn): Maximum Pi of MSBA. 

n = number of microservices of MSBA. 

WsicT: Greater WSIC of the application. According to (18)  

Pfi: Number of nodes used sequentially from a call that makes 

a microservice to other microservices, counted from the i-th 

microservice; A larger depth implies a greater complexity of 

implementing and maintaining the application. 

SIY: Microservice Interdependence.  

Cx0: The base case where the application has one 

microservice, one user story with one estimated story point. 

Then Cg1 = 0, Greater(P1) = 1, n=1, WsicT=1, Pf1 =0, SIY=0, 

and Cx = 2. Therefore Cx0 = 2. 

 

6. ESTIMATED DEVELOPMENT TIME OF MSBA (T) 

The microservices are implemented and organized around 

business capabilities; ideally, each one is managed by an 

independent development team. For the evaluations of this 

model, we assumed that each microservice is developed in 

parallel and independently; thus, the estimated development 

time of the application corresponds to the longest estimated 

development time of the microservices that are part of MSBA. 

In real life this is not entirely true, a development team 

oversees several microservices and several microservices are 

developed sequentially; this restriction will be considered in 

future work. 

The development team estimates the user story points and 

the development time in the release planning. Many software 

development companies define a scale of conversion of user 

story points to development time (hours). We assumed that de 

estimated development time of the user stories as an input data 

of this model. We defined two evaluation metrics as follows. 

Microservice’s development time (ti):  The 

microservice’s development time corresponds to the sum of 

the estimated development time of each user story that is part 

of the microservice. 

 

𝑡𝑖 = ∑ 𝑇𝐻𝑗
𝑚
𝑗=1     (23) 

Where: 

ti is the estimated development time of MSi. 

m is the number of user stories of MSi. 

THj is the estimated development time of the j-th user story of 

MSi., it is an input data of the model. 

 

Application development time (T): Greater estimated 

development time of the microservices that are part of MSBA. 

 

𝑇 = 𝑀𝑎𝑥(𝑡1 , 𝑡2 , . . . , 𝑡𝑛)       (24) 

 

7. GRANULARITY METRIC OF MSBA (Gm) 

Finally, the value of the target function Gm use (2), Gm is 

defined as the 𝑀𝑇⃗⃗ ⃗⃗⃗  vector norm. 

 

𝐺𝑚 = |𝑀𝑇⃗⃗ ⃗⃗⃗ | = √𝐶𝑝𝑇2  +  𝐶𝑜ℎ𝑇2 + 𝐶𝑥𝑇2  +  𝑊𝑠𝑖𝑐𝑇2  +  (100 −  𝑆𝑠𝑇)2
2

 (25) 

 

This mathematical expression allowed us to determine how 

good or bad is the decomposition. A small Gm implies a good 

granularity. The aim is to obtain a solution with low 

complexity (CxT), low coupling (CpT), low lack of cohesion 

grade (CohT), small WsicT, and high semantic similarity (SsT 

was a number between 0 and 100 so that we can minimize Gm, 

we include in the 𝑀𝑇⃗⃗ ⃗⃗⃗  vector the value of 100 minus SsT, so 

values close to zero correspond to a greater semantic 

similarity). We tested different combinations of CpT, CohT, 

CxT, WsicT, and SsT in the Gm metrics, we selected the best 

results, and they are presented in section V. 

B. PARAMETERIZE COMPONENT 

It is responsible for taking input data and converting it into a 

format that can be processed by the grouper. It extracts the key 

data, such as identifier, name, description, estimated points, 

estimated time, scenario, observations, and dependencies, 

from the user story. Later, with this data, the model can group 

the user stories in microservices and calculate the metrics from 

the user stories dependencies. The format of the user stories is 

a CVS file where the key data (i.e., identifier, name, 

description, estimated points, estimated time, scenario, and 

observations) are supplied. 

A user story describes the functionality that will be provide 

value to a user or customer of the software system[53], [54]. 

The information that a user story can contain according to 

Kent Beck is: the date, the type of activity (new, correction, 

improvement), functional test, story number or identifier, 

technical and customer priority, reference to another story, 

risk, technical estimate (points and hours), a description, notes 

and a follow-up list with the date, status of things to be 

completed and comments [55].  

User (architect or development team) creates the project and 

loads the information of user stories from the CVS file to MB. 

Then the user defines dependencies among user stories (HU) 

according to the business logic, dataflow, database, or calls. 

We defined a dependence among HUi and HUj when HUi calls 

or executes HUj.  
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C. GROUPER COMPONENT 

This component groups user histories into microservices. User 

or architect can add up and generate automatic decompositions 

of these user stories in microservices (using a genetic 

algorithm, or a semantic grouping algorithm), or creating the 

decomposition manually by themselves. The semantic 

grouping algorithm will be addressed in future work. 

 

1. GENETIC PROGRAMMING 

The genetic algorithm seeks to find the best combination, the 

best assignation of stories to microservices in such a way that 

Gm is lower, using (25).  

The genetic algorithms were established by Holland [56], 

which is iterative, in each iteration, the best individuals are 

selected, everyone has a chromosome, which is crossed with 

another individual to generate the new population 

(reproduction), some mutations are generated to find the 

optimal solution to the problem [57]. Our genetic algorithm 

consisted of distributing or assigning user stories to 

microservices automatically, considering coupling, cohesion, 

granularity, complexity, and semantic similarity metrics. We 

designed the genetic algorithm as follows. See figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. Genetic algorithm design of the Microservices backlog. 

 

Get Initial Population Method. There is a set of user 

stories HU = {hu1, hu2, hu3, ..., hum}, which must be assigned 

to the microservices. We have a set of microservices MS = 

{ms1, ms2, ms3, ..., msn} and some metrics calculated from the 

information contained in the user story. Individuals are 

defined from the assignment of stories to microservices; 

therefore, the chromosome of everyone is defined from an 

assignment matrix of ones and zeros, wherein the columns 

there are user stories and in the rows are the microservices, and 

the cross contains a 1 when the user story is assigned to the 

microservice or zero if not. In table II, an example is presented 

for two microservices MS = {ms1, ms2} and 5 user stories HU 

= {hu1, hu2, hu3, hu4, hu5}. 

The resulting chromosome would be the union of the 

assignments of each user story to each microservice (rows), 

for this case, it would be:   

Chromosome: 10011 01100.  

From this chromosome, it was possible to define the 

function of adaptation or objective function, using (24). 

 

TABLE II 
EXAMPLE OF AN ASSIGNMENT MATRIX 

Microservices hu1 hu2 hu3 hu4 hu5 

ms1 1 0 0 1 1 

ms2 0 1 1 0 0 

 

From this chromosome, we define the adaptation function 

or objective function, which is based on equation (25), uses a 

combination of the metrics of coupling (CpT, equation 11), 

cohesion (CohT, equation 14), granularity (WsicT, equation 

18), complexity (CxT, equation 22) and semantic similarity 

(SsT, equation 17). The objective functions used are detailed 

below: 

 

𝐹1 = √(10 𝐶𝑝𝑡)2  +  𝐶𝑥𝑇2  +  𝑊𝑠𝑖𝑐𝑇2  +  (100 −  𝑆𝑠𝑇)2
2

 (26) 

𝐹2 = √(10 𝐶𝑝𝑡)2  +  𝑊𝑠𝑖𝑐𝑇2  +  (100 −  𝑆𝑠𝑇)22
      (27) 
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𝐹3 = √ 𝐶𝑥𝑇2  +  (100 −  𝑆𝑠𝑇)22
       (28) 

𝐹4 = √(10 𝐶𝑝𝑡)2  +  𝐶𝑜ℎ𝑇2  +  (100 −  𝑆𝑠𝑇)22
           (29) 

𝐹5 = √ (10 𝐶𝑝𝑡)2  +  (100 −  𝑆𝑠𝑇)22
                            (30) 

𝐹6 = √(10 𝐶𝑝𝑡)2  +  𝐶𝑜ℎ𝑇2  + 𝑊𝑠𝑖𝑐𝑇2  + (100 − 𝑆𝑠𝑇)22
                (31) 

𝐹7 = √(10 𝐶𝑝𝑡)2  +  𝐶𝑥𝑇2  +  (100 − 𝑆𝑠𝑇)22
                    (32)  

𝐹8 = √(10 𝐶𝑝𝑡)2  +  𝐶𝑜ℎ𝑇2  +  𝑊𝑠𝑖𝑐𝑇2 
2

                       (33) 

 

Reproduction Method.  A different assignment would be 

generated from selected parents. In this case, the father and 

mother are randomly selected from the population; to generate 

the child information is taken from the father and mother, from 

the assignment matrix the first columns of the father are taken, 

and the last columns of the mother are joined, generating a new 

assignment. It must be considered that a user story cannot be 

assigned twice, this means that in the assignment matrix only 

one can appear in each column. Example: Given the two 

chromosomes:  

1) Father: 10011 01100.  

2) Mother 01000 10111.  

The son would be 10000 01111. 

 

Mutation Method. The mutation indicates changing a 

random bit of the chromosome, changing a bit of the 

chromosome of this problem from 1 to 0 or from 0 to 1, implies 

that a user story is assigned or unassigned to a microservice 

and this must be assigned or unassigned to another 

microservice. This implies that the mutation is done on two 

bits. Example:  

Mutate bit 7 of the obtained chromosome: 01011 10100.  

Mutated chromosome: 00011 11100.  

In this case, bit 7 which is zero must be changed to one, i.e. 

the user story in column 2 of the matrix must be assigned to 

the second microservice and at the same time be unassigned 

from the first microservice. 

The mutated chromosomes must be included in the 

population. This process is carried out randomly, the 

individuals to be mutated are selected from the population, the 

mutation of a bit is also carried out randomly, for the mutation 

the value of the target function is calculated and included in 

the population. 

Select Better Method: In the processes of genetic 

selection, the strongest survive, in the case of the problem of 

the automatic generation of the assignment of user histories to 

microservices, the n individuals who best adapt to the 

conditions of the problem survive. The assignments that imply 

a lower Gm.  

The selection was from the objective function, it was 

applied to each individual and the population was ordered in 

ascending form, considering the first places, the best 

individuals, corresponding to the assignments involving lower 

Gm using (21). 

Convergence: To determine the convergence of the 

method, the number of iterations or generations of the 

population to be processed was defined, we defined the 

convergence when 10% of the population converge to the 

same Gm value. If did not converge, at the end of the iterations, 

the algorithm is stopped, and the chromosome located in the 

first place was selected, which would be the best assignment 

of user stories to microservices. For the case studies used to 

evaluate the proposed method, a population of 1000 

individuals was generated, with a maximum of 400 iterations 

or generations, with 500 children and 500 mutations in each 

generation. The algorithm was tested several times obtaining 

the same result, even with more individuals and more 

iterations. 

D. METRICS CALCULATOR COMPONENT 

The system through the metric calculator component 

calculates the metrics of coupling, cohesion, complexity, 

granularity, estimated performance (microservices requests 

and calls), and estimated development time. With these 

metrics, we can evaluate and compare the decompositions of 

the project to make decisions at design time. These metrics 

were defined in subsection A of the Microservices Backlog 

model. 

We implemented algorithms to calculate the metrics and 

generate comparative tables for analyzing the microservices-

based applications. 

E. MICROSERVICES BACKLOG DIAGRAM AND 
DECOMPOSITION EVALUATOR. 

Figure 4 shows Microservices Backlog for the Cargo Tracking 

application. The outputs of the model are the microservices 

backlog diagram and the metrics. 

The diagram shows key information to the designer such as 

the size of each microservice, its complexity, dependencies, 

coupling, cohesion, and development time. The architect can 

notice at first sight that the purple microservice – Localization 

(see the diagram of figure 4) is a critical point of the system, 

because that it is massively used by all the others, if this 

microservice failure, then the whole system can fail. The 

architect at design time can already think about fault tolerance 

mechanisms, load balancing, and monitoring on that critical 

microservice. They can have a vision of the global system at 

design time.  

The microservices backlog in figure 5 was obtained by 

decomposition using DDD and the following macro-

algorithm:  

1) Identify and describe the user stories of the application 

(Cargo Tracking in this case).  

2) Define the dependencies among the user stories.  

3) Identify the entities.  

4) Define the aggregates,  

5) Establish the delimited contexts and link the entities and 

their respective user stories.  

6) Calculate metrics for each microservice and the whole 

application through the metric calculator component.  

We highlight that the grouper component of MB 

automatically identifies the candidate microservices when 
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using the genetic algorithm or the grouping algorithm, then 

steps 3 to 5 are automatic.  

After obtaining the decompositions, we can perform join or 

decompose operations of the microservices, perform a 

comparative analysis of the decompositions, and select the 

best one. Figure 6 presents the comparative table of a project 

registered in the system. Metrics are presented for each 

decomposition, which can be automatically ordered for 

analysis and comparison. 

 

 
FIGURE 5.  Microservices backlog for Cargo Tracking application, microservices identified using Domain-driven design. 1) MSBA metrics; 2) 
Dependences graph of MSBA; 3) Microservice metrics; 4) Microservices details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. Evaluate decompositions in the Microservices backlog. 

V. RESULTS 

We evaluated MB by comparing it with two state-of-the-art 

examples: Cargo Tracking and JPet Store; and one real-life 

project: Foristom Conferences. We compared Cargo Tracking 

and Jpet Store against the decomposition (microservices and 

their user stories) obtained with DDD, state-of-the-art 

approaches, and our model. Whereas the real-life project were 

compared against DDD, and the decomposition obtained by 

our model. We run the genetic algorithm for all tests with a 

population of 1000 individuals, convergence 10%, the 

maximum number of iterations 400 with 500 children and 500 
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mutations in each iteration. The following process was carried 

out for each case study: 

 

1. The case study is described. 

2. User stories are identified, and the product backlog is 

defined. 

3. Dependencies between user stories are identified. 

4. Decompositions are obtained for each comparison 

method. 

5. Metrics are calculated through the metrics calculator 

component.  

6. The solutions proposed by each method are presented 

graphically. 

7. The metrics data table is presented for comparative 

analysis. 

8. Comparative charts of the metrics for each method are 

presented. 

9. The value obtained in the cognitive complexity and in the 

Gm granularity metrics is compared. 

10. The best results of the genetic algorithm are compared 

against DDD. 

A.  CARGO TRACKING APPLICATION 

In Baresi et al. [47] Cargo Tracking application is described, 

as follows, “the focus of the application is to move a Cargo 

(identified by a TrackingId) between two Locations through a 

RouteSpecification. Once a Cargo becomes available, it is 

associated with one of the Itineraries (lists of 

CarrierMovements), selected from existing Voyages. 

HandlingEvents then trace the progress of the Cargo on the 

Itinerary. The Delivery of a Cargo informs about its state, 

estimated arrival time, and is on track”.  We extracted and 

defined the user stories; the product backlog is detailed in 

Table II. The points and times are input data to our model. 

 

TABLE II 

PRODUCT BACKLOG FOR CARGO TRACKING APPLICATION 

ID Name Points Dev. Time 

(hours) 

hu1 Create voyage 3 5 
hu2 Handle Cargo Event 3 5 

hu3 Add Carrier Movement 5 7 

hu4 Create Location 2 3 
hu5 View Tracking. 3 5 

hu6 Create Cargo 7 10 
hu7 Route Cargo 5 7 

hu8 Create Leg 2 3 

hu9 Book cargo 5 7 
hu10 Change Cargo Destination 1 2 

hu11 Create Delivery 7 10 
hu12 Get Locations 2 3 

hu13 Get carrier status 3 5 

hu14 Get routes status 3 5 

Total: 51 77 

ID: user story identifier. Points: estimated user story points. Dev. Time: 

estimated development time in hours. 

A critical point of our proposed method is the dependencies 

between user stories. They must be identified and registered in 

MB through the parameterizing component, which offers the 

functionality to define dependencies between user stories. We 

define a dependence between hui and huj when hui calls or 

executes huj. For example, to create a voyage (hu1) we must 

get the locations (hu12), this implies that the hu1 has a 

dependence on hu12. Table III presents the dependencies 

identified by us among the user stories. To illustrate the 

proposed genetic algorithm the statement of these 

dependencies is valid. 
 

TABLE III 

USER STORIES DEPENDENCES FOR CARGO TRACKING 

User 

Stories 

Dependences User 

Stories 

Dependences 

hu1 {hu12, hu3} hu8 {hu12} 
hu2 {hu12} hu9 {hu12} 

hu3 {hu12} hu10 {hu12} 

hu4 {} hu11 {hu6, hu13, hu14} 
hu5 {} hu12 {} 

hu6 {hu7, hu9, hu11} hu13 {hu5} 

hu7 {hu8} hu14 {hu5} 

 

Dependencies are used to calculate the metrics, for 

example, to calculate the AIS metric of the decomposition 

obtained with DDD for the microservice called Localization 

(see figure 5). ms1(Voyage) = {hu1, hu3, hu13}, ms2 (Tracking) 

= {hu2, hu5, hu14}, ms3 (Localization) = {hu4, hu12}, ms4 

(Voyage Planning) = {hu6, hu7, hu8, hu9, hu10, hu11}. 

The metric AIS is the number of clients that invoke at least 

one operation of a microservice’s interface (see (4) and (5)). 

Then we count the number of microservices that invoke or use 

hu4 or hu12 from the dependencies. hu4 is not used by any other 

user stories, it does not appear in any dependencies (see table 

III), whereas hu12 is used by hu1, hu2, hu3. hu8, hu9, and hu10 

corresponding to 3 microservices, therefore AIS = 3. 

Similarly, other metrics are calculated.  

Figure 6 presents the microservice backlog for the 

decompositions generated by the Microservice Backlog model 

compared with DDD, MITIA, and Service Cutter for Cargo 

Tracking application. 

We done an analysis of the objective functions (F1 to F8), 

which used different combinations of CpT, CohT, WsicT, CxT, 

and SsT. The best results were using CpT, CxT, WsicT, and 

SsT, which contained three microservices.  

All evaluated methods converged to almost the same 

number of microservices (3 or 4 microservices). The 

distribution of user stories into microservices was different.  

The number of microservices was 3 or 4 in all proposed 

decompositions, the genetic algorithm has fewer 

microservices than DDD and MITIA, in the first and third 

method. 

Our genetic algorithm obtained coupling values of 3.16, 

2.83, and 2, these values were smaller or equal than DDD 

(2.83), Service Cutter (3.16), and MITIA (6.78); the smaller 

coupling was the genetic algorithm using CpT, CohT, and 

WsicT in the objective function, therefore the decomposition 

obtained by MB has low coupling (see table IV, we 

highlighted the solution with lower Gm). 
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The cohesion values were 1.16, 1.5, and 1.16 for the genetic 

algorithm, whereas DDD (1.5), Service Cutter (1.15), and 

MITIA (1.06) obtained similar values; the semantic similarity 

of the genetic algorithm was greater than 70%, so our genetic 

algorithm obtained coherent decompositions from the 

semantic point of view, therefore the semantic cohesion was 

high. The smaller number of calls among microservices 

correspond to the genetic algorithm and MITIA (5 calls), 

whereas DDD (6 calls) and Service Cutter (10 calls) had more 

calls; then the genetic algorithm obtained solutions with fewer 

dependencies and less communication among microservices.  

 

 

FIGURE 7.  Microservice Backlog model compared with DDD, MITIA, and Service Cutter for Cargo Tracking application. 

 

TABLE IV 

COMPARATIVE ANALYSIS OF DECOMPOSITIONS FOR CARGO TRACKING APPLICATION 

Method / Metrics Coupling Cohesion Granularity Perfor. Complexity T GM 

AisT AdsT SiyT CpT CohT SsT N WsicT Calls Max. Pi CxT 

MB - Genetic algorithm 

F1: CpT, CxT, WsicT, SsT 

F7: CpT, CxT, SsT 

2.24 2.24 0 3.16 1.16 70.9 3 6 3 23 74.0 35 85.8 

MB - Genetic algorithm 
F2: CpT, WsicT, SsT 

1.73 2.24 0 2.83 1.50 75.0 4 5 9 14 141.0 21 146.1 

MB - Genetic algorithm 

F8: CpT, CohT, WsicT 

1.41 1.41 0 2.00 1.16 70.8 3 5 6 22 124.0 33 129.1 

DDD 3.74 3.74 0 5.29 1.50 74.1 4 6 9 27 145.0 39 156.6 

Service Cutter 2.24 2.24 0 3.16 1.15 74.4 3 10 8 41 202.5 61 206.8 

MITIA 4.24 4.69 2.45 6.78 1.06 76.8 4 5 12 19 190.0 30 203.1 

14MS (Finer granularity) 6.93 5.48 1.41 8.94 3.44 100.0 14 1 16 7 95.5 10 130.9 

Monolith (Greater granularity) 0 0 0 0 0 69.2 1 14 0 51 32.5 77 46.9 

 

The decomposition performed by our method was different 

from DDD, our model did not group the entities and their 

stories or operation that make up the aggregate, neither 

considered transactions among user stories or business logic 

of the application. These topics will be considered in future 

work. 
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In the decomposition obtained with the genetic algorithm, 

the critical point of failure of the proposed DDD solution is 

removed, Localization microservice is used for all 

microservices. The number of calls between microservices is 

reduced, thus improving performance. The maximum number 

of operations associated with a microservice is also reduced, 

as well as the cognitive complexity and the estimated 

development time. In the decomposition generated by genetic 

programming, more microservices can work independently 

without depending on other microservices. Whereas in the 

solution proposed by DDD, only one microservice can work 

independently. In the decomposition proposed by DDD, there 

are more dependencies.  

By distributing user stories differently, shorter development 

times of the entire system can be obtained. Considering that 

each microservice is developed by an independent team in 

parallel. 

Figure 8 shows graphically the comparative analysis of the 

evaluation metrics. Figure 9 shows specifically the cognitive 

complexity obtained by the methods studied. 

 

FIGURE 8.  Comparative analysis of evaluation metrics of Cargo 
Tracking application. MS: Number of microservices, CPT: Coupling of 
MSBA, COHT: Lack of cohesion grade of MSBA, WSICT:  Maximum 
WSIC of MSBA, WSIC is the number of user stories of the MS. CALLS: 
number of calls between microservices. 

 

The number of calls of our approach is less than DDD, 

Service Cutter, and MITIA. This metric measure or determine 

the degree of dependence that have the microservices that are 

part of the application, a larger value implies a greater 

dependence and lower performance because they require the 

execution of operations that belong to other microservices in 

other containers. 

 

FIGURE 9.  Comparative analysis of cognitive complexity points of 
Cargo Tracking application.  

 

Cognitive complexity metrics estimate the difficulty of 

understanding, implementing, and maintaining the 

microservice-based application, depending on the complexity 

of each microservice, the interactions between them, and their 

number. MB obtained (74, 141, and 124) lower cognitive 

complexity points than DDD (145), MITIA (190), and Service 

Cutter (202.5); therefore, MB can reduce the complexity of the 

microservice-based applications. 

The results obtained for semantic similarity are very similar 

in all proposed decompositions. It can be highlighted that the 

semantic similarity for all cases exceeds 70%, therefore, the 

decompositions were coherent from the semantic point of 

view. Figure 10 shows the comparative analysis of the metric 

GM. The lower Gm value corresponds to the genetic algorithm 

(85.79) of MB, whereas DDD (156.64), MITIA (203.14), and 

Service Cutter (206.79), Therefore, the decomposition 

obtained by MB corresponds to the best solution to the 

problem. We observed that the solution proposed with less 

complexity, less coupling, and fewer calls also corresponds to 

the one with the lowest value of the Gm metric and 

corresponds to the genetic algorithm of MB. 

 
FIGURE 10. Comparative analysis of granularity metrics of Cargo 
Tracking application. 

 

Finally figure 11 presents the comparative results for Cargo 

Tracking, comparing MB genetic algorithm against DDD. 

 
FIGURE 11. Results of the comparative analysis of Cargo Tracking 
application. T: Estimated development time. 

 

Where T is the estimated development time of the 

decomposition obtained by each method. The genetic 

algorithm obtains less estimated development time, fewer 

calls between microservices, less complexity, greater 

cohesion, less coupling, and less Gm than DDD. 
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B. JPET STORE APPLICATION 

The JPetStore Demo1 is an online pet store. We can browse 

and search the product catalog, choose items to add to a 

shopping cart, amend the shopping cart, and order the items in 

the shopping cart. You can perform many of these actions 

without registering with or logging into the application. 

However, before you can order items you must log in (sign in) 

to the application. To sign in, you must have an account with 

the application, which is created when you register (sign up) 

with the application [58]. The functionalities of Jpet Store are 

listed below. 

• Signing Up 

• Signing In 

• Working with the Product Catalog: Browsing the 

Catalog, Searching the Catalog 

• Working with the Shopping Cart: Adding and 

Removing Items, Updating the Quantity of an Item, 

Ordering Items, Reviewing an Order 

This application has been used to validate decomposition 

methods and migrations from monolithic applications to 

microservices [18], [29], [35]. From the description, 

definition, and source code of the application, the following 

user stories were identified. We identified the operations; from 

them, we specify and estimate the user stories (see Table V). 

 

TABLE V 

PRODUCT BACKLOG FOR JPET STORE APPLICATION 

ID. Name Points  Dev. Time 

(Hours) 

hu1 View category 3 5 

hu2 List categories 1 3 

hu3 Search products 5 7 
hu4 View product 3 5 

hu5 View item (get Item) 3  5 

hu6 Add item to cart 5  7 
hu7 Remove item from cart 3 5 

hu8 Update cart quantities 3 5 

hu9 Get cart 3 5 
hu10 New order 7 10 

hu11 Get order 3 5 

hu12 Set order ID 5 7 
hu13 List orders 3 5 

hu14 Is authenticated 3 5 

hu15 New account (Sign up) 5 7 
hu16 Get account  3 5 

hu17 Sign off 2 3 

hu18 Update account 3 5 
hu19 getCategory 2  3 

hu20 getProduct 2  3 

hu21 Is Item in Stock 3  5 
hu22 Sign in 3 5 

Total 73 115 

The points and times were estimated according to our 

experience and correspond to the effort and time it would take 

for us to develop each user story; the total time corresponds to 

a sequential order of development of the user stories.  In real-

life software development using agile methodologies, this 

estimate would be made by the development team in the 

 
1 http://demo.kieker-monitoring.net/jpetstore/help.html 

release planning considering their own characteristics and 

speed of development. 

A dependency is defined when a user story uses or calls 

another user story. This example can be considered as 

migration from monolith to microservices, in this case, the 

user stories can be replaced by the operations/methods or 

services of the application; a dependency corresponds to an 

execution dependency, in which an operation calls another 

operation to fulfill its purpose.  

In this example, the source code of the monolithic 

application was available. To define the dependencies among 

user stories, the source code was analyzed to identify 

invocation dependencies between user stories and/or 

operations (OrderService, CatalogService, AcountService, 

Cart entity, and other entities). The process is detailed below: 

Dependencies of hu1 - View category:  

ViewCategory method calls to ListCategories method. It 

corresponds to another user story (hu2). 

ViewCategory calls to 

catalogService.getProductListByCategory – It is the same 

user story and corresponds to its implementation. 

ViewCategory calls to catalogService.getCategory(id) – It 

corresponds to another user story (hu19), 

Therefore, the dependencies of hu1 are hu2 and hu19. hu1 = 

{hu2, hu19}. 

Dependences of hu2 - Listar categorías - List categories: 

ListCategories calls to accountAction.getCategories() – It is 

the same user story and corresponds to its implementation. 

Therefore, hu2 has not dependencies. hu2 = {}. 

Dependencies of HU6 - Add item to cart: 

AddItemtoCart calls to 

cart.incrementQuantityByItemId(workingItemId). It is the 

same user story and corresponds to its implementation. 

AddItemtoCart calls to 

catalogService.isItemInStock(workingItemId). It corresponds 

to another user story (hu21) 

AddItemtoCart calls to 

catalogService.getItem(workingItemId); It corresponds to 

another user story (hu5). 

Therefore, HU6 has two dependencies HU21 and HU5. HU6 = 

{HU5, HU21}. 

 

TABLE VI 

USER STORIES DEPENDENCIES FOR JPET STORE APPLICATION 

Id. Dependencies Id. Dependencies 

hu1 {hu2, hu19} hu12 {} 

hu2 {} hu13 {hu16} 

hu3 {} hu14 {} 
hu4 {hu20} hu15 {hu16, hu1} 

hu5 {} hu16 {} 

hu6 {hu5, hu21} hu17 {} 
hu7 {} hu18 {hu16, hu1} 

hu8 {} hu19 {} 

hu9 {} hu20 {} 
hu10 {hu9, hu16} hu21 {} 

hu11 {hu16} hu22 {hu1} 
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We did this process for the other user stories. Table VI 

shows the identified dependencies.  

We compared the decompositions of user stories to 

microservices obtained by our model against DDD, and 

Execution Traces, see figure 12. The results obtained by DDD 

and Execution traces were the same, only one user story was 

in a different microservice, but the metrics and comparison 

were equals.  
 

 

FIGURE 12.  Microservice Backlog model compared with DDD and Execution Traces for JPet Store application. 

 

TABLE VII 

COMPARATIVE ANALYSIS OF DECOMPOSITIONS FOR JPET STORE APPLICATION 

Method / Metrics Coupling Cohesion Granularity Perfor. Complexity T Gm 

AisT AdsT SiyT CpT CohT SsT N WsicT Calls Max Pi CxT 

MB - Genetic algorithm 
CpT, SsT 

CpT, CohT, SsT 

1.41 1.41 0 2.00 2.27 89.4 7 5 6 21 113.0 32 115.4 

MB - Genetic algorithm and Joins 
CpT, SsT 

1.41 1.41 0 2.00 1.79 85.9 5 6 6 21 125.5 32 128.2 

MB - Genetic algorithm 

CpT, CohT, WsicT, SsT 

1 1 0 1.41 2.04 88.1 6 9 3 35 107.0 54 109.0 

MB - Genetic algorithm and Joins 

CpT, CohT, WsicT, SsT 

1 1 0 1.41 1.79 86.5 5 9 3 35 102.5 54 104.7 

DDD 2.45 2.45 0 3.46 1.50 85.3 4 8 9 22 200.0 36 203.7 
Execution Traces 2.45 2.45 0 3.46 1.50 84.1 4 7 8 19 175.5 31 179.7 

22MS (Finer granularity) 6.32 4.9 0 8.00 4.48 100.0 22 2 14 7 77 10 111.1 

Monolith (Greater granularity) 0 0 0 0 0 70.82 1 22 0 73 47.5 115 22.0 

 

Automatically MB obtained more candidate microservices 

(seven and six microservices) than DDD (four microservices) 

and Execution traces (four microservices), the user did some 

join operations of microservices and got five microservices, 

this solution was close to DDD and Execution traces. 

The decompositions proposed by our model had semantic 

similarity coherence (greater than 85%) and maybe a good 

candidate solution to the problem. The comparative analysis 

of the metrics is detailed in table VII. 

The decomposition which had more coupling was 22MS 

(the finer granularity), if we followed the single responsibility 

principle, then we may associate one user story with only one 

microservice, thus this may increase the coupling of global 

application; therefore the single responsibility principle my be 

“group things that referred to the same things”, so the semantic 

similarity is fundamental for grouping similar things. Our 

model grouped the user stories the referred to the same entity 

keeping low coupling and high cohesion. 
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MB obtained the lowest coupling (1.41) for this application 

than DDD and “Execution Traces” (3.46); similar lack of 

cohesion (1.79) than DDD and “Execution Traces” (1.5), the 

lowest WsicT (5), and the smaller complexity (102.5) 

compared to DDD (200), and “Execution Traces” (175.5); MB 

presented a smaller number of calls (3 calls) among 

microservices than DDD (9 calls) and “Execution Traces” (8 

calls); the estimated development time of the solution 

proposed by our model (32 hours) was lower than DDD (36 

hours) and close to “Execution Traces” (31 hours), as well as 

the maximum number of user story points associated with a 

microservice (MB 21 points, DDD 22 points, and “Execution 

Traces” 19 points). 

Changing a user story or operation from one microservice 

to another can have consequences on performance, 

complexity, and coupling; therefore it is an important point to 

consider when designing microservice-based applications and 

should be done based on metrics such as those proposed in this 

paper, where the impact of those changes and different 

distributions of user stories or operations on microservices can 

be graphically analyzed, all at design time.  

Figure 13 shows the comparative analysis of the metrics and 

figure 14 shows the complexity of the obtained 

decompositions of JPet Store. The first two bars correspond to 

DDD and “Execution traces”, the others correspond to MB.  

 

FIGURE 13.  Comparative analysis of evaluation metrics of Jpet Store. 

MS: Number of microservices, CPT: Coupling of MSBA, COHT: Lack of 
cohesion grade of MSBA, WSICT:  Maximum WSIC of MSBA, WSIC is 
the number of user stories of the MS. CALLS: number of calls between 
microservices. SS: Semantic similarity. 

 

FIGURE 14.  Comparative analysis of cognitive complexity points of 
Jpet Store application. Where SS: Semantic similarity. 

 

Figure 15 shows the comparative analysis of the granularity 

metric Gm. We observed that the solutions proposed by the 

genetic algorithm obtained lower Gm (104.7) than DDD 

(203.7), and "Execution Traces" (179.7).  

The genetic algorithm of the MB obtained greater semantic 

similarity (89.4%) than DDD (85.3%) and “Execution Traces” 

(84.1%); additionally, MB obtained a high semantic similarity 

value, being greater than 85% for all cases; then the MB 

obtained coherent decompositions from the semantic point of 

view, indicating a high semantic cohesion. 

 

FIGURE 15.  Comparative analysis of the granularity metric of Jpet-
Store application. 

 

The comparative analysis of Jpet-Store application is 

presented in figure 16, we compared the solution with lower 

Gm against DDD; where T is the estimated development time. 

 

FIGURE 16. Comparative analysis of Jpet-Store application.  

The genetic algorithm obtained lower coupling, higher 

cohesion, lower complexity, high semantic cohesion, fewer 

calls between microservices, and lower Gm compared to 

DDD. 

MB obtained decomposition for the hypothetical projects 

Cargo Tracking and Jpet-Store with less coupling, less 

complexity, less communication between microservices (less 

“calls”), greater cohesion, lower Gm value, and shorter 

development time compared to DDD. This is a promising and 

important result because DDD is one of the most widely used 

methods for defining the granularity of microservices. 

The results of our model were similar in JPet-Store and 

Cargo Tracking applications, MB obtained low coupling, low 
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or similar lack of cohesion, high semantic cohesion, small 

calls, and low complexity than the state-of-the-art approaches. 

C. FORISTOM CONFERENCES APPLICATION 

Foristom conferences is a web application that allows the 

management of information and organization of virtual 

conferences of the Foristom Foundation2.  Foristom 

conferences allow us to manage everything from the creation 

and dissemination of the conference to the publication and 

presentation of the articles submitted. The Foristom 

Foundation is a non-profit organization. From the description 

and definition of the case study, the following user stories 

were identified, which will be implemented following the 

microservices architecture. The product backlog of Foristom 

Conferences is detailed in table IX. 

In this case, the dependencies were defined according to the 

business logic of the application and the data flow between the 

different user stories. See Table X. 

The aim was to compare the design proposed by the 

architect using DDD against the design obtained with MB. 

When using DDD, following the approaches proposed by 

Evan [46],[59], then the entities, valuable objects, delimited 

contexts must be identified to propose the microservices that 

are going to be part of the application. 

Figure 17 shows the decompositions for Foristom 

Conferences.

 

FIGURE 17. Microservice Backlog model compared with DDD for Foristom Conferences application.  

 

 

 
2 www.foristom.org 
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TABLE VIII 

COMPARATIVE ANALYSIS OF DECOMPOSITIONS FOR FORISTOM CONFERENCES APPLICATION 

Method / Metrics Coupling Cohesion Granularity Perform. Complexity T Gm 

AisT AdsT SiyT CpT CohT SsT(%) N WsicT Calls Max. Points CxT 

Genetic algorithm 

CpT, CxT, WsicT, SsT 

4.24 2.45 0 4.9 3.33 84.6 13 4 6 29 127 59 137.1 

Genetic algorithm and Joins 

CpT, CxT, WsicT, SsT  

0 0 0 0 1.50 74.4 4 8 0 67 49.5 134 56.3 

Genetic algorithm 

CpT, CohT, SsT 

1.73 1.73 0 2.45 2.67 79.5 9 6 4 52 167 108 170.2 

Genetic algorithm and Joins 

CpT, CohT, SsT 

0 0 0 0 1.79 75.3 5 8 0 67 53.5 134 59.5 

DDD 2.24 2.24 0 3.16 1.50 75.7 4 9 6 83 426 167 428.0 

29MS (Finer granularity) 7.14 5.92 0 9.27 5.20 100.0 29 1 21 13 192 27 213.2 

Monolith (Greater granularity) 0 0 0 0 0 72.0 1 29 0 235 132 469 138.0 

TABLE IX 

PRODUCT BACKLOG FOR FORISTOM CONFERENCES APPLICATION 

Id. Name Points Dev. Time  
(Hours) 

hu1 Create conference. 13 27 

hu2 Get conference by id. 2 3 
hu3 Edit conference 5 9 

hu4 Delete conference 5 9 

hu5 Upload conference’s support files 8 16 
hu6 Get conference’s support files  2 3 

hu7 Generate conference landing page. 8 16 

hu8 Generate call for papers. 13  27 
hu9 Apply filters and specialized search 

on conferences. 

8  16 

hu10 Generate conference history. 8 16 
hu11 Register on the conferences 

system. 

8 16 

hu12 Log in the conferences system. 8 16 
hu13 List submitted papers by state. 2  3 

hu14 Submit a paper to the conference. 13 27 

hu15 Register the paper evaluation. 8 16 
hu16 Generate paper evaluation board. 5 9 

hu17 Register for a conference as an 

attendee or author 

13 27 

hu18 Activate user (attendee or author) 

registration 

8 16 

hu19 Get the list of registrations by state. 2 3 
hu20 Pay the conference registration fee 

online. 

13 27 

hu21 Get the conferences that are taking 

place "On-line" 

13 27 

hu22 Generate the home page of the 

conference. 

13 27 

hu23 List conference program 5 9 

hu24 Create conference program, 

keynotes, and sessions. 

13 27 

hu25 Enter to the meeting room as a 

speaker or assistant. 

8 16 

hu26 Upload files of the presentation or 

session (video, photo, presentation) 

5 9 

hu27 Generate abstract book. 13 27 
hu28 Download certificate of attendees 

and speakers. 

8 16 

hu29 Register the presentation of a 
paper. 

5 9 

Total 235 469 

 

For the identified microservices, complexity, coupling, 

granularity metrics were calculated, and development time 

was estimated. In this way, the architect can graphically 

observe several solutions or decompositions, compare them, 

evaluate them, and select the one he wants to implement. The 

comparative metric analysis of the proposed solutions to 

Foristom Conferences application is presented in Table VIII. 

The results were like Cargo Tracking and JPet-Store 

applications results. 

 

TABLE X 
USER STORIES DEPENDENCIES FOR FORISTOM CONFERENCES APPLICATION 

Id. Dependences Id. Dependences 

hu1 {} hu16 {hu13, hu15} 

hu2 {} hu17 {hu20} 
hu3 {hu2} hu18 {hu19} 

hu4 {hu2} hu19 {} 

hu5 {hu2, hu6} hu20 {} 

hu6 {} hu21 {hu9} 

hu7 {hu2} hu22 {hu23, hu13, hu28} 

hu8 {hu9} hu23 {} 
hu9 {} hu24 {hu13} 

hu10 {hu9} hu25 {hu26, hu29} 

hu11 {} hu26 {} 
hu12 {hu11, hu8} hu27 {hu13} 

hu13 {} hu28 {} 

hu14 {} hu29 {} 
hu15 {}   

 

We tested different objective functions of the genetic 

algorithm. The best results were with CpT, CxT, WsicT, and 

SsT metrics, which obtained 13 microservices, the user did a 

few simple joins operations, so he could reduce de 

decomposition to 4 microservices (equal to DDD); another 

good solution was with CpT, CohT, SsT metrics in the 

objective function, which automatically obtained 9 

microservices, next the user could reduce to 5 microservices. 

The greater coupling was 29MS decomposition (the finer 

granularity with 9.27), the coupling of de decomposition 

obtained by MB was zero, this means that the microservices 

had not dependences and they were independent, whereas the 

coupling of DDD was 3.16. Our model has less WsicT (4 user 

stories, DDD had 9), lower cognitive complexity (49.5, DDD 

had 426), fewer estimated development time (59 hours), and 

user story points (29 points) than DDD (167 hours and 83 

points).  

These results can be seen graphically in figure 18 and figure 

19. 
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FIGURE 18.  Comparative analysis of evaluation metrics of Foristom 
Conferences application. MS: Number of microservices (N), CPT: 
Coupling of MSBA, COHT: Lack of cohesion grade of MSBA, WSICT:  
Maximum WSIC of MSBA, WSIC is the number of user stories of the 
microservice. CALLS: number of calls between microservices. SST: 
Semantic similarity. 

 

The cognitive complexity of MB (49.5) was considerably 

less than the complexity of the decomposition proposed by 

DDD (426). The same result was repeated as in the previous 

cases, so we concluded that our model obtains solutions of less 

complexity, thus being easier to implement and maintain. 

 

FIGURE 19. Comparative analysis of cognitive complexity points of 
Foristom Conferences application. 

 

The decompositions proposed by our model were 

semantically and functionally coherent (greater than 74%); we 

were able to obtain completely independent microservices, 

this being an important feature to implement, maintain and 

deploy a microservice-based application. 

If the proposed solutions present a high semantic similarity 

(greater than 70%), then they suggest that microservices group 

the stories that refer to the same entity, therefore, their 

cohesion is high. All obtained solutions present high semantic 

similarity.  

We observed that it is not enough to have only high 

semantic similarity to consider a good distribution of user 

stories in microservices, other factors such as coupling, 

dependencies, and communication among the application 

microservices must be analyzed. 

Figure 20 details the results of the granularity metric Gm for 

the decompositions obtained by MB compare to DDD. 

 

FIGURE 20. Comparative analysis of granularity metric for Foristom 
Conferences application. 

 

The results of Gm were considerably lower for the genetic 

algorithm with 56.3, whereas DDD was 428. Figure 21 shows 

the comparative analysis for the best solutions (those with the 

lowest Gm) proposed by the genetic algorithm compared to 

DDD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 21. Comparative analysis of Foristom Conferences application.  

 

The join and disjoint operations were essential to obtain 

better results than DDD, automatically in some cases similar 

or better results are obtained than DDD, but we should always 

check that the user stories were associated in the right place, 

for example, the semantic similarity algorithm assumes that 

the presentation session is semantically very similar to the 

user's session, being two different things, for this reason, the 

user's intervention is very important to analyze and evaluate 

what is obtained automatically, in order to propose 

improvements and get better results. 

In this case study, we demonstrated that the MB obtained 

decompositions from user stories to microservices with low 

coupling, high cohesion (from the semantic point of view), 

low complexity, low communication between microservices, 

and shorter estimated development time; therefore, MB is a 

viable option for the design and evaluation of the granularity 

of microservices-based applications. 

In summary, the analysis of the results obtained in this 

research work is presented in Table XI, comparing the results 

obtained with each method in all projects.  
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We analyzed the results, the solution proposed by MB 

presented low coupling, high cohesion, low complexity, less 

communication, and fewer dependencies compared to the 

solution proposed by state-of-the-art methods and DDD; 

additionally, the proposed solutions were coherent from the 

semantic point of view (high semantic similarity, SsT greater 

than 70% in all cases); therefore, the proposed model MB 

improves the decomposition and identification of 

microservices. 

  

 

TABLE XI 

SUMMARY OF MICROSERVICES BACKLOG RESULTS 

Case study Method Metrics 

N GM CpT CohT SsT WsicT CxT T Calls 

Cargo-Tracking MB - Genetic algorithm 3 85.79 3.16 1.16 70.92 6 74.0 35 3 

 DDD 4 156.64 5.29 1.60 74.09 6 145.0 44 9 
 Service Cutter 3 206.79 3.16 1.15 74.42 10 202.5 61 8 

 MITIA 4 203.14 6.78 1.06 76.77 5 190.0 30 12 

Jpet-Store MB - Genetic algorithm 5 104.75 1.41 1.79 86.50 9 102.5 54 3 

 DDD 4 203.70 3.46 1.50 85.30 8 200.0 36 9 
 Execution Traces 4 179.70 3.46 1.50 84.06 7 175.5 31 8 

Foristom Conferences MB - Genetic algorithm 4 56.32 0.00 1.50 74.40 8 49.5 134 0 

 DDD 4 428.00 3.16 1.50 75.69 9 426.0 167 6 

 

We analyzed the results, the solution proposed by MB 

presented low coupling, high cohesion, low complexity, less 

communication, and fewer dependencies compared to the 

solution proposed by state-of-the-art methods and DDD; 

additionally, the proposed solutions were coherent from the 

semantic point of view (high semantic similarity, SsT greater 

than 70% in all cases); therefore, the proposed model MB 

improves the decomposition and identification of 

microservices. 

VI. LIMITATIONS 

To determine the user stories of the state-of-the-art case 

studies, we used the information reported in the published 

papers, we studied their business logic, and we made our best 

effort not to bias this definition. The definition and description 

of the user stories were reviewed by each of the authors 

independently and contradictions were resolved by common 

agreement among the authors. We selected those state-of-the-

art case studies because they were the most used in the related 

works. 

Few datasets of microservices projects with user stories 

were identified, we found that Rahman et al. [60] shared a 

dataset composed of 20 open-source projects using specific 

microservice architecture patterns, and Marquez and Astudillo 

[61] shared a dataset of open-source microservice-based 

projects when investigating actual use of architectural 

patterns; those projects did not specify the user stories. 

The definition of the dependencies among user stories is a 

critical point of our model. They were defined from the 

information contained in the user story, from the business 

logic of the application, from the source code, from the data 

flow, and the dependencies in the data model. For larger 

applications that have many user stories, it can be a complex 

task to determine these dependencies.  

The problem of assigning user stories to microservices has 

an NP-hard complexity, when the number of user stories 

increases the runtime of the genetic algorithm increases 

considerably. The average time of execution in the tests 

carried out did not exceed 10 minutes, using a core-i7 

computer, with 16 gigabytes of Ram (a population of 1000 

individuals, convergence 10%, the maximum number of 

iterations 400 with 500 children and 500 mutations in each 

iteration).  

The genetic algorithm is not deterministic, in each 

execution it can give different results, to reduce this problem, 

we executed the algorithm several times, we selected for each 

case the best solution, and we verified that it was repeated 

most of the times. 

An algorithm was implemented that calculates the 

evaluation metrics; the same algorithm was used for 

calculating the metrics of all the decompositions used for 

comparison. 

The “Lack of cohesion” metric is calculated from the 

interdependence of the microservices, it depends on the 

number of microservices. We concluded that MB proposes 

high cohesion solutions because their semantic similarity is 

high, so the microservices refer to the same topic, subject, or 

entity; semantic cohesion was proposed by other authors [27], 

[62]. 

VII. CONCLUSIONS AND FUTURE WORK 

Microservices Backlog model (MB) allows architects, 

designers, or developers to reasoning about microservice 

granularity at design time, they can analyze metrics, diagrams, 

and dependencies of the microservices; they can notice critical 

points, estimated development time of the application; they 

can test different solutions or decomposition, analyze them, 

and select the better to be implemented. 

The development team can evaluate different ways of 

distributing the user stories in microservices and take 

decisions based on metrics, graphs, and comparative analysis 

at design time. Therefore, using the MB model is possible to 

reason about the granularity of microservices at design time, 
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thus filling one of the research gaps proposed in the literature 

review. 

The distribution of user stories in microservices affects 

coupling, cohesion, complexity, impacting the performance, 

modularity, and maintainability of the microservice-based 

application. Associating a user story to a single microservice 

(finer granularity), following the simple responsibility 

principle, implies more coupling to the application, equally 

having a monolithic application is not the best option in terms 

of maintainability, scalability, testing, and deployment of the 

application. The optimal solution is somewhere in between 

these two and depends on the functional requirements and 

characteristics of the application, the development team and 

the non-functional requirements to be addressed. 

When comparing MB with the related works, none of the 

identified works used user stories as input data, none used data 

from agile practices or agile software development. MB model 

obtained low coupling, low or similar lack of cohesion, small 

calls, and low complexity than the state-of-the-art approaches; 

therefore, using our model, the software architect or 

development team can obtain microservices-based 

applications with low coupling, low complexity, and fewer 

calls between microservices. 

Unlike other proposed works, one of the identified works 

used performance, functionality, maintainability, and 

modularity at the same time to evaluate the granularity of the 

microservices as MB. Only one paper used quality attributes 

as runtime characteristics (i.e. scalability, performance) and at 

the same time software as an artifact characteristic (i.e. 

modularity, maintainability). No papers addressed 

functionality, performance, modularity, and maintainability at 

the same time. 

MB covers both aspects of runtime characteristics and 

software as artifact characteristics and MB uses coupling, 

cohesion, and complexity metrics to evaluate the candidate 

microservices of the application. Therefore, this research work 

fills proposed research gaps in the state of the art and 

represents a novel proposal to the development of 

microservice-based applications. 

Moreover, according to limitations we propose the future 

work as follow: we will build a dataset of the reported 

microservices projects, identifying user stories and 

dependencies for a deeper validation, we will propose an 

automatic method of determining dependencies among user 

stories; we will implement the genetic algorithm using parallel 

programming to improve the runtime; we will review and 

propose another cohesion metric, include it in the model and 

evaluate the results; and we will generate source code or 

templates for the selected solution, as well as estimate 

computational resources, and deployment options for the 

microservices-based application. 
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