
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Microservices backlog – a genetic
programming technique for identification and
evaluation of microservices from user stories.

Fredy H. Vera-Rivera1,2,4, Eduard Puerto1, Hernán Astudillo3, and Carlos Gaona4
1Grupo de Investigación GIA, Universidad Francisco de Paula Santander, San José de Cúcuta, Norte de Santander, COLOMBIA
2Foundation of Researchers in Science and Technology of Materials - FORISTOM, Bucaramanga, COLOMBIA
3Grupo de Investigación TOESKA, Universidad Técnica Federico Santa María, Valparaíso, CHILE
4Grupo de Investigación GEDI, Universidad del Valle, Santiago de Cali, COLOMBIA

Corresponding author: First F.H. Vera-Rivera (e-mail: fredyhumbertovera@ufps.edu.co).

This work was partially supported by Colombia’s Ministry of Science and Technology (Minciencias - Colciencias) through doctoral scholarship “753 -

Formación de capital humano de alto nivel para el departamento Norte de Santander”; by the Francisco de Paula Santander University (Cúcuta, Colombia)
through the doctoral studies commission number 14 of 2016; by the Universidad del Valle (Cali, Colombia); and by ANID (Chile) through PIA/APOYO

AFB180002.

ABSTRACT The microservice granularity directly affects the quality attributes and usage of computational

resources of the system, determining optimal microservice granularity is an open research topic.

Microservices granularity is defined by the number of operations exposed by the microservice, the number

of microservices that compose the whole application, and its complexity and dependencies. This paper

describes "Microservice Backlog (MB)", a semiautomatic model for defining and evaluating the granularity

of microservice-based applications; MB uses genetic programming technique to calculate at design time the

granularity of each microservice from the user stories in the "product backlog" or release planning; the genetic

algorithm combined coupling, cohesion, granularity, semantic similarity, and complexity metrics to define

the number of microservices, and the user stories associated with each microservice. MB decomposes the

candidate microservices, allowing to analyze graphically the size of each microservice, as well as its

complexity, dependencies, coupling, cohesion metrics, and the number of calls or requests between

microservices. The resulting decomposition (number of microservices and their granularity) performed by

MB shows less coupling, higher cohesion, less complexity, fewer user stories associated with each

microservice, and fewer calls among microservices. MB was validated against three existing methods, using

two state-of-the-art applications (Cargo Tracking and JPet-Store), and one real-life applications (Foristom

Conferences). The development team and/or architect can use metrics to identify the critical points of the

system and determine at design time how the microservice-based application will be implemented.

INDEX TERMS Service-oriented systems engineering, Service computing, Software design, Software

architecture, Web services, Micro-services granularity, Microservices decompositions, Genetic algorithms,

Software metrics.

I. INTRODUCTION

The complexity involved in software development has been

addressed with the use of agile methodologies and practices

that were born from the agile manifesto and its principles, in

contrast to traditional forms [1]. Last years, software

companies have been practicing agile development methods

[2]; according to the 14th annual state of agile report [3],

accelerating software delivery and enhancing ability to

manage changing priorities remain the top reasons stated for

adopting agile; the more used agile techniques were daily

standup, retrospectives, sprint/iteration planning,

sprint/iteration review, and short iterations; the most

engineering practices employed were unit testing, coding

standards, continuous integration, refactoring, and continuous

delivery. Sprint/iteration planning is usually done in a product

backlog, which lists the functional requirements of the

application as user stories, along with their priorities and

estimated time and story points [4]. The microservices

architecture facilitates permanent, faster, and automated

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

updates using DevOps practices, achieving shorter,

automated, widely tested deliveries, and refactoring [5].

Microservices are single-responsibility units (granules) that

encapsulate data and processing logic, they are deployed

remotely; these remote units are services that can be deployed,

changed, substituted, and scaled independently of each other

[6]. The quality of a microservice-based system is influenced

by the granularity of its microservices since their size and

number directly affect the system’s quality attributes. The

optimal size or granularity of a microservice directly affects

application performance, maintainability, storage

(transactions and distributed queries), and usage and

consumption of computational resources (mainly in the cloud,

the usual platform to deploy and execute microservices) [7].

Although the size of microservice or optimal granularity is a

discussion topic, few patterns, methods, or models exist to

determine how small a microservice should be.

Hassan et al. [8] stated that a granularity level determines

“the service size and the scope of functionality a service

exposes [9]”. Granularity adaptation entails merging or

decomposing microservices thereby moving to a finer or more

coarse-grained granularity level. Homay et al. [10] stated that

“the problem in finding service granularity is to identify a

correct boundary (size) for each service in the system. In other

words, each service in the system needs to have a concrete

purpose, as decoupled as possible, and add value to the system.

A service has a good granularity if it maximizes system

modularity while minimizing the complexity. Modularity in

the sense of flexibility, scalability, maintainability, and

traceability, whereas complexity in terms of dependency,

communication, and data processing”.

The definition of microservices granularity is presented in

the following problem context, first in migrations from

monolith to microservices or decompositions, second in the

development of microservices-based applications from

scratch, and third in the development of microservices-based

applications composing existing services. The migrations

from monolith to microservices have been widely studied,

migrations have a great interest to both academia and industry,

while the other two approaches have been studied very few

[11].

The problem addressed in this research focused on the

design of microservices-based applications from scratch,

which begins when the development team or architect, after

performing an analysis, determines that the application needs

to be implemented using the microservices architecture, in the

context of agile software development. The development team

establishes the functional requirements as user stories in the

product backlog, establishing its priorities and estimates; from

the product backlog, the development team needs to identify

the number of microservices to be implemented and associate

the user stories to each microservice maintaining low

coupling, high cohesion, and low complexity among

microservices.

Furthermore, we introduce the Microservices Backlog

(MB), a model that allows software architects or development

team to graphically analyze the microservices granularity; MB

focus on three relevant activities: 1) Determining and

evaluating the granularity of microservices, 2) establishing the

number of user stories assigned to each microservice, and 3)

establishing the optimal number of microservices that will be

part of the application. These activities will support

microservices' low coupling, high cohesion, and low

complexity properties. Design time metrics were adapted and

calculated to evaluate decomposition or microservice-based

applications.

MB was evaluated in three projects, two state-of-the-art

case studies (Cargo Tracking and JPet-Store) and one real-life

case studies (Foristom Conferences). Comparing the proposed

decomposition against domain-driven design (DDD) and

state-of-the-art methods; MB yields microservices-based

applications with lower coupling, less complexity, less

communication, and dependencies among microservices,

fewer user stories associated with a microservice, and higher

semantic coherence among the user stories in a microservice.

We have been working on this problem, in [12], a first

approximation of the MB was proposed, which used a genetic

algorithm with coupling, cohesion, and granularity metrics;

this genetic algorithm did not consider the semantic similarity

between user stories and microservices, it did not use

complexity metrics. This paper extends that work

considerably including analysis of the semantic similarity

among entities of the user stories and microservices, a

cognitive complexity metric to evaluate decompositions was

proposed, and additional validations (initially with Cargo

Tracking application, now also with Jpet-Store and the real-

life case studies Foristom Conferences.

The main contributions from this work were: 1) a model for

determining and evaluating the granularity of microservices at

design time, establishing the number of user stories assigned

to a microservice and the number of microservices that are part

of the application, ensuring that microservices have low

coupling, low complexity, high cohesion, and fewer

dependencies; 2) identified and adapted metrics of

complexity, coupling, cohesion, size of the microservice,

development time, and calls between microservices; 3)

mathematical formalization of a microservice-based

application in terms of user stories and metrics, and 4) we

update the previous genetic algorithm to assign user stories to

microservices, including semantic similarity and complexity;

although MB can also be used in migrations.

The remainder of this paper is organized as follows,

section II related works; section III Methodology and

evaluation methods used; section IV our approach; section V

discussing results; section VI limitations and future works

and Section VII, summarizes our conclusions.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

II. RELATED WORKS

We identified several methods, methodologies, and techniques

to determine microservices granularity through a systematic

literature review [11]. The most used techniques included

machine learning clustering, semantic similarity, genetic

programming, and domain engineering. Table I details the

papers by year compared with our approach.

Additionally, Service Cutter is a method and tool

framework for service decomposition [13], in it, coupling

information is extracted from software engineering artifacts.

This approach is more appropriate for SOA applications, but

it has been used for comparative analysis in the surveyed

works.

Other authors proposed patterns to address microservice

development, such as Richardson [14] proposed

decomposition patterns, Zimmermann et al. [15] proposed a

microservice API patter (MAP) for API design and evolution,

with five categories: (1) foundation, (2) responsibility, (3)

structure, (4) quality, and (5) evolution. These patterns are an

important reference for developing microservice-based

applications. However, there is no specific pattern to

determine the number and size of microservices.

TABLE I

RELATED WORKS TO THE MICROSERVICE GRANULARITY PROBLEM

Year Papers Metrics Quality attributes Technique, method, or methodology description Input data

2020 Microservice
Backlog – Our

approach

Complexity, coupling,
cohesion, granularity,

performance:

microservices calls.

Modularity.
Maintainability.

Functionality.

Performance.

Genetic algorithm. Semantic similarity (Natural
processing language).

User stories

2020 2

[16], [17].

Cohesion, granularity. None - Domain-driven design, architectural design via

dynamic software visualization.

- Clustering using affinity propagation algorithm,
and clustering of semantically similar

- Source code

- Runtime logs

2019

12

[18], [19], [20],
[21], [22], [23],

[24], [25], [26],

[27], [28], [29].

Coupling, cohesion,

granularity,
computational resource,

performance, source code,

Scalability.

Performance.
Functionality.

Modularity.

Maintainability.

- Machine learning, scale weighted k-means.

- Dataflow-driven decomposition algorithm.
- Process-mining approach, DISCO used to

identify the business processes.

- Search-based functional atom grouping

algorithm. Non-dominated sorting genetic

algorithm-II.

- Set of rule-based decisions, adaptation of the
four-step rule set (4SRS) method.

- Word embedding and hierarchical clustering of

semantic similarity.
- Microservice discovery algorithms.

- clustering algorithm applied to aggregate

domain entities.
- Service granularity cost analysis-based method,

cost analysis function.

- Validation framework for microservice
decompositions.

- Ontology scheme search-based techniques,

multi-objective genetic algorithm.

- Non-dominated sorting genetic algorithm-II

(NSGA II).

- Access logs

- Dataflow
diagram,

- Use cases.

- Execution logs.

- Execution traces

from logs.

- OpenApi
specification

- Source code

- Database
- Execution call

graphs-

- Component and
microservices

properties.

2018 6
[30], [31], [32],

[33], [34], [35].

Coupling, cohesion,
complexity, granularity,

computational resource,

performance,

Scalability.
Performance.

Availability.

- Domain engineering, domain-driven design.
- Domain-driven design COSMIC function points.

- Functional decomposition.

- Heuristics used for functional splitting,
microservice discovery algorithms.

- Decomposition pattern.

- Use cases
- Source code,

database,

execution call
graphs.

- Scenario

statements,
workflow, BPEL

description.

2017 7

[36], [37], [38],

[39], [40], [41],
[42]

Performance. Scalability.

Performance.

Reliability.
Maintainability

- Vertical decomposition in self-contained systems.

- Balance cost quality assurance vs deployment.

- Comparing the same microservices in a single
container and in two containers.

- Architecture definition language (ADL).

- Semantic similarity, clustering k-means,
DISCO.

- Graph-based clustering algorithm.

- Virtual machine image synthesis and analysis.

- OpenApi

specification.

- Source code.

2016 2

[43], [44].

Coupling, security, and

scalability impact.

Scalability.

Security

Self-adaptative solution.

Decomposition from system requirements –
security vs scalability

None

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

None of the reviewed works used agile software

development artifacts as inputs, (i.e. user stories, product

backlog, release planning, Kanban boards) to define or assess

microservices’ granularity.

The most addressed quality attributes in the reviewed

papers were scalability and performance (runtime

characteristics), and modularity and maintainability (software

artifact characteristics) were the least addressed. Only one

paper [18] addressed both runtime and software artifact

characteristics. No papers addressed functionality,

performance, modularity, and maintainability at the same

time.

Some papers use metrics to evaluate microservices

granularity, including coupling, cohesion, number of calls,

number of requests, and response time, although few methods

or techniques use complexity as a metric: thus, [25] used

Number of singleton clusters and maximum cluster size, and

[31] used COSMIC function points (Common Software

Measurement International Consortium). Cognitive

complexity was not considered by related works.

III. METHODOLOGY AND EVALUATION METHODS

We used design science research, following the paradigm of

Hevner et al. [45] The design-science paradigm seeks to

extend the boundaries of human and organizational

capabilities by creating new and innovative artifacts (see

figure 1). The proposed artifact was the Microservice backlog

model.

FIGURE 1. Research model. Design science research framework.
Adapted from Hevner et al. [45].

The research process began with the design and

development of MB, which was iteratively evaluated in a field

study through a static and dynamic analysis; with each

evaluation, it was improved and corrected until obtaining an

optimal proposal. The construction of MB is based on the

following theoretical foundations: software engineering,

artificial intelligence, cloud computing, service computing,

and agile software development.

The stakeholders were software architects, software

development teams, and project leaders, who want to develop

or migrate a microservice-based application; the microservice

backlog model allows them to define the microservice

granularity and evaluate the application architecture.

The research process is detailed below:

1. Problem context definition: we defined the problem

context: microservices granularity, microservices

decompositions and migrations from monolith to

microservices, and development of microservices-

based applications.

2. Theoretical foundations and state of the art: we

performed a systematic literature review, identified,

adapted, and proposed metrics for defining the

microservices granularity; and identified the related

works.

3. Design MB: We design the Microservices Backlog

and proposed a formal specification of the granularity

model.

4. Develop MB: We built the intelligent granularity

model and implemented the genetic algorithm

technique to decompose the product backlog into

microservices. We implemented an algorithm to

evaluate metrics for microservices decompositions or

microservice-based applications.

5. Evaluation of MB: We evaluated the model using

state-of-the-art examples (Cargo Tracking and JPet

Store) and one real-life project (Foristom

Conferences). The evaluation compared

decomposition yield by MB versus decompositions by

other methods: Domain-driven design (DDD) [46],

Service Cutter [13], Microservices Identification

Through Interface Analysis (MITIA) [47], and Service

Candidate Identification from Monolithic Systems

based on Execution Traces (Execution Traces) [18].

We took the decompositions proposed by MITIA and

Execution traces about state-of-the-art examples, next

we identified the operations associated with each

microservice, then the operations were associated with

user stories. Traditionally, the user stories specify the

functional requirements of the application, the user

stories are implemented as operations.

Since DDD is the most widely used method for

microservices identification, the evaluation of the real-

life project verified that the obtained decomposition

was consistent and close to DDD.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

6. Propose MB: Based on metrics and analytical

evaluation including adjustment through the research

process, then MB was proposed as an intelligent

specification and granularity evaluation model.

A. EVALUATION METHODS

As recommended by Hevner et al. [45] we used observational

and analytical evaluation methods to assess MB. The

observational method was a field study, which we used and

monitored the microservice backlog model in three projects,

the projects are detailed in section V.

The analytical methods were both static and dynamic

analysis. We calculated metrics of complexity, coupling,

cohesion, dependencies, performance, and size of the

proposed decomposition (or microservice-based

application), then we compared it with other approaches. The

metrics were calculated from the user stories data and their

dependencies at design time.

We carried out the evaluation process as follow:

1. We analyzed and described the state-of-the-art

examples and the real-life project.

2. The user stories of each project were specified.

3. We defined the dependencies among user stories.

Which were identified according to the business

logic, dataflow, invocations, or calls between

operations or uses stories.

4. We got the decomposition through MB and the

decompositions of the state-of-the-art approaches.

5. For each decomposition, the metric calculator

algorithm calculated the metrics and draw the graph

or diagram.

6. We evaluated the decompositions and compared the

metrics.

The evaluation aim was to verify that MB allowed to define

the appropriate granularity of the microservices and to

compare the cognitive complexity, coupling, cohesion, and

dependencies of the decompositions.

IV. MICROSERVICES BACKLOG

Microservice Backlog is a model (see figure 2), designed to

graphically analyze the microservices granularity, starting

from a set of functional requirements expressed as user stories

within a product backlog (prioritized and characterized list of

functionalities that an application must contain). The model

specifies the architecture of microservices-based applications.

After this, the architect or development team can evaluate the

appropriate granularity or size of each microservice

considering some characteristics such as complexity,

coupling, cohesion, development time, and use of

computational resources at design time. This way, the

architect or developer can find a strategy for its

implementation.

FIGURE 2. Microservices Backlog model. Semi-automatic decomposition from user stories to microservices.

MB was implemented in a web application (Django - Python)

and consists of the following components (see figure 2):

A. Formal specification of the granularity model.

B. Parameterize component.

C. Grouping component, which implements the

grouping techniques.

D. Metric calculator component.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

E. Microservices Backlog diagram and

decomposition evaluator.

A. FORMAL SPECIFICATION OF THE GRANULARITY
MODEL

The formal specification corresponds to the mathematical

expressions that allow to calculate the metrics and to evaluate

the objective function of the granularity model. The formal

specification is given in terms of the metrics of coupling

(CpT), cohesion (CohT), number of stories associated to the

microservice (WsicT), cognitive complexity (CxT), semantic

similarity (SsT), and the granularity metric (Gm).

Additionally, for the evaluation process, metrics of complexity

(P: story points), communication, performance and estimated

development time are included.

According to Hassan et al. [8] and Homay et al. [10]

microservice granularity definition (see introduction), a

relationship between the microservice granularity with

coupling, modularity and complexity of the system is evident.

Changing the size and scope of microservices implies changes

in the coupling, modularity, and complexity of the system. In

this case, granularity corresponds to defining the number of

user stories associated with a microservice (service size) and

the number of microservices that comprising the application

(application size).

A microservice can have a low granularity (smaller size),

but when interacting with other microservices the coupling

increases, if the coupling is very high, it is a bad decision to

maintain that granularity in the microservice-based system,

then the microservice should be joined with other

microservices to reduce the coupling, when joining with other

microservices its granularity increases, because it will have

more associated operations to expose. With the proposed

model, we seek to determine the appropriate granularity in

such a way that its coupling is low, that it has few

dependencies and little communication with other

microservices, being consistent with the theoretical definition.

Microservices should have a specific purpose, therefore,

services / operations / stories that refer to the same purpose

should be grouped in the same microservice, hence the

importance of semantic similarity, if user stories that refer to

the same thing, which have a high semantic similarity should

be grouped in the same microservice, thus being an indicator

of high cohesion.

The specification formal of the granularity model will be

given in terms of the metrics and the granularity metric (Gm).

Let microservice-based application (MSBA) as:

𝑀𝑆𝐵𝐴 = (𝑀𝑆, 𝑀𝑇⃗⃗ ⃗⃗⃗) (1)

Where MS is a set of microservices, MS = {ms1, ms2, …,

msn} and 𝑀𝑇⃗⃗ ⃗⃗⃗ is a vector of the metrics calculated for MSBA.

𝑀𝑇⃗⃗ ⃗⃗⃗ = [𝐶𝑝𝑇, 𝐶𝑜ℎ𝑇, 𝑊𝑠𝑖𝑐𝑇, 𝐶𝑥𝑇, (100 − 𝑆𝑠𝑇)] (2)

Where CpT is the coupling, CohT is the cohesion, WsicT is

the greater number of user stories associated with a

microservice, CxT is the cognitive complexity points, and SsT

is the semantic similarity, which are metrics for MSBA. These

metrics were adapted from state-of-the-art approaches [48],

[49], and [50]. We proposed the cognitive complexity points

as a complexity metric.

SsT corresponds to the value of the semantic similarity

obtained by the Spacy library, which is a value between zero

and one, the closer to one is, the greater semantic similarity it

has; for this model, we amplify the similarity value, it is a

number between 0 and 100 (percentage) in such a way that its

dimension is like the dimension of the other variables.

Equation (2) included (100 - SsT) to invert its relationship,

having greater semantic similarity when similarity is close to

0; then, this expression is used to calculate Gm and is

minimized in the objective function of the genetic algorithm.

The microservices has associated user stories and metrics,

then:

𝑚𝑠𝑖 = (𝐻𝑈𝑖 , 𝑀𝑇𝑆𝑖) (3)

Where msi is the i-th microservice, HUi is the set of user

stories associated with the i-th microservice, then HUi = {hu1,

hu2, …, hum}. MTSi is a set of metrics calculated for msi.

1. COUPLING OF MSBA (CpT)

The coupling determines the degree of dependence of one

software component with another. Coupling is defined by

three metrics: absolute importance of the microservice (AIS),

absolute dependence of the microservice (ADS), and

microservices interdependence (SIY). These metrics are

calculated based on the dependencies of the user stories for

each microservice.

The absolute importance of the microservice (AIS): AIS

is the number of other microservices that invoke at least one

operation of a microservice’s interface [50]. AISi is the number

of clients invoking at least one operation of MSi. At the system

level, the 𝐴𝐼𝑆⃗⃗ ⃗⃗ ⃗ vector is defined, which contains the calculated

AIS value for each microservice.

To calculate the total value of AIS at the system level (AisT),

the vector norm is calculated. Where n is the number of

microservices of the MSBA, thus:

𝐴𝐼𝑆⃗⃗ ⃗⃗ ⃗ = [𝐴𝐼𝑆1 , 𝐴𝐼𝑆2 , . . . , 𝐴𝐼𝑆𝑛] (4)

𝐴𝑖𝑠𝑇 = |𝐴𝐼𝑆⃗⃗ ⃗⃗ ⃗ | = √𝐴𝐼𝑆1
2 + 𝐴𝐼𝑆2

2 + . . . + 𝐴𝐼𝑆𝑛
22
 (5)

The absolute dependence of the microservice (ADS):

ADS is the number of other microservices that microservice

depends on. The number of microservices from which invokes

at least one operation [50]. ADSi is the number of other

microservices on which the MSi depends. To calculate the total

value of ADS at the system level (AdsT) the 𝐴𝐷𝑆⃗⃗ ⃗⃗ ⃗⃗ vector norm

is calculated. Then:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

𝐴𝐷𝑆⃗⃗ ⃗⃗ ⃗⃗ = [𝐴𝐷𝑆1 , 𝐴𝐷𝑆2 , . . . , 𝐴𝐷𝑆𝑛] (6)

 𝐴𝑑𝑠𝑇 = |𝐴𝐷𝑆⃗⃗ ⃗⃗ ⃗⃗ | = √𝐴𝐷𝑆1
2 + 𝐴𝐷𝑆2

2 + . . . + 𝐴𝐷𝑆𝑛
22
 (7)

Microservice interdependence (SIY): SIY is the number

of interdependent microservices pairs [50]. SIY defines the

number of pairs of microservices that depend bi-directionally

on each other divided by the total number of microservices. At

the system level, the vector 𝑆𝐼𝑌⃗⃗ ⃗⃗ ⃗ was defined:

𝑆𝐼𝑌⃗⃗ ⃗⃗ ⃗ = [𝑆𝐼𝑌1 , 𝑆𝐼𝑌2 , . . . , 𝑆𝐼𝑌𝑛] (8)

𝑆𝑖𝑦𝑇 = |𝑆𝐼𝑌⃗⃗ ⃗⃗ ⃗ | = √𝑆𝐼𝑌1
2 + 𝑆𝐼𝑌2

2 + . . . + 𝑆𝐼𝑌𝑛
22
 (9)

Let the 𝐶𝑝⃗⃗ ⃗ vector as the MSBA level coupling metric,

calculating the norm of the vector 𝐶𝑝⃗⃗ ⃗ we have the coupling

value for the application (CpT):

𝐶𝑝⃗⃗ ⃗ = [𝐴𝑖𝑠𝑇, 𝐴𝑑𝑠𝑇, 𝑆𝑖𝑦𝑇] (10)

 𝐶𝑝𝑇 = 10 ∗ |𝐶𝑝⃗⃗ ⃗ | = 10 ∗ √𝐴𝑖𝑠𝑇2 + 𝐴𝑑𝑠𝑇2 + 𝑆𝑖𝑦𝑇22
 (11)

We amplify CpT by 10, in such a way that its dimension is

like the dimension of the other variables of 𝑀𝑇⃗⃗ ⃗⃗⃗ .

Figure 3 shows an example of the coupling metric

calculation for a hypothetical case in which there are 3

microservices forming MSBA. As follows ms1 = {hu1, hu2},

ms2 = {hu3} and ms3={hu4}. Where hu1 has as dependencies

{hu3, hu4}, hu2 has {hu4}, hu3 has {hu1} and hu4 has no

dependencies.

FIGURE 3. Example of metrics calculation.

2. COHESION OF MSBA (CohT)

Cohesion and coupling are two contrasting properties. A

solution balancing high cohesion and low coupling. We used

the lack of cohesion (LC), lack of cohesion grade (Coh), and

semantic similarity (SsT) for measuring the cohesion of

MSBA.

Lack of cohesion (LC): LC measured the number of pairs

of microservices not having any dependency between them,

adapted from [49]. LC of MSi was defined by us as the number

of pairs of microservices not having any interdependency

between MSi.

Lack of cohesion grade (Coh): The degree of cohesion

Coh of each microservice is defined as the proportion of the

lack of cohesion metric divided by the total number of

microservices that are part of the application.

𝐶𝑜ℎ𝑖 = 𝐿𝐶𝑖 / 𝑛 (12)

Where n is the number of microservices. At the system

level, the vector 𝐶𝑜ℎ⃗⃗ ⃗⃗ ⃗ was defined, calculating the norm of the

vector, we have the cohesion grade for the application (CohT):

𝐶𝑜ℎ⃗⃗ ⃗⃗ ⃗ = [𝐶𝑜ℎ1 , 𝐶𝑜ℎ2 , . . . , 𝐶𝑜ℎ𝑛] (13)

𝐶𝑜ℎ𝑇 = |𝐶𝑜ℎ⃗⃗ ⃗⃗ ⃗ | = √𝐶𝑜ℎ1
2 + 𝐶𝑜ℎ2

2+. . . + 𝐶𝑜ℎ𝑛
22
 (14)

Figure 3 shows the cohesion metric calculation example for

the hypothetic case.

Semantic Similarity of MSBA (SsT): According to

Cojocaru et al. [27] “semantic similarity uses lexical distance

assessment algorithms to flag the services that contain

unrelated components or unrelated actions hindering

cohesion”.

SsT was calculated using the natural process language

library Spacy [51], in which the similarity is determined by

comparing word vectors or “word embeddings”, multi-

dimensional meaning representations of a word. We

calculated the semantic similarity between each user story,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

joining the name and the description of the user story. We

calculated SsT as follow:

1. We selected the nouns from the name and description of

the user story.

2. We identified the lemmas of the noun in each user story.

3. We defined a dictionary that contains the semantic

similarity values among the user stories as follow:

𝐷𝑆𝑆 = {< "ℎ𝑢1 − ℎ𝑢2", 𝑎1−2 >, < "ℎ𝑢1 − ℎ𝑢3", 𝑎1−3 >, . . . , < "ℎ𝑢𝑗 − ℎ𝑢𝑘", 𝑎𝑗−𝑘 >}

 (15)

Where:

“huj - huk” is the dictionary´s key, which is formed by the

concatenation of the user stories’ identifiers.

aj-k is the dictionary´s value, which corresponds to the

semantic similarity value obtained by spacy among user

stories j and k, it is a float number between 0 and 1.

4. We calculated the semantic similarity (SSi) of MSi as the

average of the semantic similarity values between its user

stories. The total semantic similarity of MSBA was the

semantic similarity average of the microservices. For

obtaining a value of semantic similarity between 0 and

100 we multiplied the average by 100.

𝑆𝑆𝑖 =
1

𝑐
∑ 𝑎𝑗−𝑘

𝑚
𝑗=1,𝑘=𝑗+1 (16)

𝑆𝑠𝑇 =
100

𝑛
 ∑ 𝑆𝑆𝑖

𝑛
𝑖=1 (17)

Where:

m is the number of user stories of the i-th microservice.

c is the number of comparisons done to calculate SS; it is the

number of combinations between the microservice user

stories.

n is the number of microservices of MSBA.

3. GRANULARITY OF MSBA (WsicT)

The granularity corresponds to the size of each microservice

and the size of the application. We used the granularity metrics

listed below.

The number of microservices (n): The number of

microservices that are part of the system or MSBA.

Weighted service interface count (WSIC): WSIC is the

number of exposed interface operations of MSi [52]. For our

model, a user story is related to an operation (one-to-one); so,

we adapt this metric as the number of user stories associated

with the microservice. Other authors called this metric the

operation number. We adapt WSIC as the number of user

stories assigned to each microservice. We defined WsicT as

the maximum number of user stories associated with a

microservices, so WsicT is the maximum WSIC of MSBA, then

𝑊𝑠𝑖𝑐𝑇 = 𝑀𝑎𝑥(𝑊𝑆𝐼𝐶1 , 𝑊𝑆𝐼𝐶2 , . . . , 𝑊𝑆𝐼𝐶𝑛) (18)

Also, figure 3 illustrates the calculation of WsicT.

4. PERFORMANCE

Estimating the performance of an application at design time is

difficult and imprecise. We used the number of calls and

requests between microservices for estimating the

performance.

We assume that if there are more calls and requests between

the microservices, then the communication, latency, and

response time of the application is increased, therefore the

performance of the application is directly affected. The aim

may be to have microservices that do not have communication

between them and work independently. Therefore, we define

two metrics:

Calls of a microservice (Callsi): Calls corresponds to the

number of invocations of MSi to another microservices of

MSBA.

Requests of a microservice (requesti): Request

corresponds to the number of invocations of other

microservices to MSi of MSBA.

Average of calls of MSBA (Avg. Calls): Avg. Calls are the

average of calls among microservices of MSBA.

𝐴𝑣𝑔. 𝐶𝑎𝑙𝑙𝑠 =
1

𝑛
 ∑ 𝐶𝑎𝑙𝑙𝑠𝑖

𝑛
𝑖=1 (19)

Where:

n is the number of microservices of MSBA.

Figure 3 presents an example of the calculation of the

request and calls for a MSBA.

5. COMPLEXITY OF MSBA (CxT)

Measuring complexity is fundamental for developing

microservice-based applications. If the complexity is high,

then the cost of change is higher. So, the used complexity

metrics are detailed below.

User story points (P): The user story points are an

estimated point of the effort needed to develop the user story.

The story points are an indicator of the speed of development

of the team; then we defined Pi as the user story points of MSi

as follow:

𝑃𝑖 = ∑ 𝑃𝐻𝑗
𝑚
𝑗=1 (20)

Where:

Pi is the total of user story points of MSi.

m is the number of user stories of MSi.

PHj is the estimated user story points of j-th user story of MSi.

Cognitive complexity points (CxT): We proposed a metric

of cognitive complexity points (CxT) as follows: Points were

added according to the complexity of the microservice, its

relationships, and dependencies. The difficulty of developing

and maintaining a microservice-based application was

estimated. The starting point was the estimation of story points

made by the development team.

CxT was based on the complexity of a graph and its depth.

We started from a base case, which corresponds to the least

complexity. This case would be a single microservice, with

one user story and one estimated story point for its

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

development. For this case Cx0 = 2. CxT corresponds to the

number of times that the application is more complex in

relation to the base case. Formally CxT was defined as follows:

𝐶𝑥 = ((∑ 𝐶𝑔𝑖
𝑛
𝑖=1) + 𝑀𝑎𝑥(𝑃1 , … , 𝑃𝑛) + (𝑛 ∗ 𝑊𝑠𝑖𝑐𝑇) + (∑ 𝑃𝑓𝑖

𝑛
𝑖=1) + (∑ 𝑆𝐼𝑌𝑖

𝑛
𝑖=1)) (21)

𝐶𝑥𝑇 =
𝐶𝑥

𝐶𝑥0
 (22)

Where:

CxT = Cognitive complexity points of MSBA.

i = i-th microservice

Cgi = Pi * (Callsi + Requesti), Callsi are the outputs of MSi and

Requesti are the inputs of MSi.

Pi = Total user story points of MSi. According to (20)

Max(P1, …, Pn): Maximum Pi of MSBA.

n = number of microservices of MSBA.

WsicT: Greater WSIC of the application. According to (18)

Pfi: Number of nodes used sequentially from a call that makes

a microservice to other microservices, counted from the i-th

microservice; A larger depth implies a greater complexity of

implementing and maintaining the application.

SIY: Microservice Interdependence.

Cx0: The base case where the application has one

microservice, one user story with one estimated story point.

Then Cg1 = 0, Greater(P1) = 1, n=1, WsicT=1, Pf1 =0, SIY=0,

and Cx = 2. Therefore Cx0 = 2.

6. ESTIMATED DEVELOPMENT TIME OF MSBA (T)

The microservices are implemented and organized around

business capabilities; ideally, each one is managed by an

independent development team. For the evaluations of this

model, we assumed that each microservice is developed in

parallel and independently; thus, the estimated development

time of the application corresponds to the longest estimated

development time of the microservices that are part of MSBA.

In real life this is not entirely true, a development team

oversees several microservices and several microservices are

developed sequentially; this restriction will be considered in

future work.

The development team estimates the user story points and

the development time in the release planning. Many software

development companies define a scale of conversion of user

story points to development time (hours). We assumed that de

estimated development time of the user stories as an input data

of this model. We defined two evaluation metrics as follows.

Microservice’s development time (ti): The

microservice’s development time corresponds to the sum of

the estimated development time of each user story that is part

of the microservice.

𝑡𝑖 = ∑ 𝑇𝐻𝑗
𝑚
𝑗=1 (23)

Where:

ti is the estimated development time of MSi.

m is the number of user stories of MSi.

THj is the estimated development time of the j-th user story of

MSi., it is an input data of the model.

Application development time (T): Greater estimated

development time of the microservices that are part of MSBA.

𝑇 = 𝑀𝑎𝑥(𝑡1 , 𝑡2 , . . . , 𝑡𝑛) (24)

7. GRANULARITY METRIC OF MSBA (Gm)

Finally, the value of the target function Gm use (2), Gm is

defined as the 𝑀𝑇⃗⃗ ⃗⃗⃗ vector norm.

𝐺𝑚 = |𝑀𝑇⃗⃗ ⃗⃗⃗ | = √𝐶𝑝𝑇2 + 𝐶𝑜ℎ𝑇2 + 𝐶𝑥𝑇2 + 𝑊𝑠𝑖𝑐𝑇2 + (100 − 𝑆𝑠𝑇)2
2

 (25)

This mathematical expression allowed us to determine how

good or bad is the decomposition. A small Gm implies a good

granularity. The aim is to obtain a solution with low

complexity (CxT), low coupling (CpT), low lack of cohesion

grade (CohT), small WsicT, and high semantic similarity (SsT

was a number between 0 and 100 so that we can minimize Gm,

we include in the 𝑀𝑇⃗⃗ ⃗⃗⃗ vector the value of 100 minus SsT, so

values close to zero correspond to a greater semantic

similarity). We tested different combinations of CpT, CohT,

CxT, WsicT, and SsT in the Gm metrics, we selected the best

results, and they are presented in section V.

B. PARAMETERIZE COMPONENT

It is responsible for taking input data and converting it into a

format that can be processed by the grouper. It extracts the key

data, such as identifier, name, description, estimated points,

estimated time, scenario, observations, and dependencies,

from the user story. Later, with this data, the model can group

the user stories in microservices and calculate the metrics from

the user stories dependencies. The format of the user stories is

a CVS file where the key data (i.e., identifier, name,

description, estimated points, estimated time, scenario, and

observations) are supplied.

A user story describes the functionality that will be provide

value to a user or customer of the software system[53], [54].

The information that a user story can contain according to

Kent Beck is: the date, the type of activity (new, correction,

improvement), functional test, story number or identifier,

technical and customer priority, reference to another story,

risk, technical estimate (points and hours), a description, notes

and a follow-up list with the date, status of things to be

completed and comments [55].

User (architect or development team) creates the project and

loads the information of user stories from the CVS file to MB.

Then the user defines dependencies among user stories (HU)

according to the business logic, dataflow, database, or calls.

We defined a dependence among HUi and HUj when HUi calls

or executes HUj.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

C. GROUPER COMPONENT

This component groups user histories into microservices. User

or architect can add up and generate automatic decompositions

of these user stories in microservices (using a genetic

algorithm, or a semantic grouping algorithm), or creating the

decomposition manually by themselves. The semantic

grouping algorithm will be addressed in future work.

1. GENETIC PROGRAMMING

The genetic algorithm seeks to find the best combination, the

best assignation of stories to microservices in such a way that

Gm is lower, using (25).

The genetic algorithms were established by Holland [56],

which is iterative, in each iteration, the best individuals are

selected, everyone has a chromosome, which is crossed with

another individual to generate the new population

(reproduction), some mutations are generated to find the

optimal solution to the problem [57]. Our genetic algorithm

consisted of distributing or assigning user stories to

microservices automatically, considering coupling, cohesion,

granularity, complexity, and semantic similarity metrics. We

designed the genetic algorithm as follows. See figure 3.

FIGURE 4. Genetic algorithm design of the Microservices backlog.

Get Initial Population Method. There is a set of user

stories HU = {hu1, hu2, hu3, ..., hum}, which must be assigned

to the microservices. We have a set of microservices MS =

{ms1, ms2, ms3, ..., msn} and some metrics calculated from the

information contained in the user story. Individuals are

defined from the assignment of stories to microservices;

therefore, the chromosome of everyone is defined from an

assignment matrix of ones and zeros, wherein the columns

there are user stories and in the rows are the microservices, and

the cross contains a 1 when the user story is assigned to the

microservice or zero if not. In table II, an example is presented

for two microservices MS = {ms1, ms2} and 5 user stories HU

= {hu1, hu2, hu3, hu4, hu5}.

The resulting chromosome would be the union of the

assignments of each user story to each microservice (rows),

for this case, it would be:

Chromosome: 10011 01100.

From this chromosome, it was possible to define the

function of adaptation or objective function, using (24).

TABLE II
EXAMPLE OF AN ASSIGNMENT MATRIX

Microservices hu1 hu2 hu3 hu4 hu5

ms1 1 0 0 1 1

ms2 0 1 1 0 0

From this chromosome, we define the adaptation function

or objective function, which is based on equation (25), uses a

combination of the metrics of coupling (CpT, equation 11),

cohesion (CohT, equation 14), granularity (WsicT, equation

18), complexity (CxT, equation 22) and semantic similarity

(SsT, equation 17). The objective functions used are detailed

below:

𝐹1 = √(10 𝐶𝑝𝑡)2 + 𝐶𝑥𝑇2 + 𝑊𝑠𝑖𝑐𝑇2 + (100 − 𝑆𝑠𝑇)2
2

 (26)

𝐹2 = √(10 𝐶𝑝𝑡)2 + 𝑊𝑠𝑖𝑐𝑇2 + (100 − 𝑆𝑠𝑇)22
 (27)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

𝐹3 = √ 𝐶𝑥𝑇2 + (100 − 𝑆𝑠𝑇)22
 (28)

𝐹4 = √(10 𝐶𝑝𝑡)2 + 𝐶𝑜ℎ𝑇2 + (100 − 𝑆𝑠𝑇)22
 (29)

𝐹5 = √ (10 𝐶𝑝𝑡)2 + (100 − 𝑆𝑠𝑇)22
 (30)

𝐹6 = √(10 𝐶𝑝𝑡)2 + 𝐶𝑜ℎ𝑇2 + 𝑊𝑠𝑖𝑐𝑇2 + (100 − 𝑆𝑠𝑇)22
 (31)

𝐹7 = √(10 𝐶𝑝𝑡)2 + 𝐶𝑥𝑇2 + (100 − 𝑆𝑠𝑇)22
 (32)

𝐹8 = √(10 𝐶𝑝𝑡)2 + 𝐶𝑜ℎ𝑇2 + 𝑊𝑠𝑖𝑐𝑇2
2

 (33)

Reproduction Method. A different assignment would be

generated from selected parents. In this case, the father and

mother are randomly selected from the population; to generate

the child information is taken from the father and mother, from

the assignment matrix the first columns of the father are taken,

and the last columns of the mother are joined, generating a new

assignment. It must be considered that a user story cannot be

assigned twice, this means that in the assignment matrix only

one can appear in each column. Example: Given the two

chromosomes:

1) Father: 10011 01100.

2) Mother 01000 10111.

The son would be 10000 01111.

Mutation Method. The mutation indicates changing a

random bit of the chromosome, changing a bit of the

chromosome of this problem from 1 to 0 or from 0 to 1, implies

that a user story is assigned or unassigned to a microservice

and this must be assigned or unassigned to another

microservice. This implies that the mutation is done on two

bits. Example:

Mutate bit 7 of the obtained chromosome: 01011 10100.

Mutated chromosome: 00011 11100.

In this case, bit 7 which is zero must be changed to one, i.e.

the user story in column 2 of the matrix must be assigned to

the second microservice and at the same time be unassigned

from the first microservice.

The mutated chromosomes must be included in the

population. This process is carried out randomly, the

individuals to be mutated are selected from the population, the

mutation of a bit is also carried out randomly, for the mutation

the value of the target function is calculated and included in

the population.

Select Better Method: In the processes of genetic

selection, the strongest survive, in the case of the problem of

the automatic generation of the assignment of user histories to

microservices, the n individuals who best adapt to the

conditions of the problem survive. The assignments that imply

a lower Gm.

The selection was from the objective function, it was

applied to each individual and the population was ordered in

ascending form, considering the first places, the best

individuals, corresponding to the assignments involving lower

Gm using (21).

Convergence: To determine the convergence of the

method, the number of iterations or generations of the

population to be processed was defined, we defined the

convergence when 10% of the population converge to the

same Gm value. If did not converge, at the end of the iterations,

the algorithm is stopped, and the chromosome located in the

first place was selected, which would be the best assignment

of user stories to microservices. For the case studies used to

evaluate the proposed method, a population of 1000

individuals was generated, with a maximum of 400 iterations

or generations, with 500 children and 500 mutations in each

generation. The algorithm was tested several times obtaining

the same result, even with more individuals and more

iterations.

D. METRICS CALCULATOR COMPONENT

The system through the metric calculator component

calculates the metrics of coupling, cohesion, complexity,

granularity, estimated performance (microservices requests

and calls), and estimated development time. With these

metrics, we can evaluate and compare the decompositions of

the project to make decisions at design time. These metrics

were defined in subsection A of the Microservices Backlog

model.

We implemented algorithms to calculate the metrics and

generate comparative tables for analyzing the microservices-

based applications.

E. MICROSERVICES BACKLOG DIAGRAM AND
DECOMPOSITION EVALUATOR.

Figure 4 shows Microservices Backlog for the Cargo Tracking

application. The outputs of the model are the microservices

backlog diagram and the metrics.

The diagram shows key information to the designer such as

the size of each microservice, its complexity, dependencies,

coupling, cohesion, and development time. The architect can

notice at first sight that the purple microservice – Localization

(see the diagram of figure 4) is a critical point of the system,

because that it is massively used by all the others, if this

microservice failure, then the whole system can fail. The

architect at design time can already think about fault tolerance

mechanisms, load balancing, and monitoring on that critical

microservice. They can have a vision of the global system at

design time.

The microservices backlog in figure 5 was obtained by

decomposition using DDD and the following macro-

algorithm:

1) Identify and describe the user stories of the application

(Cargo Tracking in this case).

2) Define the dependencies among the user stories.

3) Identify the entities.

4) Define the aggregates,

5) Establish the delimited contexts and link the entities and

their respective user stories.

6) Calculate metrics for each microservice and the whole

application through the metric calculator component.

We highlight that the grouper component of MB

automatically identifies the candidate microservices when

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

using the genetic algorithm or the grouping algorithm, then

steps 3 to 5 are automatic.

After obtaining the decompositions, we can perform join or

decompose operations of the microservices, perform a

comparative analysis of the decompositions, and select the

best one. Figure 6 presents the comparative table of a project

registered in the system. Metrics are presented for each

decomposition, which can be automatically ordered for

analysis and comparison.

FIGURE 5. Microservices backlog for Cargo Tracking application, microservices identified using Domain-driven design. 1) MSBA metrics; 2)
Dependences graph of MSBA; 3) Microservice metrics; 4) Microservices details.

FIGURE 6. Evaluate decompositions in the Microservices backlog.

V. RESULTS

We evaluated MB by comparing it with two state-of-the-art

examples: Cargo Tracking and JPet Store; and one real-life

project: Foristom Conferences. We compared Cargo Tracking

and Jpet Store against the decomposition (microservices and

their user stories) obtained with DDD, state-of-the-art

approaches, and our model. Whereas the real-life project were

compared against DDD, and the decomposition obtained by

our model. We run the genetic algorithm for all tests with a

population of 1000 individuals, convergence 10%, the

maximum number of iterations 400 with 500 children and 500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

mutations in each iteration. The following process was carried

out for each case study:

1. The case study is described.

2. User stories are identified, and the product backlog is

defined.

3. Dependencies between user stories are identified.

4. Decompositions are obtained for each comparison

method.

5. Metrics are calculated through the metrics calculator

component.

6. The solutions proposed by each method are presented

graphically.

7. The metrics data table is presented for comparative

analysis.

8. Comparative charts of the metrics for each method are

presented.

9. The value obtained in the cognitive complexity and in the

Gm granularity metrics is compared.

10. The best results of the genetic algorithm are compared

against DDD.

A. CARGO TRACKING APPLICATION

In Baresi et al. [47] Cargo Tracking application is described,

as follows, “the focus of the application is to move a Cargo

(identified by a TrackingId) between two Locations through a

RouteSpecification. Once a Cargo becomes available, it is

associated with one of the Itineraries (lists of

CarrierMovements), selected from existing Voyages.

HandlingEvents then trace the progress of the Cargo on the

Itinerary. The Delivery of a Cargo informs about its state,

estimated arrival time, and is on track”. We extracted and

defined the user stories; the product backlog is detailed in

Table II. The points and times are input data to our model.

TABLE II

PRODUCT BACKLOG FOR CARGO TRACKING APPLICATION

ID Name Points Dev. Time

(hours)

hu1 Create voyage 3 5
hu2 Handle Cargo Event 3 5

hu3 Add Carrier Movement 5 7

hu4 Create Location 2 3
hu5 View Tracking. 3 5

hu6 Create Cargo 7 10
hu7 Route Cargo 5 7

hu8 Create Leg 2 3

hu9 Book cargo 5 7
hu10 Change Cargo Destination 1 2

hu11 Create Delivery 7 10
hu12 Get Locations 2 3

hu13 Get carrier status 3 5

hu14 Get routes status 3 5

Total: 51 77

ID: user story identifier. Points: estimated user story points. Dev. Time:

estimated development time in hours.

A critical point of our proposed method is the dependencies

between user stories. They must be identified and registered in

MB through the parameterizing component, which offers the

functionality to define dependencies between user stories. We

define a dependence between hui and huj when hui calls or

executes huj. For example, to create a voyage (hu1) we must

get the locations (hu12), this implies that the hu1 has a

dependence on hu12. Table III presents the dependencies

identified by us among the user stories. To illustrate the

proposed genetic algorithm the statement of these

dependencies is valid.

TABLE III

USER STORIES DEPENDENCES FOR CARGO TRACKING

User

Stories

Dependences User

Stories

Dependences

hu1 {hu12, hu3} hu8 {hu12}
hu2 {hu12} hu9 {hu12}

hu3 {hu12} hu10 {hu12}

hu4 {} hu11 {hu6, hu13, hu14}
hu5 {} hu12 {}

hu6 {hu7, hu9, hu11} hu13 {hu5}

hu7 {hu8} hu14 {hu5}

Dependencies are used to calculate the metrics, for

example, to calculate the AIS metric of the decomposition

obtained with DDD for the microservice called Localization

(see figure 5). ms1(Voyage) = {hu1, hu3, hu13}, ms2 (Tracking)

= {hu2, hu5, hu14}, ms3 (Localization) = {hu4, hu12}, ms4

(Voyage Planning) = {hu6, hu7, hu8, hu9, hu10, hu11}.

The metric AIS is the number of clients that invoke at least

one operation of a microservice’s interface (see (4) and (5)).

Then we count the number of microservices that invoke or use

hu4 or hu12 from the dependencies. hu4 is not used by any other

user stories, it does not appear in any dependencies (see table

III), whereas hu12 is used by hu1, hu2, hu3. hu8, hu9, and hu10

corresponding to 3 microservices, therefore AIS = 3.

Similarly, other metrics are calculated.

Figure 6 presents the microservice backlog for the

decompositions generated by the Microservice Backlog model

compared with DDD, MITIA, and Service Cutter for Cargo

Tracking application.

We done an analysis of the objective functions (F1 to F8),

which used different combinations of CpT, CohT, WsicT, CxT,

and SsT. The best results were using CpT, CxT, WsicT, and

SsT, which contained three microservices.

All evaluated methods converged to almost the same

number of microservices (3 or 4 microservices). The

distribution of user stories into microservices was different.

The number of microservices was 3 or 4 in all proposed

decompositions, the genetic algorithm has fewer

microservices than DDD and MITIA, in the first and third

method.

Our genetic algorithm obtained coupling values of 3.16,

2.83, and 2, these values were smaller or equal than DDD

(2.83), Service Cutter (3.16), and MITIA (6.78); the smaller

coupling was the genetic algorithm using CpT, CohT, and

WsicT in the objective function, therefore the decomposition

obtained by MB has low coupling (see table IV, we

highlighted the solution with lower Gm).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

The cohesion values were 1.16, 1.5, and 1.16 for the genetic

algorithm, whereas DDD (1.5), Service Cutter (1.15), and

MITIA (1.06) obtained similar values; the semantic similarity

of the genetic algorithm was greater than 70%, so our genetic

algorithm obtained coherent decompositions from the

semantic point of view, therefore the semantic cohesion was

high. The smaller number of calls among microservices

correspond to the genetic algorithm and MITIA (5 calls),

whereas DDD (6 calls) and Service Cutter (10 calls) had more

calls; then the genetic algorithm obtained solutions with fewer

dependencies and less communication among microservices.

FIGURE 7. Microservice Backlog model compared with DDD, MITIA, and Service Cutter for Cargo Tracking application.

TABLE IV

COMPARATIVE ANALYSIS OF DECOMPOSITIONS FOR CARGO TRACKING APPLICATION

Method / Metrics Coupling Cohesion Granularity Perfor. Complexity T GM

AisT AdsT SiyT CpT CohT SsT N WsicT Calls Max. Pi CxT

MB - Genetic algorithm

F1: CpT, CxT, WsicT, SsT

F7: CpT, CxT, SsT

2.24 2.24 0 3.16 1.16 70.9 3 6 3 23 74.0 35 85.8

MB - Genetic algorithm
F2: CpT, WsicT, SsT

1.73 2.24 0 2.83 1.50 75.0 4 5 9 14 141.0 21 146.1

MB - Genetic algorithm

F8: CpT, CohT, WsicT

1.41 1.41 0 2.00 1.16 70.8 3 5 6 22 124.0 33 129.1

DDD 3.74 3.74 0 5.29 1.50 74.1 4 6 9 27 145.0 39 156.6

Service Cutter 2.24 2.24 0 3.16 1.15 74.4 3 10 8 41 202.5 61 206.8

MITIA 4.24 4.69 2.45 6.78 1.06 76.8 4 5 12 19 190.0 30 203.1

14MS (Finer granularity) 6.93 5.48 1.41 8.94 3.44 100.0 14 1 16 7 95.5 10 130.9

Monolith (Greater granularity) 0 0 0 0 0 69.2 1 14 0 51 32.5 77 46.9

The decomposition performed by our method was different

from DDD, our model did not group the entities and their

stories or operation that make up the aggregate, neither

considered transactions among user stories or business logic

of the application. These topics will be considered in future

work.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

In the decomposition obtained with the genetic algorithm,

the critical point of failure of the proposed DDD solution is

removed, Localization microservice is used for all

microservices. The number of calls between microservices is

reduced, thus improving performance. The maximum number

of operations associated with a microservice is also reduced,

as well as the cognitive complexity and the estimated

development time. In the decomposition generated by genetic

programming, more microservices can work independently

without depending on other microservices. Whereas in the

solution proposed by DDD, only one microservice can work

independently. In the decomposition proposed by DDD, there

are more dependencies.

By distributing user stories differently, shorter development

times of the entire system can be obtained. Considering that

each microservice is developed by an independent team in

parallel.

Figure 8 shows graphically the comparative analysis of the

evaluation metrics. Figure 9 shows specifically the cognitive

complexity obtained by the methods studied.

FIGURE 8. Comparative analysis of evaluation metrics of Cargo
Tracking application. MS: Number of microservices, CPT: Coupling of
MSBA, COHT: Lack of cohesion grade of MSBA, WSICT: Maximum
WSIC of MSBA, WSIC is the number of user stories of the MS. CALLS:
number of calls between microservices.

The number of calls of our approach is less than DDD,

Service Cutter, and MITIA. This metric measure or determine

the degree of dependence that have the microservices that are

part of the application, a larger value implies a greater

dependence and lower performance because they require the

execution of operations that belong to other microservices in

other containers.

FIGURE 9. Comparative analysis of cognitive complexity points of
Cargo Tracking application.

Cognitive complexity metrics estimate the difficulty of

understanding, implementing, and maintaining the

microservice-based application, depending on the complexity

of each microservice, the interactions between them, and their

number. MB obtained (74, 141, and 124) lower cognitive

complexity points than DDD (145), MITIA (190), and Service

Cutter (202.5); therefore, MB can reduce the complexity of the

microservice-based applications.

The results obtained for semantic similarity are very similar

in all proposed decompositions. It can be highlighted that the

semantic similarity for all cases exceeds 70%, therefore, the

decompositions were coherent from the semantic point of

view. Figure 10 shows the comparative analysis of the metric

GM. The lower Gm value corresponds to the genetic algorithm

(85.79) of MB, whereas DDD (156.64), MITIA (203.14), and

Service Cutter (206.79), Therefore, the decomposition

obtained by MB corresponds to the best solution to the

problem. We observed that the solution proposed with less

complexity, less coupling, and fewer calls also corresponds to

the one with the lowest value of the Gm metric and

corresponds to the genetic algorithm of MB.

FIGURE 10. Comparative analysis of granularity metrics of Cargo
Tracking application.

Finally figure 11 presents the comparative results for Cargo

Tracking, comparing MB genetic algorithm against DDD.

FIGURE 11. Results of the comparative analysis of Cargo Tracking
application. T: Estimated development time.

Where T is the estimated development time of the

decomposition obtained by each method. The genetic

algorithm obtains less estimated development time, fewer

calls between microservices, less complexity, greater

cohesion, less coupling, and less Gm than DDD.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

B. JPET STORE APPLICATION

The JPetStore Demo1 is an online pet store. We can browse

and search the product catalog, choose items to add to a

shopping cart, amend the shopping cart, and order the items in

the shopping cart. You can perform many of these actions

without registering with or logging into the application.

However, before you can order items you must log in (sign in)

to the application. To sign in, you must have an account with

the application, which is created when you register (sign up)

with the application [58]. The functionalities of Jpet Store are

listed below.

• Signing Up

• Signing In

• Working with the Product Catalog: Browsing the

Catalog, Searching the Catalog

• Working with the Shopping Cart: Adding and

Removing Items, Updating the Quantity of an Item,

Ordering Items, Reviewing an Order

This application has been used to validate decomposition

methods and migrations from monolithic applications to

microservices [18], [29], [35]. From the description,

definition, and source code of the application, the following

user stories were identified. We identified the operations; from

them, we specify and estimate the user stories (see Table V).

TABLE V

PRODUCT BACKLOG FOR JPET STORE APPLICATION

ID. Name Points Dev. Time

(Hours)

hu1 View category 3 5

hu2 List categories 1 3

hu3 Search products 5 7
hu4 View product 3 5

hu5 View item (get Item) 3 5

hu6 Add item to cart 5 7
hu7 Remove item from cart 3 5

hu8 Update cart quantities 3 5

hu9 Get cart 3 5
hu10 New order 7 10

hu11 Get order 3 5

hu12 Set order ID 5 7
hu13 List orders 3 5

hu14 Is authenticated 3 5

hu15 New account (Sign up) 5 7
hu16 Get account 3 5

hu17 Sign off 2 3

hu18 Update account 3 5
hu19 getCategory 2 3

hu20 getProduct 2 3

hu21 Is Item in Stock 3 5
hu22 Sign in 3 5

Total 73 115

The points and times were estimated according to our

experience and correspond to the effort and time it would take

for us to develop each user story; the total time corresponds to

a sequential order of development of the user stories. In real-

life software development using agile methodologies, this

estimate would be made by the development team in the

1 http://demo.kieker-monitoring.net/jpetstore/help.html

release planning considering their own characteristics and

speed of development.

A dependency is defined when a user story uses or calls

another user story. This example can be considered as

migration from monolith to microservices, in this case, the

user stories can be replaced by the operations/methods or

services of the application; a dependency corresponds to an

execution dependency, in which an operation calls another

operation to fulfill its purpose.

In this example, the source code of the monolithic

application was available. To define the dependencies among

user stories, the source code was analyzed to identify

invocation dependencies between user stories and/or

operations (OrderService, CatalogService, AcountService,

Cart entity, and other entities). The process is detailed below:

Dependencies of hu1 - View category:

ViewCategory method calls to ListCategories method. It

corresponds to another user story (hu2).

ViewCategory calls to

catalogService.getProductListByCategory – It is the same

user story and corresponds to its implementation.

ViewCategory calls to catalogService.getCategory(id) – It

corresponds to another user story (hu19),

Therefore, the dependencies of hu1 are hu2 and hu19. hu1 =

{hu2, hu19}.

Dependences of hu2 - Listar categorías - List categories:

ListCategories calls to accountAction.getCategories() – It is

the same user story and corresponds to its implementation.

Therefore, hu2 has not dependencies. hu2 = {}.

Dependencies of HU6 - Add item to cart:

AddItemtoCart calls to

cart.incrementQuantityByItemId(workingItemId). It is the

same user story and corresponds to its implementation.

AddItemtoCart calls to

catalogService.isItemInStock(workingItemId). It corresponds

to another user story (hu21)

AddItemtoCart calls to

catalogService.getItem(workingItemId); It corresponds to

another user story (hu5).

Therefore, HU6 has two dependencies HU21 and HU5. HU6 =

{HU5, HU21}.

TABLE VI

USER STORIES DEPENDENCIES FOR JPET STORE APPLICATION

Id. Dependencies Id. Dependencies

hu1 {hu2, hu19} hu12 {}

hu2 {} hu13 {hu16}

hu3 {} hu14 {}
hu4 {hu20} hu15 {hu16, hu1}

hu5 {} hu16 {}

hu6 {hu5, hu21} hu17 {}
hu7 {} hu18 {hu16, hu1}

hu8 {} hu19 {}

hu9 {} hu20 {}
hu10 {hu9, hu16} hu21 {}

hu11 {hu16} hu22 {hu1}

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

We did this process for the other user stories. Table VI

shows the identified dependencies.

We compared the decompositions of user stories to

microservices obtained by our model against DDD, and

Execution Traces, see figure 12. The results obtained by DDD

and Execution traces were the same, only one user story was

in a different microservice, but the metrics and comparison

were equals.

FIGURE 12. Microservice Backlog model compared with DDD and Execution Traces for JPet Store application.

TABLE VII

COMPARATIVE ANALYSIS OF DECOMPOSITIONS FOR JPET STORE APPLICATION

Method / Metrics Coupling Cohesion Granularity Perfor. Complexity T Gm

AisT AdsT SiyT CpT CohT SsT N WsicT Calls Max Pi CxT

MB - Genetic algorithm
CpT, SsT

CpT, CohT, SsT

1.41 1.41 0 2.00 2.27 89.4 7 5 6 21 113.0 32 115.4

MB - Genetic algorithm and Joins
CpT, SsT

1.41 1.41 0 2.00 1.79 85.9 5 6 6 21 125.5 32 128.2

MB - Genetic algorithm

CpT, CohT, WsicT, SsT

1 1 0 1.41 2.04 88.1 6 9 3 35 107.0 54 109.0

MB - Genetic algorithm and Joins

CpT, CohT, WsicT, SsT

1 1 0 1.41 1.79 86.5 5 9 3 35 102.5 54 104.7

DDD 2.45 2.45 0 3.46 1.50 85.3 4 8 9 22 200.0 36 203.7
Execution Traces 2.45 2.45 0 3.46 1.50 84.1 4 7 8 19 175.5 31 179.7

22MS (Finer granularity) 6.32 4.9 0 8.00 4.48 100.0 22 2 14 7 77 10 111.1

Monolith (Greater granularity) 0 0 0 0 0 70.82 1 22 0 73 47.5 115 22.0

Automatically MB obtained more candidate microservices

(seven and six microservices) than DDD (four microservices)

and Execution traces (four microservices), the user did some

join operations of microservices and got five microservices,

this solution was close to DDD and Execution traces.

The decompositions proposed by our model had semantic

similarity coherence (greater than 85%) and maybe a good

candidate solution to the problem. The comparative analysis

of the metrics is detailed in table VII.

The decomposition which had more coupling was 22MS

(the finer granularity), if we followed the single responsibility

principle, then we may associate one user story with only one

microservice, thus this may increase the coupling of global

application; therefore the single responsibility principle my be

“group things that referred to the same things”, so the semantic

similarity is fundamental for grouping similar things. Our

model grouped the user stories the referred to the same entity

keeping low coupling and high cohesion.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

MB obtained the lowest coupling (1.41) for this application

than DDD and “Execution Traces” (3.46); similar lack of

cohesion (1.79) than DDD and “Execution Traces” (1.5), the

lowest WsicT (5), and the smaller complexity (102.5)

compared to DDD (200), and “Execution Traces” (175.5); MB

presented a smaller number of calls (3 calls) among

microservices than DDD (9 calls) and “Execution Traces” (8

calls); the estimated development time of the solution

proposed by our model (32 hours) was lower than DDD (36

hours) and close to “Execution Traces” (31 hours), as well as

the maximum number of user story points associated with a

microservice (MB 21 points, DDD 22 points, and “Execution

Traces” 19 points).

Changing a user story or operation from one microservice

to another can have consequences on performance,

complexity, and coupling; therefore it is an important point to

consider when designing microservice-based applications and

should be done based on metrics such as those proposed in this

paper, where the impact of those changes and different

distributions of user stories or operations on microservices can

be graphically analyzed, all at design time.

Figure 13 shows the comparative analysis of the metrics and

figure 14 shows the complexity of the obtained

decompositions of JPet Store. The first two bars correspond to

DDD and “Execution traces”, the others correspond to MB.

FIGURE 13. Comparative analysis of evaluation metrics of Jpet Store.

MS: Number of microservices, CPT: Coupling of MSBA, COHT: Lack of
cohesion grade of MSBA, WSICT: Maximum WSIC of MSBA, WSIC is
the number of user stories of the MS. CALLS: number of calls between
microservices. SS: Semantic similarity.

FIGURE 14. Comparative analysis of cognitive complexity points of
Jpet Store application. Where SS: Semantic similarity.

Figure 15 shows the comparative analysis of the granularity

metric Gm. We observed that the solutions proposed by the

genetic algorithm obtained lower Gm (104.7) than DDD

(203.7), and "Execution Traces" (179.7).

The genetic algorithm of the MB obtained greater semantic

similarity (89.4%) than DDD (85.3%) and “Execution Traces”

(84.1%); additionally, MB obtained a high semantic similarity

value, being greater than 85% for all cases; then the MB

obtained coherent decompositions from the semantic point of

view, indicating a high semantic cohesion.

FIGURE 15. Comparative analysis of the granularity metric of Jpet-
Store application.

The comparative analysis of Jpet-Store application is

presented in figure 16, we compared the solution with lower

Gm against DDD; where T is the estimated development time.

FIGURE 16. Comparative analysis of Jpet-Store application.

The genetic algorithm obtained lower coupling, higher

cohesion, lower complexity, high semantic cohesion, fewer

calls between microservices, and lower Gm compared to

DDD.

MB obtained decomposition for the hypothetical projects

Cargo Tracking and Jpet-Store with less coupling, less

complexity, less communication between microservices (less

“calls”), greater cohesion, lower Gm value, and shorter

development time compared to DDD. This is a promising and

important result because DDD is one of the most widely used

methods for defining the granularity of microservices.

The results of our model were similar in JPet-Store and

Cargo Tracking applications, MB obtained low coupling, low

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

or similar lack of cohesion, high semantic cohesion, small

calls, and low complexity than the state-of-the-art approaches.

C. FORISTOM CONFERENCES APPLICATION

Foristom conferences is a web application that allows the

management of information and organization of virtual

conferences of the Foristom Foundation2. Foristom

conferences allow us to manage everything from the creation

and dissemination of the conference to the publication and

presentation of the articles submitted. The Foristom

Foundation is a non-profit organization. From the description

and definition of the case study, the following user stories

were identified, which will be implemented following the

microservices architecture. The product backlog of Foristom

Conferences is detailed in table IX.

In this case, the dependencies were defined according to the

business logic of the application and the data flow between the

different user stories. See Table X.

The aim was to compare the design proposed by the

architect using DDD against the design obtained with MB.

When using DDD, following the approaches proposed by

Evan [46],[59], then the entities, valuable objects, delimited

contexts must be identified to propose the microservices that

are going to be part of the application.

Figure 17 shows the decompositions for Foristom

Conferences.

FIGURE 17. Microservice Backlog model compared with DDD for Foristom Conferences application.

2 www.foristom.org

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 3

TABLE VIII

COMPARATIVE ANALYSIS OF DECOMPOSITIONS FOR FORISTOM CONFERENCES APPLICATION

Method / Metrics Coupling Cohesion Granularity Perform. Complexity T Gm

AisT AdsT SiyT CpT CohT SsT(%) N WsicT Calls Max. Points CxT

Genetic algorithm

CpT, CxT, WsicT, SsT

4.24 2.45 0 4.9 3.33 84.6 13 4 6 29 127 59 137.1

Genetic algorithm and Joins

CpT, CxT, WsicT, SsT

0 0 0 0 1.50 74.4 4 8 0 67 49.5 134 56.3

Genetic algorithm

CpT, CohT, SsT

1.73 1.73 0 2.45 2.67 79.5 9 6 4 52 167 108 170.2

Genetic algorithm and Joins

CpT, CohT, SsT

0 0 0 0 1.79 75.3 5 8 0 67 53.5 134 59.5

DDD 2.24 2.24 0 3.16 1.50 75.7 4 9 6 83 426 167 428.0

29MS (Finer granularity) 7.14 5.92 0 9.27 5.20 100.0 29 1 21 13 192 27 213.2

Monolith (Greater granularity) 0 0 0 0 0 72.0 1 29 0 235 132 469 138.0

TABLE IX

PRODUCT BACKLOG FOR FORISTOM CONFERENCES APPLICATION

Id. Name Points Dev. Time
(Hours)

hu1 Create conference. 13 27

hu2 Get conference by id. 2 3
hu3 Edit conference 5 9

hu4 Delete conference 5 9

hu5 Upload conference’s support files 8 16
hu6 Get conference’s support files 2 3

hu7 Generate conference landing page. 8 16

hu8 Generate call for papers. 13 27
hu9 Apply filters and specialized search

on conferences.

8 16

hu10 Generate conference history. 8 16
hu11 Register on the conferences

system.

8 16

hu12 Log in the conferences system. 8 16
hu13 List submitted papers by state. 2 3

hu14 Submit a paper to the conference. 13 27

hu15 Register the paper evaluation. 8 16
hu16 Generate paper evaluation board. 5 9

hu17 Register for a conference as an

attendee or author

13 27

hu18 Activate user (attendee or author)

registration

8 16

hu19 Get the list of registrations by state. 2 3
hu20 Pay the conference registration fee

online.

13 27

hu21 Get the conferences that are taking

place "On-line"

13 27

hu22 Generate the home page of the

conference.

13 27

hu23 List conference program 5 9

hu24 Create conference program,

keynotes, and sessions.

13 27

hu25 Enter to the meeting room as a

speaker or assistant.

8 16

hu26 Upload files of the presentation or

session (video, photo, presentation)

5 9

hu27 Generate abstract book. 13 27
hu28 Download certificate of attendees

and speakers.

8 16

hu29 Register the presentation of a
paper.

5 9

Total 235 469

For the identified microservices, complexity, coupling,

granularity metrics were calculated, and development time

was estimated. In this way, the architect can graphically

observe several solutions or decompositions, compare them,

evaluate them, and select the one he wants to implement. The

comparative metric analysis of the proposed solutions to

Foristom Conferences application is presented in Table VIII.

The results were like Cargo Tracking and JPet-Store

applications results.

TABLE X
USER STORIES DEPENDENCIES FOR FORISTOM CONFERENCES APPLICATION

Id. Dependences Id. Dependences

hu1 {} hu16 {hu13, hu15}

hu2 {} hu17 {hu20}
hu3 {hu2} hu18 {hu19}

hu4 {hu2} hu19 {}

hu5 {hu2, hu6} hu20 {}

hu6 {} hu21 {hu9}

hu7 {hu2} hu22 {hu23, hu13, hu28}

hu8 {hu9} hu23 {}
hu9 {} hu24 {hu13}

hu10 {hu9} hu25 {hu26, hu29}

hu11 {} hu26 {}
hu12 {hu11, hu8} hu27 {hu13}

hu13 {} hu28 {}

hu14 {} hu29 {}
hu15 {}

We tested different objective functions of the genetic

algorithm. The best results were with CpT, CxT, WsicT, and

SsT metrics, which obtained 13 microservices, the user did a

few simple joins operations, so he could reduce de

decomposition to 4 microservices (equal to DDD); another

good solution was with CpT, CohT, SsT metrics in the

objective function, which automatically obtained 9

microservices, next the user could reduce to 5 microservices.

The greater coupling was 29MS decomposition (the finer

granularity with 9.27), the coupling of de decomposition

obtained by MB was zero, this means that the microservices

had not dependences and they were independent, whereas the

coupling of DDD was 3.16. Our model has less WsicT (4 user

stories, DDD had 9), lower cognitive complexity (49.5, DDD

had 426), fewer estimated development time (59 hours), and

user story points (29 points) than DDD (167 hours and 83

points).

These results can be seen graphically in figure 18 and figure

19.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 9

FIGURE 18. Comparative analysis of evaluation metrics of Foristom
Conferences application. MS: Number of microservices (N), CPT:
Coupling of MSBA, COHT: Lack of cohesion grade of MSBA, WSICT:
Maximum WSIC of MSBA, WSIC is the number of user stories of the
microservice. CALLS: number of calls between microservices. SST:
Semantic similarity.

The cognitive complexity of MB (49.5) was considerably

less than the complexity of the decomposition proposed by

DDD (426). The same result was repeated as in the previous

cases, so we concluded that our model obtains solutions of less

complexity, thus being easier to implement and maintain.

FIGURE 19. Comparative analysis of cognitive complexity points of
Foristom Conferences application.

The decompositions proposed by our model were

semantically and functionally coherent (greater than 74%); we

were able to obtain completely independent microservices,

this being an important feature to implement, maintain and

deploy a microservice-based application.

If the proposed solutions present a high semantic similarity

(greater than 70%), then they suggest that microservices group

the stories that refer to the same entity, therefore, their

cohesion is high. All obtained solutions present high semantic

similarity.

We observed that it is not enough to have only high

semantic similarity to consider a good distribution of user

stories in microservices, other factors such as coupling,

dependencies, and communication among the application

microservices must be analyzed.

Figure 20 details the results of the granularity metric Gm for

the decompositions obtained by MB compare to DDD.

FIGURE 20. Comparative analysis of granularity metric for Foristom
Conferences application.

The results of Gm were considerably lower for the genetic

algorithm with 56.3, whereas DDD was 428. Figure 21 shows

the comparative analysis for the best solutions (those with the

lowest Gm) proposed by the genetic algorithm compared to

DDD.

FIGURE 21. Comparative analysis of Foristom Conferences application.

The join and disjoint operations were essential to obtain

better results than DDD, automatically in some cases similar

or better results are obtained than DDD, but we should always

check that the user stories were associated in the right place,

for example, the semantic similarity algorithm assumes that

the presentation session is semantically very similar to the

user's session, being two different things, for this reason, the

user's intervention is very important to analyze and evaluate

what is obtained automatically, in order to propose

improvements and get better results.

In this case study, we demonstrated that the MB obtained

decompositions from user stories to microservices with low

coupling, high cohesion (from the semantic point of view),

low complexity, low communication between microservices,

and shorter estimated development time; therefore, MB is a

viable option for the design and evaluation of the granularity

of microservices-based applications.

In summary, the analysis of the results obtained in this

research work is presented in Table XI, comparing the results

obtained with each method in all projects.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 9

We analyzed the results, the solution proposed by MB

presented low coupling, high cohesion, low complexity, less

communication, and fewer dependencies compared to the

solution proposed by state-of-the-art methods and DDD;

additionally, the proposed solutions were coherent from the

semantic point of view (high semantic similarity, SsT greater

than 70% in all cases); therefore, the proposed model MB

improves the decomposition and identification of

microservices.

TABLE XI

SUMMARY OF MICROSERVICES BACKLOG RESULTS

Case study Method Metrics

N GM CpT CohT SsT WsicT CxT T Calls

Cargo-Tracking MB - Genetic algorithm 3 85.79 3.16 1.16 70.92 6 74.0 35 3

 DDD 4 156.64 5.29 1.60 74.09 6 145.0 44 9
 Service Cutter 3 206.79 3.16 1.15 74.42 10 202.5 61 8

 MITIA 4 203.14 6.78 1.06 76.77 5 190.0 30 12

Jpet-Store MB - Genetic algorithm 5 104.75 1.41 1.79 86.50 9 102.5 54 3

 DDD 4 203.70 3.46 1.50 85.30 8 200.0 36 9
 Execution Traces 4 179.70 3.46 1.50 84.06 7 175.5 31 8

Foristom Conferences MB - Genetic algorithm 4 56.32 0.00 1.50 74.40 8 49.5 134 0

 DDD 4 428.00 3.16 1.50 75.69 9 426.0 167 6

We analyzed the results, the solution proposed by MB

presented low coupling, high cohesion, low complexity, less

communication, and fewer dependencies compared to the

solution proposed by state-of-the-art methods and DDD;

additionally, the proposed solutions were coherent from the

semantic point of view (high semantic similarity, SsT greater

than 70% in all cases); therefore, the proposed model MB

improves the decomposition and identification of

microservices.

VI. LIMITATIONS

To determine the user stories of the state-of-the-art case

studies, we used the information reported in the published

papers, we studied their business logic, and we made our best

effort not to bias this definition. The definition and description

of the user stories were reviewed by each of the authors

independently and contradictions were resolved by common

agreement among the authors. We selected those state-of-the-

art case studies because they were the most used in the related

works.

Few datasets of microservices projects with user stories

were identified, we found that Rahman et al. [60] shared a

dataset composed of 20 open-source projects using specific

microservice architecture patterns, and Marquez and Astudillo

[61] shared a dataset of open-source microservice-based

projects when investigating actual use of architectural

patterns; those projects did not specify the user stories.

The definition of the dependencies among user stories is a

critical point of our model. They were defined from the

information contained in the user story, from the business

logic of the application, from the source code, from the data

flow, and the dependencies in the data model. For larger

applications that have many user stories, it can be a complex

task to determine these dependencies.

The problem of assigning user stories to microservices has

an NP-hard complexity, when the number of user stories

increases the runtime of the genetic algorithm increases

considerably. The average time of execution in the tests

carried out did not exceed 10 minutes, using a core-i7

computer, with 16 gigabytes of Ram (a population of 1000

individuals, convergence 10%, the maximum number of

iterations 400 with 500 children and 500 mutations in each

iteration).

The genetic algorithm is not deterministic, in each

execution it can give different results, to reduce this problem,

we executed the algorithm several times, we selected for each

case the best solution, and we verified that it was repeated

most of the times.

An algorithm was implemented that calculates the

evaluation metrics; the same algorithm was used for

calculating the metrics of all the decompositions used for

comparison.

The “Lack of cohesion” metric is calculated from the

interdependence of the microservices, it depends on the

number of microservices. We concluded that MB proposes

high cohesion solutions because their semantic similarity is

high, so the microservices refer to the same topic, subject, or

entity; semantic cohesion was proposed by other authors [27],

[62].

VII. CONCLUSIONS AND FUTURE WORK

Microservices Backlog model (MB) allows architects,

designers, or developers to reasoning about microservice

granularity at design time, they can analyze metrics, diagrams,

and dependencies of the microservices; they can notice critical

points, estimated development time of the application; they

can test different solutions or decomposition, analyze them,

and select the better to be implemented.

The development team can evaluate different ways of

distributing the user stories in microservices and take

decisions based on metrics, graphs, and comparative analysis

at design time. Therefore, using the MB model is possible to

reason about the granularity of microservices at design time,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 9

thus filling one of the research gaps proposed in the literature

review.

The distribution of user stories in microservices affects

coupling, cohesion, complexity, impacting the performance,

modularity, and maintainability of the microservice-based

application. Associating a user story to a single microservice

(finer granularity), following the simple responsibility

principle, implies more coupling to the application, equally

having a monolithic application is not the best option in terms

of maintainability, scalability, testing, and deployment of the

application. The optimal solution is somewhere in between

these two and depends on the functional requirements and

characteristics of the application, the development team and

the non-functional requirements to be addressed.

When comparing MB with the related works, none of the

identified works used user stories as input data, none used data

from agile practices or agile software development. MB model

obtained low coupling, low or similar lack of cohesion, small

calls, and low complexity than the state-of-the-art approaches;

therefore, using our model, the software architect or

development team can obtain microservices-based

applications with low coupling, low complexity, and fewer

calls between microservices.

Unlike other proposed works, one of the identified works

used performance, functionality, maintainability, and

modularity at the same time to evaluate the granularity of the

microservices as MB. Only one paper used quality attributes

as runtime characteristics (i.e. scalability, performance) and at

the same time software as an artifact characteristic (i.e.

modularity, maintainability). No papers addressed

functionality, performance, modularity, and maintainability at

the same time.

MB covers both aspects of runtime characteristics and

software as artifact characteristics and MB uses coupling,

cohesion, and complexity metrics to evaluate the candidate

microservices of the application. Therefore, this research work

fills proposed research gaps in the state of the art and

represents a novel proposal to the development of

microservice-based applications.

Moreover, according to limitations we propose the future

work as follow: we will build a dataset of the reported

microservices projects, identifying user stories and

dependencies for a deeper validation, we will propose an

automatic method of determining dependencies among user

stories; we will implement the genetic algorithm using parallel

programming to improve the runtime; we will review and

propose another cohesion metric, include it in the model and

evaluate the results; and we will generate source code or

templates for the selected solution, as well as estimate

computational resources, and deployment options for the

microservices-based application.

REFERENCES
[1] K. Beck and M. Fowler, Planning Extreme Programming.

Addison Wesley, 2001.

[2] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J.

Still, “The impact of agile practices on communication in

software development,” Empir. Softw. Eng., vol. 13, no. 3, pp.

303–337, Jun. 2008, doi: 10.1007/s10664-008-9065-9.
[3] Versionone Enterprise, I. Digital.ai Software, and I. CollabNet,

“14th annual state of agile report,” 2019. [Online]. Available:

www.stateofagile.com.
[4] T. Sedano, P. Ralph, and C. Peraire, “The Product Backlog,” in

Proceedings - International Conference on Software

Engineering, May 2019, vol. 2019-May, pp. 200–211, doi:
10.1109/ICSE.2019.00036.

[5] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices

Architecture Enables DevOps: Migration to a Cloud-Native
Architecture,” IEEE Softw., vol. 33, no. 3, pp. 42–52, 2016, doi:

10.1109/MS.2016.64.

[6] O. Zimmermann, “Microservices tenets: Agile approach to
service development and deployment,” Comput. Sci. - Res. Dev.,

vol. 32, no. 3–4, pp. 301–310, 2017, doi: 10.1007/s00450-016-

0337-0.
[7] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov,

“Microservices: The Journey So Far and Challenges Ahead,”

IEEE Softw., vol. 35, no. 3, pp. 24–35, May 2018, doi:
10.1109/MS.2018.2141039.

[8] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice

Transition and its Granularity Problem: A Systematic Mapping
Study,” Softw. Pract. Exp., no. February, pp. 1–31, 2020, doi:

10.1002/spe.2869.
[9] N. Kulkarni and V. Dwivedi, “The role of service granularity in

a successful soa realization - A case study,” in Proceedings -

2008 IEEE Congress on Services, SERVICES 2008, 2008, vol.
PART 1, pp. 423–430, doi: 10.1109/SERVICES-1.2008.86.

[10] A. Homay, M. de Sousa, A. Zoitl, and M. Wollschlaeger,

“Service Granularity in Industrial Automation and Control

Systems,” in 2020 25th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA), Sep.

2020, pp. 132–139, doi: 10.1109/ETFA46521.2020.9212048.
[11] F. H. Vera-Rivera, H. Astudillo, and C. M. Gaona-Cuevas,

“Defining and measuring microservice granularity – a literature

overview,” PeerJ Comput. Sci., vol. In review.
[12] F. H. Vera-Rivera, E. G. Puerto-Cuadros, H. Astudillo, and C.

M. Gaona-Cuevas, “Microservices Backlog - A Model of

Granularity Specification and Microservice Identification,” in
International conference on service computing SCC 2020.

Lecture Notes in Computer Science, Jun. 2020, vol. 12409

LNCS, pp. 85–102, doi: 10.1007/978-3-030-59592-0_6.
[13] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann,

“Service Cutter: A Systematic Approach to Service

Decomposition,” in IFIP International Federation for
Information Processing 2016, 2016, pp. 185–200, doi:

10.1007/978-3-319-44482-6_12.

[14] C. Richardson and microservices.io, “Microservice Architecture
pattern.” https://microservices.io/patterns/microservices.html

(accessed Dec. 12, 2019).

[15] O. Zimmermann, M. Stocker, U. Zdun, D. Lübke, and C.
Pautasso, “Microservice API Patterns,” 2019.

https://www.microservice-api-patterns.org/introduction

(accessed Dec. 17, 2019).
[16] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D.

Kroger, “Microservice Decomposition via Static and Dynamic

Analysis of the Monolith,” Proc. - 2020 IEEE Int. Conf. Softw.
Archit. Companion, ICSA-C 2020, pp. 9–16, 2020, doi:

10.1109/ICSA-C50368.2020.00011.

[17] O. Al-Debagy and P. Martinek, “Extracting Microservices’
Candidates from Monolithic Applications: Interface Analysis

and Evaluation Metrics Approach,” in 2020 IEEE 15th

International Conference of System of Systems Engineering
(SoSE), Jun. 2020, pp. 289–294, doi:

10.1109/SoSE50414.2020.9130466.

[18] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng,
“Service Candidate Identification from Monolithic Systems

based on Execution Traces,” IEEE Trans. Softw. Eng., vol. X,

no. X, pp. 1–1, 2019, doi: 10.1109/TSE.2019.2910531.
[19] M. Abdullah, W. Iqbal, and A. Erradi, “Unsupervised learning

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 9

approach for web application auto-decomposition into

microservices,” J. Syst. Softw., vol. 151, pp. 243–257, 2019, doi:

10.1016/j.jss.2019.02.031.
[20] S. Li et al., “A dataflow-driven approach to identifying

microservices from monolithic applications,” J. Syst. Softw., vol.

157, 2019, doi: 10.1016/j.jss.2019.07.008.
[21] D. Taibi and K. Syst, “From Monolithic Systems to

Microservices: A Decomposition Framework based on Process

Mining,” Int. Conf. Cloud Comput. Serv. Sci. - CLOSER 2019,
no. March, 2019.

[22] N. Santos et al., “A logical architecture design method for

microservices architectures,” in ACM International Conference
Proceeding Series, Sep. 2019, vol. 2, pp. 145–151, doi:

10.1145/3344948.3344991.

[23] O. Al-Debagy and P. Martinek, “A new decomposition method
for designing microservices,” Period. Polytech. Electr. Eng.

Comput. Sci., vol. 63, no. 4, pp. 274–281, 2019, doi:

10.3311/PPee.13925.
[24] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy,

“Business object centric microservices patterns,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),

2019, vol. 11877 LNCS, pp. 476–495, doi: 10.1007/978-3-030-

33246-4_30.
[25] L. Nunes, N. Santos, and A. Rito Silva, “From a Monolith to a

Microservices Architecture: An Approach Based on
Transactional Contexts,” in 13th European Conference, ECSA

2019. Lectures Notes in Computer Science 11681, 2019, pp. 37–

52, doi: 10.1007/978-3-030-29983-5_3.
[26] A. Homay, A. Zoitl, M. De Sousa, M. Wollschlaeger, and C.

Chrysoulas, “Granularity cost analysis for function block as a

service,” IEEE Int. Conf. Ind. Informatics, vol. 2019-July, pp.

1199–1204, 2019, doi: 10.1109/INDIN41052.2019.8972205.

[27] M. Cojocaru, A. Uta, and A. M. Oprescu, “MicroValid: A

validation framework for automatically decomposed
microservices,” in Proceedings of the International Conference

on Cloud Computing Technology and Science, CloudCom, Dec.

2019, vol. 2019-Decem, pp. 78–86, doi:
10.1109/CloudCom.2019.00023.

[28] A. Christoforou, L. Odysseos, and A. Andreou, “Migration of

Software Components to Microservices: Matching and
Synthesis,” in Proceedings of the 14th International Conference

on Evaluation of Novel Approaches to Software Engineering,

2019, pp. 134–146, doi: 10.5220/0007732101340146.
[29] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, “Towards

Automated Microservices Extraction Using Muti-objective

Evolutionary Search,” in 17th International Conference Service-
Oriented Computing. Lectures Notes in computer science 11895,

Oct. 2019, pp. 58–63, doi: 10.1007/978-3-030-33702-5_5.

[30] M. I. Josélyne, D. Tuheirwe-Mukasa, B. Kanagwa, and J.
Balikuddembe, “Partitioning microservices - A Domain

Engineering Approach,” in Proceedings of the 2018

International Conference on Software Engineering in Africa -
SEiA ’18, 2018, pp. 43–49, doi: 10.1145/3195528.3195535.

[31] H. Vural, M. Koyuncu, and S. Misra, “A Case Study on

Measuring the Size of Microservices,” in International
Conference on Computational Science and Its Applications -

ICCSA 2018, 2018, pp. 454–463, doi: 10.1007/b98054.

[32] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying
Microservices Using Functional Decomposition,” in

International Symposium on Dependable Software Engineering:

Theories, Tools, and Applications, 2018, vol. 10998, pp. 50–65,
doi: 10.1007/978-3-319-99933-3.

[33] A. A. C. De Alwis, A. Barros, A. Polyvyanyy, and C. Fidge,

“Function-Splitting Heuristics for Discovery of Microservices in
Enterprise Systems,” 2018, pp. 37–53.

[34] M. Tusjunt and W. Vatanawood, “Refactoring Orchestrated Web

Services into Microservices Using Decomposition Pattern,” in
2018 IEEE 4th International Conference on Computer and

Communications (ICCC), Dec. 2018, pp. 609–613, doi:

10.1109/CompComm.2018.8781036.
[35] Z. Ren et al., “Migrating web applications from monolithic

structure to microservices architecture,” in ACM International

Conference Proceeding Series, Sep. 2018, pp. 1–10, doi:

10.1145/3275219.3275230.
[36] W. Hasselbring and G. Steinacker, “Microservice architectures

for scalability, agility and reliability in e-commerce,” in

Proceedings - 2017 IEEE International Conference on Software
Architecture Workshops, ICSAW 2017: Side Track Proceedings,

2017, pp. 243–246, doi: 10.1109/ICSAW.2017.11.

[37] J. P. Gouigoux and D. Tamzalit, “From monolith to
microservices: Lessons learned on an industrial migration to a

web oriented architecture,” in Proceedings - 2017 IEEE

International Conference on Software Architecture Workshops,
ICSAW 2017: Side Track Proceedings, 2017, pp. 62–65, doi:

10.1109/ICSAW.2017.35.

[38] D. Shadija, M. Rezai, and R. Hill, “Microservices: Granularity
vs. Performance,” in UCC ’17 Companion Companion

Proceedings of the10th International Conference on Utility and

Cloud Computing, 2017, pp. 215–220, doi:
10.1145/3147234.3148093.

[39] S. Hassan, N. Ali, and R. Bahsoon, “Microservice Ambients: An

Architectural Meta-Modelling Approach for Microservice
Granularity,” in Proceedings - 2017 IEEE International

Conference on Software Architecture, ICSA 2017, Apr. 2017, pp.

1–10, doi: 10.1109/ICSA.2017.32.
[40] L. Baresi, M. Garriga, and A. De Renzis, Microservices

Identification through Interface Analysis, vol. 10465, no.
November. Cham: Springer International Publishing, 2017.

[41] G. Mazlami, J. Cito, and P. Leitner, “Extraction of

Microservices from Monolithic Software Architectures,” in 2017
IEEE International Conference on Web Services (ICWS), Jun.

2017, pp. 524–531, doi: 10.1109/ICWS.2017.61.

[42] G. Kecskemeti, A. Kertesz, and A. C. Marosi, “Towards a

methodology to form microservices from monolithic ones,” in

Euro-Par 2016 Workshops - Lecture Notes in Computer Science,

2017, vol. 10104 LNCS, pp. 284–295, doi: 10.1007/978-3-319-
58943-5_23.

[43] S. Hassan and R. Bahsoon, “Microservices and their design

trade-offs: A self-adaptive roadmap,” Proc. - 2016 IEEE Int.
Conf. Serv. Comput. SCC 2016, pp. 813–818, 2016, doi:

10.1109/SCC.2016.113.

[44] M. Ahmadvand and A. Ibrahim, “Requirements Reconciliation
for Scalable and Secure Microservice (De)composition,” in 2016

IEEE 24th International Requirements Engineering Conference

Workshops (REW), Sep. 2016, pp. 68–73, doi:
10.1109/REW.2016.026.

[45] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science

in information systems research,” MIS Q., vol. 28, no. 1, pp. 75–
105, 2004, Accessed: May 16, 2018. [Online]. Available:

https://pdfs.semanticscholar.org/fa72/91f2073cb6fdbdd7c2213bf

6d776d0ab411c.pdf.
[46] E. Evans, Domain-Driven Design Reference - Definitions and

Pattern Summaries. 2015.

[47] L. Baresi, M. Garriga, and A. De Renzis, “Microservices
identification through interface analysis,” in European

Conference on Service-Oriented and Cloud Computing - Lecture

Notes in Computer Science., Sep. 2017, vol. 10465 LNCS, pp.
19–33, doi: 10.1007/978-3-319-67262-5_2.

[48] J. Bogner, S. Wagner, and A. Zimmermann, “Towards a

practical maintainability quality model for service-and
microservice-based systems,” in Proceedings of the 11th

European Conference on Software Architecture Companion

Proceedings - ECSA ’17, 2017, vol. 3, pp. 195–198, doi:
10.1145/3129790.3129816.

[49] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using

cohesion and coupling for software remodularization: Is it
enough?,” ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3,

May 2016, doi: 10.1145/2928268.

[50] D. Rud, A. Schmietendorf, and R. R. Dumke, “Product Metrics
for Service-Oriented Infrastructures,” in Conference: Applied

Software Measurement. Proceedings of the International

Workshop on Software Metrics and DASMA Software Metrik
Kongress (IWSM/MetriKon 2006), 2006, Accessed: Jun. 18,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106342, IEEE Access

VOLUME XX, 2017 9

2019. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.6

887&rep=rep1&type=pdf.
[51] Spacy.io, “Word Vectors and Semantic Similarity · spaCy Usage

Documentation.” https://spacy.io/usage/vectors-similarity#basics

(accessed Nov. 20, 2020).
[52] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A Metrics

Suite for Evaluating Flexibility and Complexity in Service

Oriented Architectures,” Springer, Berlin, Heidelberg, 2009, pp.
41–52.

[53] M. Cohn, User Stories applied for agile software development.

Addison Wesley. Pearson Education Inc., 2004.
[54] M. Cohn, Agile Estimating and Planning. New York, NY, USA,

2005.

[55] K. Beck, Extreme Programming Explained: Embrace Change.
Addison Wesley, 2000.

[56] J. Holland, Adaptation in natural and artificial systems.

Michigan: University of Michigan Press, 1975.
[57] F. Herrera, M. Lozano, and J. L. Verdegay, Algoritmos

Genéticos: Fundamentos, Extensiones y Aplicaciones. ProQuest,

1995.
[58] mybatis.org, “Mybatis Jpetstore-6: A web application built on

top of MyBatis 3, Spring 3 and Stripes.”

https://github.com/mybatis/jpetstore-6 (accessed Nov. 22, 2020).
[59] E. Evans, Domain-Driven Design. Addison Wesley, 2004.

[60] M. I. Rahman, S. Panichella, and D. Taibi, “A Curated Dataset
of Microservices-Based Systems,” in Joint Proceedings of the

Inforte Summer School on Software Maintenance and Evolution

(CEUR Workshop Proceedings; Vol. 2520). CEUR-WS., 2019,
vol. 2520, Accessed: Feb. 14, 2020. [Online]. Available:

http://research.tuni.fi/clowee.

[61] G. Marquez and H. Astudillo, “Actual Use of Architectural

Patterns in Microservices-Based Open Source Projects,” in

Proceedings - Asia-Pacific Software Engineering Conference,

APSEC, Jul. 2018, vol. 2018-December, pp. 31–40, doi:
10.1109/APSEC.2018.00017.

[62] M. Perepletchikov, C. Ryan, and K. Frampton, “Cohesion

Metrics for Predicting Maintainability of Service-Oriented
Software,” in Seventh International Conference on Quality

Software (QSIC 2007), 2007, pp. 328–335, doi:

10.1109/QSIC.2007.4385516.

