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Abstract: Web service composition requires high levels of integration and reliability of the services
involved in its operation, which must meet specific quality criteria to ensure their proper execution
and deployment. The discovery and selection of web services currently face optimization problems.
Many services might satisfy a requirement with similar quality criteria. Because of this, software
developers have to choose the most appropriate services for a given composition, complicated
by the rapid increase in providers and services available in the cloud. Service composition also
implies coupling according to a composition flow and non-functional requirement criteria. Such re-
quirements make selection and composition a complex task not previously solved in the literature.
This paper presents Ar_WSDS, a computational approach for web services discovery and selection
in cloud environments, which bases its implementation on the brain’s pattern recognition systematic
functioning. This process allows classifying web services through recognition modules created
dynamically based on their quality parameters, resulting in a set of web services suitable for a web
service composition. This approach allows a solution to the selection problem using less complex
tasks. This paper introduces an architectural and procedural definition that provides the web ser-
vice description with a pattern to recognize and select services using different recognition levels.
We simulated our approach and evaluated it using a dataset from the QWS project that offers a set of
quality criteria collected from different providers. The web services are recognized and classified
using different quality criteria for the composition and each of their services. The results demonstrate
the effectiveness of the discovery and selection process compared to other approaches. Furthermore,
Ar_WSDS allows us to recognize and filter out web services with ambiguity and similarity in their
provider information, a process that minimizes the discovery space for services.

Keywords: web service composition; cloud computing; pattern recognition

1. Introduction

Web service composition (WSC) is defined as a logical combination of web services
(WSs), which provides a level of collaboration and data exchange between them in a syn-
chronized manner in order to satisfy a functional requirement (FR). The service constitutes
a component that exposes its functionalities through interfaces under the specific language
of the definition [1]. In combination with other services, these functionalities are those
that satisfy specific requirements. The composition task depends on placing logically
arranged services and involves aspects defined in its non-functional requirements (NFRs),
which constitute quality of service (QoS) criteria to select WSs [2]. The FRs establish which
services will be in the WSC, and the NRFs establish which QoS criteria those services will
have to satisfy. FRs provide the identifiers and interfaces of the services and how they
will exchange messages. Usually, WS deployment is performed under cloud providers,
such that attention should be paid to the resources consumed by each of the distributed
providers. Consequently, user interaction and resource consumption are essential factors
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to consider during composition. The exponential growth in services with different QoS
levels over providers [3] with the same functionality poses challenges in selecting a WS,
as there may be services with the same functionalities in different providers, but with
different QoS values [4].

The advantages of cloud environments can create inherent problems generated by
vendors whose deployment of WSs on different nodes [5] can generate a variety of QoS cri-
teria. Thus, non-functional requirements must be analyzed with caution, such as the ability
to establish agreements for the provisioning and acquisition of computational resources
(static or dynamic negotiations), if the composition requires it [6].

Each service exchanges messages with its peers through connectors of an atomic
service (a simple WS). In turn, a complex or composite service (joining several WSs) is
developed, which interacts through some functional logic. Its scalability and growth levels
mainly depend on the flexibility of the selected services, such that, if a service is indepen-
dent of constant QoS criteria, these can be used later by another composite service [6].
The web service selection problem has been described in [7], where the emphasis was
placed on the exponential growth of services with different QoS for the same functionality,
leading to combinatorial computational costs for the search and selection processes.

Our research constructed a computational strategy to discover and select WSs within
the pattern-recognition domain. The strategy builds from modeling services and their
characteristics as code units to be recognized by a pattern system, dynamically created
by the service composition model. Pattern recognition offers methods and algorithms
for the classification of objects based on the analysis of their attributes. Our classification
approach models the system using the concept of learning—this refers to algorithms
capable of solving the unknowns in the patterns. This solution allows for eliminating
the noise in the information, increasing the reliability of its treatment.

Learning can occur in different ways, as has been reported in the literature. Within these
approaches, Ar2p [8] uses supervised learning through a strategy that offers an overview of
pattern modeling based on the systematic functioning of the brain. Our proposed method
uses a different approach than Ar2p, at the level of the recognition strategy: the original
Ar2p recognizes entities using an interval model to classify the pattern previously loaded
in the system. On the other side, our approach dynamically analyzes the classification
pattern and decomposes it for later analysis by the different recognizer modules, dynam-
ically created given the user’s requirements. Its process consists of decomposing each
QoS parameter to be analyzed by dynamic recognition modules until the desired WS is
achieved for the composition required by a user. Such processing analyzes the characteris-
tics of the entities (patterns) to be assigned to a category type. The main contributions of
this paper are as follows:

First, we establish a theoretical framework for the implemented strategy, which em-
phasizes pattern recognition through the specification of a supervised learning classifier.
It uses a variable selection segmentation process based on the analysis of QoS parameters.
The WS classifier creates a mechanism for the hierarchization or WS ranking. The mecha-
nism calculates the service score according to the QoS parameters registered by the user
for each service and the composite service. Thus, this ranking mechanism offers a range
of quality solutions, where the user chooses the most appropriate services according to
the quality they wish to obtain through their composition. Second, we develop a formal
specification of web services at the atomic and composition levels, representing information
entities representing the patterns and signals to be recognized. In this process, a simple
approach is offered to decompose the problem of combinatorial nature into a search and
selection strategy of services based on dynamic recognition modules. The latter feature
is provided when the system can create modules from the requirements of a user. Finally,
a computational strategy based on a component architecture is defined. The strategy
independently and dynamically develops analysis modules for each non-functional re-
quirement of the composition. A mechanism for the categorization of WSs using QoS levels
is finally established. Our method bases its computational strategy on selecting the services
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required for a composition, thus establishing different solution pathways (SPs) or sets of
services involved in the composition. They are categorized with different metrics, offering
the system a more comprehensive range of searching and selecting.

The organization of the remainder of this paper is as follows:

• Section 2 discusses research on the selection of web services related to the recogni-
tion approach.

• Section 3 outlines the formalization of the process of composition, web services, and
QoS parameters, represented through signals and patterns by Ar_WSDS.

• The Ar_WSDS method is presented in Sections 4 and 5, specifying the recogni-
tion module concept and strategies, the system model, and the proposal of the
algorithm solution.

• In Sections 6 and 7, the experimental phase is presented and discussed, using a data set
to compare the proposed system to another recognition method with similar heuristics
to analyze the developed algorithm’s performance. The paper is concluded in Section 8.

2. Background and Related Work
2.1. Web Service Composition

Service composition-oriented systems are widely linked to cloud computing. Be-
yond analyzing the cloud paradigm as a deployment platform, a series of relevant perfor-
mance and accessibility requirements is established when selecting services.

A cloud service and composition lookup proposal has been presented in [9], based
on the Cuckoo lookup algorithm through constraint-satisfaction techniques. Its test scenar-
ios were based on distributed cloud environments with WS replicas having different QoS
values. This paper provided insight into the use of multi-clouds with their respective data
sets, highlighting the use of filters for the parsing process and for the functional part of each
candidate WS to be selected by the composition model to be satisfied. Likewise, in [10],
a pattern-based selection method using a composition and ontology-level search has been
presented. The WS formalization was highlighted, in this work, in terms of enabling the ac-
curate description of its interfaces and parameters, circumstantially streamlining the WS
selection process at the syntactic level. In [11], a method to discover and select services
using machine learning has been proposed. The system predicts new QoS values from
information found in its web service description language (WSDL). Its analysis was based
on obtaining data directly from the WSDL, as it describes how to compose a web service
request and describes the interface provided by the provider to consume it. The analysis
allows for filtering those WSs that are available at a given time.

Research that developed the notion of pattern discovery and classifications in WS
has been proposed in [12]. The authors used data mining techniques to classify services
through specific non-functional requirements. Their study concluded that the main points
of analysis in a WS are the response time, performance, and availability, which are critical
metrics for a composition activity. In [13], a service discovery method based on Petri
nets was used, developing a whole composition system modeled on a cluster of services
in real-time. Its system provides the service with a semantic level, which allows for labeling
it with information from the analysis of its QoS values, in order to create groupings of
services according to a particular non-functional requirement.

In [14], an algorithm has been presented for WS selection in repositories containing a
large number of services. Their computational strategy was based on the theory of equiva-
lence relations, and they modeled a system for storing services that avoids redundancy
in its registration semantics. Their experiments were based on sequential composition
models, where each service matches or connects to its predecessor service. Qi et al. [4] have
emphasized the composition problem in cloud environments at the WS selection time with
the description of scenarios with replicas. An algorithm and mathematical model were
developed using differential evolution-based knowledge-learning heuristics, based on
searches on three QoS criteria: Response time, service availability, and reliability. The test-
ing scenarios used random data to verify the performance of the algorithm. This aspect is
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essential, as data repositories in this field are scarce, and many researchers have chosen to
create their own data sets.

Hasnain et al. [15] proposed analyses on different data sets, presenting the main
parameters considered for the selection of WS, including the response time, latency, and re-
liability. They also described the importance of conducting studies on QoS parameters
which can impact the cloud environment.

Rathore et al. [16] have developed an algorithm called OAEQoS. Its important contri-
bution consists of the analysis of web services by monitoring QoS parameters performed
through the access of information to their providers, a concept which is important when
considering the type of repository to choose for the search of services. Its evaluation
adds a reliability parameter that consists of performing service invocations and analyzing
their successful and unsuccessful requests. This process allows for updating parameters
such as availability, throughput, successability, and reliability. The process only considers
services that are active, increasing the level of reliability for the selection of a service.

The above-cited works provide an overview of the composition process in its selection
stage, which uses QoS parameters as a selection filter. Thus, Ar_WSDS is characterized by
a strategy based on the dynamic analysis of QoS parameters for composition models which
can vary their quality strategy to discover and select WSs, and we adaptively devised its
core system for new non-functional requirements of users.

2.2. Pattern Recognition

Pattern recognition methods have been extensively studied [17,18], where the related
works have mainly targeted selection methods based on pre-defined features over a data
set. The main goal of pattern recognition is to find and characterize structured informa-
tion (called patterns) from information sources that present data in a dispersed manner.
Different strategies allow for the identification of trends with the recognition of a specific
descriptor (attribute) [19]. Two recognition strategies have been defined: Supervised and
non-supervised. In the former, recognition is based on the presence of structured patterns.
With this, the prediction of patterns of interest is carried out. At this stage, training is nec-
essary, in order to determine the membership of the pattern to a specific class. In contrast,
the latter strategy can be used to predict behaviors and relationships between the data,
in order to determine the membership function of a class [20].

We focus on supervised strategies, where the construction of the predictive model has
the objective of assigning patterns to classes that have already been defined [21]. In general,
using these approaches requires pre-established knowledge to train the model. Such
methods base their computational strategy on the elimination of redundant variables and
on the fast recognition of an entity with active patterns or first-order rules, with which it
must comply to be recognized [22]. Each characteristic of the entity represents a variable
that needs to be analyzed during the recognition process. So, through any machine learning
algorithm, the entity is categorized. In recent years, research has provided machine learning
mechanisms that can analyze a variable set and whose computational cost is acceptable
for a data set that, in basic processing, can have an NP-order cost [23].

One of these recognition models is Ar2p [8], which is based on the systematic func-
tioning of the brain. This paper proposes its adaptation to develop a recognition model
for WS selection in composition activities under cloud environments. Ar2p was originally
developed from the pattern recognition theory of mind (PRTM), where the memory man-
ages a hierarchy of patterns, which are perceived through our senses (conceptually called
“sensors”) [24]. As soon as one of our senses is activated, certain patterns can be recognized.

A general model of Ar2p is shown in Figure 1, where each level represents a recogni-
tion module. Thus, a system can have several levels which offer the possibility of initially
recognizing atomic patterns (properties with a single attribute/value); however, a pattern
may pass through several levels until it is recognized, resulting in a complex pattern that
underlies the processing of the sub-levels. Every recognition module’s target is to recognize
its corresponding pattern (i.e., a copy of the pattern), such that recognition can occur at any
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level. Ar2p defines two strategies to recognize a pattern: One by key signals and another
by partial signal recognition. The former uses the importance weights of the input signals
identified as key signals, while the latter uses the partial or total presence of the signals
in a simplified model.

Figure 1. Ar2p model [8].

A pattern can be recognized by a single key signal or by the total of the partial signals
if and only if they pass through the observation space based on their recognition levels.
The advantage of using Ar2p is its level of uniformity, as it ensures that each recogni-
tion function is the same. This process is executed recursively. Considering PRTM [25],
the recognition process occurs when the brain can recognize a pattern through any sense.
Thus, the brain’s ability sharpens when developing a hierarchy of complex patterns (i.e., a
learning process occurs).

Below, we formalize the concept of composition and discuss how a composition is
modeled to be used as input to an Ar_WSDS recognition process.

3. Abstract Composition Model

An abstract composition model (ACM) of WSs is a sequential workflow, as shown
in Figure 2, represented through an acyclic graph of size n, composed of the WSs 1, . . . , n.
Equation (1) shows WST , which lists the services (nodes) needed to fulfill the composition.
Each WSi consists of a 3-tuple: <I, O, [QoS]>, where I is its input parameters, O is its output
interface, and [QoS] is its quality parameter matrix.

WST = {WSi |WSi ∈ ACM}. (1)

As such, there exists a matrix, QoS, such that QoSi,j is the value of a quality attribute
j for a WS at position i within the ACM; that is, WS1 has a value QoS1,0, which can
be, for example, a latency value and so on for each service. Therefore, each WS has an
associated QoS parameter matrix. The set of these is indicated by an array of QoST matrixes.

Figure 2. Abstract composition model for the Ar_WSDS approach.
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Every step in the ACM requires the use of one WSi. The composition goal is achieved
when all of the WSi are available and correlated in the model, such that the execution
is based on the ordered path of each node in fulfilling the adjacent functionality. Al-
though other types of workflow models may exist, they may be transformed into sequential
models [26]. All WSs must match the assembly condition provided by its composition
model, which corresponds to the request and invocation of a predecessor WS with its
predecessor candidate. Figure 3 shows the transitive relationship between the parameters I
and O, with respect to each other.

Figure 3. Web service assembly structure.

Web services input to the system are denoted as the set WSg, where WSgi is a general
web service to be recognized by the system. A candidate WS, denoted by WSc, is a service
that has been discovered and selected from the WSg, and is considered a possible solution
for a node of the composition model. Combining the WSc creates the SP, or different subsets
that satisfy the ACM and the QoS conditions provided by the user for composition.

The following section presents the Ar_WSDS design, specified through the presented
ACM model.

4. Overall Design of Ar_WSDS

The Ar_WSDS architecture shown in Figure 4 includes eight steps. First, the input
of the system, whose function is to read the data and create the WSg set, corresponds to
the input of the system.

Figure 4. Ar_WSDS workflow.

Second, loading the ACM defines the service syntax requirements and the QoS pa-
rameters at the atomic and composed level (resulting service after composition). Third,
it defines the dynamic creation of the recognition modules that conform to the ACM,
through the two strategies set up in Ar_WSDS (as discussed in the next section). Fourth,
matching by service name is performed, allowing the system to reduce its search space and
limit its analysis to QoS. Fifth is the execution of the recognition modules, which enables
the selection of the most appropriate services according to the user’s QoS requirements.
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Sixth, the candidate services are set up. Finally, in the seventh and eighth stages, the SP
establishes the set of services that satisfy each node and whose union maximizes the user’s
quality level, defined as the value of their composed service.

Below, the system definitions and the semantic notations used in Ar_WSDS, as a series
of components that identify the system within the PRTM environment, are provided.

Definition 1. A pattern (ρ) is an entity represented by a WSgi to be recognized through the pa-
rameters within the QoST set. Based on the decomposition of ρ, the set of atomic signals, named
S(), is generated.

S() contains information about each WSgi , and the recognition modules classify
the service as a candidate if it complies with the assembly and QoS characteristics.

Definition 2. An optimal WS is the service that is closest to its QoS parameter specified in the com-
position model.

SP is a subset of optimal web services, and the system recognizes 0 or n pathways.
If its value is 0, it means that some service did not comply with its respective QoS parameter.
Therefore, an ACM node will not have any associated services. Figure 5 shows an exam-
ple of the Ar_WSDS system, where the inputs are the specifications WSg and the ACM.
Then, the recognition modules discover and select the most suitable WS for the model
node. Finally, the system creates the SP, in order to satisfy the requirements provided
in the ACM.

Figure 5. Example of Ar_WSDS operation.

Definition 3. A recognition module, symbolized as Γ, consists of a set of software components that
recognize a pattern and its signals.

Due to the modularity and architecture of the Ar_WSDS, these modules are dynamic
(i.e., automatically adaptable to the parameters of each WSi of the composition model).
Equation (2) formalizes the recognition modules:

Γ =
{

Γi,j | Γi,j ∈ QoSi,j
}

, (2)

where
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1. Γi,j is a recognition module for service i of its QoS parameter j, and
2. QoSi,j corresponds to QoS parameter value j of service i.

Definition 4. A WS ranking, symbolized as ϕ, is a value of the degree or weight of importance of a
web service candidate once the Γ modules recognize it.

Hence, ϕi,j has a value of 1 when the value for QoSi,j of the WSgi is categorized
as the most optimal, and a value of n when it is further away from the optimal WS.

Definition 5. The matching recognition function, represented as M(), evaluates whether the name
of the service described in set WST has a matching correspondence in the set WSg, in which case,
its result is true, and it is false otherwise.

∃x
{

x | x ∈WSc ↔ M
(
WSg

)
= true

}
. (3)

Equation (3) shows the function M(), which aims to minimize the search space be-
tween the WSg and to create the primary candidates (elements detonated as x). These are
WSs to be treated by the recognition modules, which analyze each value of their QoS.

Definition 6. The quality thresholds, represented as ∆, are discrete values that must be met
by the composition (composed service) and each WSgi (atomic service) to be a candidate service.

The value of ∆ depends on the QoS parameter; for these values, its optimum will be
given as a maximum or minimum. The characterization of attributes has been described
in [27], and analyzed using a data set approach in [15]. There are three different types of ∆:

1. ∆WSC is a value (percentage) that represents the quality condition that must be met
by the composed service through the process of analyzing the WSc and its respective
ϕ, in order to be considered within an SP.

2. A key threshold (∆KS) is a value of a quality parameter for a WSgi that must be
in the acceptance interval of its respective WSgi,j . As previously mentioned, it depends
on the nature of the parameter and can be expressed as a minimum or maximum.
The delta must be fulfilled.

3. A partial threshold (∆PS) is a quality parameter value for a WSgi which is above
or below the average of its QoS of the same type. These values may be below
the quality condition. The ϕij value is subjected to a penalty function, denoted by
β(ϕ), which presents the ranking of the QoSi,j value and whose ranking values are
calculated from the difference between the best service and the service furthest away
from the quality condition.

Thus, for a service to be considered a candidate, it must meet the thresholds defined
in ∆KS or ∆PS.

Definition 7. A recognition type is a value between 0 and 1 associated with a QoSi,j to use a ∆;
if the value is 1, it will use ∆KS, while 0 indicates the use of ∆PS. No ∆ value means the QoS
parameter will not be considered by the recognition modules.

In Figure 2, a service is extracted, while Figure 6 presents an example of a service
specification of the WST set; the values and type are presented. The latency and throughput
value are processed by key thresholds, at runtime, using a partial threshold (average value).

The following section defines the recognition strategies developed in Ar_WSDS, based
on the definitions mentioned above.
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Figure 6. WS specification and recognition type.

5. Recognition Strategies

The system uses two strategies for the recognition of the set of signals from the thresh-
olds KS and PS, in which they are decomposed into atomic signals S() corresponding to
the QoSi,j constraints, formalized in the following definitions.

Definition 8. Module recognition by key signals is a recognition process that is enabled when
the Γi,j module analyzes ∆KS for each WSgi and obtains ϕi,j ∈ {1..n}. If ϕi,j = 0, the S() signal is
not triggered, and the analyzed element of the WSg set is discarded from WSc.

Equation (4) models the recognition of a WSgi pattern, when the sum of all its rankings
generated from the Γi,j evaluation in its QoSi,j is greater than or equal to its corresponding
∆KSi,j. The numerator of the equation at summation determines the exact proportionality
of QoS for the service to be recognized. The denominator determines the total contribution
of that parameter to achieve the ∆KS of the analyzed service.

KS_Recognizer
(
WSgi

)
=
|QoSi |

∑
j=1

( 100
|QoSi |
ϕi,j

)
≥ ∆KSi,j →WSgi ∈WSc. (4)

Definition 9. Module recognition by partial signals is a recognition process, which is enabled
when the Γi,j module analyzes each WSgi and its ∆PS (which is obtained as an average of the QoS
of the service of the identical type), and obtains ϕi,j ∈ {1..n}. If ϕi,j = 0, the S() signal is not
triggered, and the analyzed element of the WSg set is discarded from WSc.

PS_Recognizer
(
WSgi

)
=
|QoSi |

∑
j=1

( 100
|QoSi |

β
(

ϕi,j
)) ≥ ∆PSi,j →WSgi ∈WSc. (5)

A partial signal activates a partial signal recognition module when the sum of all its
rankings generated from Γi,j in the β penalty function is greater than or equal to the β(ϕ)
of the service to be recognized, as formalized in Equation (5). The penalty function allows
us to find a value close to 1 when the QoS parameter of the WSg is at the level of the average
and substantial values for parameters far from the average. Thus, it offers the possibility
for the system to rank the WSs from the most to the least appropriate, in terms of reaching
the respective ∆PS.

The searching and selecting of the WSc is performed through the recognition modules.
The system begins when the S() signals containing the information of the atomic WSs are
recognized by the M() function. Its objective is to syntactically verify whether the WS
corresponds to the identification requested by the ACM. Then, the signals are analyzed
according to their nature and their KS or PS recognition type, the rankings generated
by the different recognition modules are calculated, and a list of the WSc that guarantee
∆WSC is generated.

Figure 7 depicts the Ar_WSDS recognition system, which receives input from its
composition model and the web services to be classified from a repository. The M()
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function chooses the primary candidates and sends them to the respective recognition
module, which depends on the type of recognition and the QoS type. The system processes
and generates the candidates to create the solution pathways that depend on ∆WSC.

Based on Figure 7, Algorithm 1 was developed, which specifies the Ar_WSDS proce-
dure, as detailed below:

1. Read data from the WSg set.
2. Read data from the composition model. Using this procedure, it is possible to specify

services and their QoS attributes for each atomic service and its composed service
(∆ specifications). Information is loaded into the WST array.

3. Creation of candidate matrix (MC[][]). This matrix has several rows, depending
on the cardinality of the WST array. The columns depend on the number of services
recognized for that particular node.

4. Creation of the primary candidates, filtered by the matching recognition function
M(); creating the initial WSCT set.

5. For each WSi, WST is decomposed into sub-patterns ρ(WSi). They generate the corre-
sponding recognizer modules Γ, which are responsible for the core of the recognition
process from the QoS parameters and ∆KS, or by ∆PS, according to the user’s preferences.
For each WSc, its recognition module Γ is called and its ranking (ϕ) is calculated.

6. The recognition function selects the candidates from the calculation formalized
in Equations (4) and (5). When the recognition is valid, WSc is stored in the MC
matrix. Equation (6) formally defines the recognition element, where n is the number
of WS ∈WST and m is a value representing the number of WSs that satisfies an ACM
node. The element x, defined in Equation (6), is a WS used for solution pathways.

MCnxm = ∃x

x | x ∈


WSc1,1 ... WSc1,m

WSc2,1 ... WSc2,m

... ... ...
WScn,1 ... WScn,m

↔ (KS(x)
⊕

PS(x))

. (6)

7. The process is not valid if a WSc does not exist for any WSi.
8. The I(Mc) function is responsible for integrating the solution pathways defined in MC,

a process conducted by grouping the candidate services for each WS of the model and
selecting them, according to the condition ∆WSC that satisfies the composition model.

Figure 7. Ar_WSDS recognition system.
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Algorithm 1: Pattern recognition algorithm of web services.
Input: ACM,WSg[]
Result: MC[][]
WST[] = load(ACM);
WSCT[] = M(WSg);
MC[0..|WST | - 1] [ ] be_a_new_matrix;
i = 0;
for WSi ∈WT do

Γ = ρ(WSi);
j = 0;
for WSc ∈WCT do

if Γ(WSc) and Γ ∈KS then
isC = KS_Recognizer(WSc);

else
isC = PS_Recognizer(WSc);

end
if isC = true then

MC[i][j] = WSc;
j = j + 1;

else
delete WSc in WSCT ;

end
if M[i] = ∅ then

Error no candidate services;
exit;

end
i = i + 1;

end
Create solution pathways based on MC;
I(MC);

end

6. Evaluation and Results

We tested Ar_WSDS with the WSs in the QWS Data set project [28], with a replica
data set to increase the search space. According to their features, values were analyzed and
placed into two groups, corresponding to values that should be maximized or minimized,
based on the analysis in [29]. As Ar_WSDS test scenarios, we selected several WSs in se-
quential workflows to analyze the proposed approach’s effectiveness and performance.
Figure 8 shows an example model of a basic scenario with a workflow considering four
WSs with KS recognition and a ∆WSC value. In the solution, we can see that two services
satisfied WS1, one service satisfies WS2, two for WS3, and two for WS4. The WSs were
stored in the MC.

Using the function I(MC), the solution pathways greater than or equal to the value
defined in ∆WSC were created. Hence, this quality condition was inversely proportional
to the number of tuples of the solution pathways.

6.1. Experimental Setup

We dynamically designed the experiments using a Python application, loading the data
set with the addition of replicate data according to the type of the original data set. Thus,
it was possible to operate with multiple cardinalities for the set WSg. The experiments
consisted of two groups, depending on the used strategy, either KS or PS recognition. Each
one considered a variable number of active QoS (signals) and several WSs (WSs in ACM).
Solution pathways for each WS depended on the number of WS candidates for each WS,
described by the matrix defined in Equation (6). The experiment setup used the same



Appl. Sci. 2021, 11, 8092 12 of 24

hardware platform, running on a Digital Ocean virtualized server with 4 GB RAM, 1 CPU,
the Linux Ubuntu 18.04.3 LTS operating system, and with Python version 3.6.

Figure 8. A WS recognition case study.

There were two frontends to the application: The first was a console allowing for the
massive loading of services, while the second was a web view to be managed by the user,
through options that guided them in the service discovery from its specific requirements.
Outputs were presented in a plain text file, using a table easily exported to a spreadsheet
or pdf format.

6.2. Experiments’ Parameters

We chose 100 services with replicas to force the algorithm to perform comprehensive
searches and selection. The replication rate of each WSi varied between 20 and 50 over
different clouds. Table 1 describes the QoS and its features, allowing each recognition
module to define its value analysis strategy based on minimum or maximum data intervals.
Each QoS parameter was set with a P1 to P9 identifier. For instance, for P1 the analysis of
its quality values was performed using minimums, which enabled each QoS parameter to
be evaluated according to its character.

The experiments ran five scenarios, each recognizing WSs based on a value of ∆WSC,
∆KS, or ∆PS. The first scenario evaluated key signal recognition, and the second scenario
evaluated partial signal recognition. Besides that, the third scenario combined key and
partial recognition. The fourth scenario developed a case study of a real-time composition
environment, and finally, the last scenario simulated the WSs ranking.

The first and second scenarios used three data sets, with 10, 50, and 100 WSs having
with two, four, and nine signals, respectively. A set of two signals used P1 and P2, four
signals used P1 to P4, and nine signals used P1 to P9 QoS.

The third scenario used 50 WSs, and each test combines the two types of recognition.
We defined a series of tests to combine P1 to P9 QoS. The system started its recognition
using relations of 2 to 7, 4 to 5, and 1 to 8 partial and key signals, respectively. Other tests
inverted these relations so that the system recognized using key signals first. The fourth
scenario used three WSs of an ACM.

Finally, the fifth scenario evaluated Ar_WSDS concerning other approaches. Tests
were performed on a set of nine services to be selected, and all of them had replicas. The test
was performed using the following initial conditions for Ar_WSDS:

• Reliability, availability, and response time were the only signals activated;
• ∆WSC = 90% was defined such that the best WS must be chosen; and
• Key signal recognition used WS values that were very close to their boundary values,

which enabled the system to select services with high quality.

We will now show the results of each scenario.
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Table 1. QoS parameter description for WS selection.

Parameter Name Description Units Max (+)/Min (−)

Response Time (P1) Time taken to send a request and
to receive the response. ms −

Availability (P2) Time period in which a web
service exists or is ready for use. % +

Throughput (P3)
Number of services that a platform

providing web services can
process for a unit time.

invokes/second +

Successability (P4) Message success ratio after
invocation of a service. % +

Reliability (P5) Rate of failures over a period of
time % −

Compliance (P6) WSDL compliance rate based on
its formal W3C specification. % +

Latency (P7) Delay time to process a request. % −

Best Practices (P8) Service specification compliance
ratio using WS-I Basic Profile. % +

Documentation (P9) Compliance ratio the WSDL. % +
Adapted from [28].

6.3. KS Recognition Scenarios

KS recognition defined the search and selection in a restrictive manner. Therefore,
the higher the number of active signals, the lower the cardinality of the search. Dynamically
created KS (Γ) recognition modules trigger their operation, according to the user-defined
value of their respective ∆KS. These values were chosen in such a configuration that
the most significant number of WS could be recognized.

Table 2 presents the results of the key signal evaluation. The WS column represents
the number of WSc, while KS represents the number of signals. The WST column represents
the number of services in ACM. The runtime was measured in seconds for console outputs.
Detail is the time set after reading the input data, and the SP column corresponds to
the number of n-tuples under ∆WSC ≥ 80.

Table 2. Runtime results using KS.

WST KS y Run Time (s) SP

10 2 17 0.5 8
50 2 129 5.82 34

100 2 1047 122.3 166
10 4 10 0.3 1
50 4 81 3.21 21

100 4 421 39 58
10 9 10 0.17 1
50 9 50 2.34 1

100 9 100 6.02 1

6.4. PS Recognition Scenarios

We used the exact scenario definition of KS recognition, as this type of recognition
had a more significant WS; therefore, the number of solution pathways may increase.
The β(ϕ) function depended on the average value for each QoSi,j to be recognized. As
such, the processing required by Ar_WSDS was considerably increased.

Table 3 presents the results of the partial signal recognition phase, showing how
the number of candidate services increases. This condition arose as some WSs could
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have high or equal values in their QoS, generating a higher number of WSs belonging
to that interval of their average value, which is a different result from that considering
the limitation imposed by KS recognition. Moreover, the results showed a tendency to
find fewer solution paths when all nine signals were active for recognition. For very high
values of candidate WSs, the processing time to find the routes increased. The measured
β(ϕ) was one and two, in order to increase the coverage of the solution space.

Table 3. Runtime results using PS.

WST PS WSC Run Time (s) SP

10 2 180 2.13 42
50 2 418 3.25 56

100 2 5620 427.2 402
10 4 83 3.07 28
50 4 137 4.23 39

100 4 1827 201.3 193
10 9 32 1.2 13
50 9 63 4.22 19

100 9 731 71.2 67

6.5. KS and PS Recognition Scenarios

The Ar_WSDS system defined its recognition model based on the discovery of the pat-
terns defined in Figure 7 and Equation (6), where it is established that, if the key signals
could not recognize a pattern, they were recognized by partial signals. Success rate tests
for each of the recognitions in the nine QoS parameters were conducted, and Table 4
presents the results.

For each experiment, the number of signals to be recognized was nine (i.e., there was
a variation between partial and key signals), such that the system could recognize one
group of signals if it did not recognize the other. All recognition modules were dynami-
cally created in this scenario. This setup means that, as the constraints increased in both
recognitions, the recognition success rate decreased. In practice, this condition implies
that, if a service with high restrictions in its non-functional requirements is requested, few
services will satisfy this quality condition.

Table 4. PS and KS recognition success rate results.

PS KS PS Success Rate KS Success Rate

2 7 82 18
4 5 67 33
1 8 91 9
7 2 21 79
5 4 41 59
8 1 11 89

6.6. Case Study: Web Service Recognition by Key and Partial Signals

We assumed that the input patterns corresponded to the ACM shown in Figure 7. Each
WS was recognized by the four key and five partial signals, as described in Table 5. Each
WS discerned exactly when to execute its operations and with whom it had to interact [30].
Its main objective was the collaborative exchange of messages between the WS in public
business processes.

Figure 9 depicts an example of a composite service for storing messages on a file
server, showing the interaction of the DOTSGeoPhone, BINDService, and WebStoreService
services, this comprises their FRs. The user requirement threshold for the composite service
was 90%. Table 5 presents the WS after the M() function was invoked, and the recognition
features are shown in Table 6.
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The recognition strategy set the first four QoSs to be recognized by key signals and
the rest as partials. Table 6 presents the ∆KS values for each service. The ∆PS was
calculated from their average, as exemplified in Figure 6.

Figure 9. ACM recognition case study.

Table 5. Case study web services feature description.

Service Name 1 2 3 4 5 6 7 8 9

BINDService 266.83 36 0.9 37 60 89 69 15.91 7
261 36 0.9 37 60 89 69 13.67 12

DOTSGeoPhone 102 90 18.6 97 73 78 80 1 92
107.4 85 19 95 73 78 80 0.8 92

WebStoreService 251.07 56 52 58 73 67 80 133.43 31
(1) Response time, (2) availability, (3) throughput, (4) success, (5) reliability, (6) compliance, (7) best practices,
(8) latency, and (9) documentation.

Table 6. Case study web services description of the type of recognition performed.

Service Name 1 2 3 4 5 6 7 8 9

BINDService KS = 300 KS = 36 KS = 0.8 KS = 36 PS PS PS PS PS

DOTSGeoPhone KS = 106 KS = 90 KS = 187 KS = 100 PS PS PS PS PS

WebStoreService KS = 300 KS = 60 KS = 60 KS = 60 PS PS PS PS PS
(1) Response Time, (2) Availability, (3) Throughput, (4) Success, (5) Reliability, (6) Compliance, (7) Best Practices,
(8) Latency and (9)Documentation.

Based on recognition by the function M() and Equations (4) and (5), the method
worked as follows:

1. The QoS matrix was derived from Equation (2). It allowed for defining the values to
be used by the recognition modules (Γ).

QoS =


266.83 36 0.9 37 60 89 69 15.91 7

261 36 0.9 37 60 89 69 13.67 12
102 90 18.6 97 73 78 80 1 92

107.4 85 19 95 73 78 80 0.8 92
251.07 56 52 58 73 67 80 133.43 31


2. Figure A1 shows the two BINDServices which were recognized as two candidates.

Their four signals were active and with a respective ranking. However, the service
with the best score was listed first. This process resulted in a signal from service
2 (response time = QoS1,0 = 261), which had a response time value which was more
appropriate for the requested quality criteria.

3. Figure A2 shows a single service with partial recognition, which allows the system
to easily and quickly choose the WS. Partial signals were active, and the service had
the highest-ranking value. In this case, the first DOTSGeoPhone service was discarded,
as its value of QoS2,8 = 1 was outside the average range. Key signals outside
the ∆ value did not recognize the services, and the system performed recognition
using partial signals.
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4. Figure A3 shows the recognition of the WebStoreService. The service was recognized
as unique by the M() function. The system analyzed all its signals partially, not by
key signals, as the QoS4,3 value did not satisfy its ∆KS value.

5. The MC[][] matrix was generated and the SPs were processed, which specified the ser-
vices that satisfy ∆WSC = 90%. Figure 10 shows the SP for the user’s requirement,
with each service displaying the information regarding its provider, its WSDL spec-
ification, and the ranking of the service. This allows the user to analyze different
options, in order to choose services according to the required quality criteria.

Figure 10. Solution pathways of the case study.

6.7. Ar_WSDS Test with Ranking and Selection Algorithms

Ar_WSDS was compared to OAEQoS [16] and a generic discovery and selection algo-
rithm (GDSA). The first algorithm was a simple method for calculating and analyzing QoS
parameters, with the additional factor of checking the access and performance of the service;
in the second one, a trivial solution through an exhaustive search was obtained. It con-
sisted of analyzing each service to choose the candidates for the solution to the problem.
This process meant that each possible solution was checked with the other ones. OAEQoS
was customized such that its input and output parameters generated the list of candidate
web services.

The frameworks for OAEQoS and GDSA are shown in Algorithms 2 and 3, respec-
tively. Each of the algorithms used similar inputs to Ar_WSDS. However, the ACM was
decomposed into more specific data, in order to load the required WS list and its QoS.

Algorithm 2: OAEQoS algorithm (adapted from [16]).
Input: service_list,service_list_required, and QoS_list_required
Result: service_list_candidate with Qos and rank
Read service_list,service_list_required, and QoS_list_required;
Select WS from service_list, considering service_list_required;
for s ∈ service_list do

if s invoked process = true then
Evaluate invoked failed and bounced;
Update reliability, availability, and response_time;
Calculate OAEQoS value;
if OAEQoS is within the expected QoS_list then

Calculate rank with the value of OAEQoS;
Append s and its rank to service_list_candidate;

end
else

s is rejected as a candidate;
end

end

The input QWS Data set (service_list) was used. The reliability, availability, and re-
sponse_time parameters were analyzed.

Test 1 was executed using key signal recognition, while test 2 was executed using
partial signals. Table 7 shows the WS names used in the test and their corresponding IDs.
As already mentioned, these services had replicas that created a significant discovery space.
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Algorithm 3: Generic discovery and selection algorithm.
Input: service_list,service_list_required, and QoS_list_required
Result: service_list_candidate with Qos and rank
Read service_list,service_list_required, and QoS_list_required;
Select WS from service_list, considering service_list_required;
for s ∈ service_list do

Calculate average reliability, availability, and response_time for s;
Calculate expected average from QoS_list_required;
if average is within the expected average then

Append s and its average to service_list_candidate;
else

s is rejected as a candidate;
end

end
Sort service_list_candidate for each candidate service by its average value;
Rank based on the candidate’s position in service_list_candidate;

Table 7. Descriptions of the WSs used for testing.

WS ID WS Name WS Quantity

1 GoogleSearchService 43
2 MathService 9
3 AWSECommerceService 25
4 OnlineMessenger 5
5 DownloadService 17
6 LandmarkService 8
7 WSDLInteropTestDocLitService 13
8 AmazonSearchService 13
9 TimeService 4

Tables 8 and 9 show the selection process evaluation concerning the expected services
(effective WSs). The data in Table 8 only include the services recognized by analyzing their
QoS parameters and determining which complied with the quality constraints. Table 9
shows the number of errors in the selection process. This result did not provide an analysis
of the order, according to the rank of the service; it only analyzed the quantity and relevance
of the service with the predicted WSs.

Table 8. Test results of the WS selection.

WS ID Ar_WSDS
Key

Ar_WSDS
Partial

OAEQoS GDSA WS Effective

1 4 5 2 20 4
2 1 1 1 5 1
3 6 6 4 19 6
4 1 1 2 3 1
5 3 4 2 8 4
6 2 2 1 5 2
7 5 5 5 8 5
8 3 3 1 8 3
9 1 1 2 2 1
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Table 9. Amount of errors in the selection of services.

WS ID Ar_WSDS
Key

Ar_WSDS
Partial

OAEQoS GDSA

1 0 1 2 16
2 0 0 0 4
3 0 0 2 13
4 0 0 1 2
5 1 0 2 4
6 0 0 1 3
7 0 0 0 3
8 0 0 2 5
9 0 0 1 1

Table A1 shows the expected services for each WS. The order of appearance corre-
sponds to their rank, which determines the ranking position among the selected candidates;
for example, WS1 corresponds to WS ID = 1 which had good services, GoogleSearchService,
which was in positions 3, 15, 28, and 31. Its results are presented as a two-tuple (WS ID,
ranking), rankings ranged from 1 to n; if the ranking value is 0, it indicates that the service
was not recognized among the candidates by Ar_WSDS. The results are discussed and
analyzed in the following section.

7. Discussion

WS discovery and selection in cloud environments has generated interest in complying
with quality requirements, thus offering users high-performance services and better access
to providers. We tested our approach to obtain an overview of the behavior of services and
the dynamic change in their QoS parameters, which differed significantly from the provider
in which it is deployed. The redundancy inserted in the data set showed the differences be-
tween the services discovered and those selected. Thus, the execution time of the Ar_WSDS
computational strategy increased as a function of the number of replicated WSs. However,
under a natural environment, these scenarios can identify services with updated informa-
tion having marked differences between their QoS, where the recognition provided by
Ar_WSDS can result in considerable execution time improvements.

We consider the ACM as a problem in a sequential workflow; however, there are
several types of workflows: selection workflow, parallel workflow, and cycle workflow;
these depend mainly on a global QoS (QoS parameters that the composite service must
have), these workflows through techniques can be converted to sequential workflows,
processes that can generate more than one workflow for an ACM. The majority of solu-
tions reported in the literature use QoS global [2,6,16,31], and how services contribute to
achieving the objective, our system instead evaluates each service at the level of person-
alization of its QoS. The QoS global is taken as a quality value to be achieved by each
solution path (set of candidate services for each node of the composition) created by our
system. This type of adaptation allows for improved monitoring of the NFR of individual
services. This feature is denoted in dynamic compositions that require structural changes
in the functionality of a composite service without altering the FR for which it was created.

Figure 11 compares the recognition by key and partial signals using the average
of the solution paths found for two, four, and nine active signals. Consequently, when the
number of signals increased, the number of SP decreased. This situation occurred as the value
of paths discovered by key signals was lower because this type of recognition is more re-
strictive and depends on the process executed in the Γ module, according to the QoS type.
As the QoS parameters increase for selection, the discovery space shrinks. Thus, finding
the SP for the input composition model will be performed with efficient runtimes, compared
to solutions with sequential searches or detailed analyses for each QoS.
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Figure 11. KS and PS signal recognition comparison.

The QoS parameters may vary; however, there are cases where the similarity of values
makes choosing a service complicated. Ar_WSDS, using its recognition modules, can
analyze all the parameters and find the differences between their values, thus allowing
for the differentiation of a service from others. Table 5 displays this situation, where the sim-
ilarity of QoS parameters for BINDService and DOTSGoePhone services are described
using only three parameters.

Tests performed in the case study demonstrated the effectiveness of the recognition
process, in its two stages, by key or partial signals. Table 6 shows how it is necessary
to specify the thresholds for key recognition, which means that the programmer must
know the desired QoS parameters in advance; however, partial recognition offers the ad-
vantage of analyzing all WSs and obtaining the most appropriate ones, providing a more
comprehensive range of SPs for selecting services. Additionally, selecting a threshold
for the composite service may cause the results to vary, according to their solution paths
(i.e., the higher the threshold, the more restrictive the system is in selecting its services).
Figure 10 shows how Ar_WSDS can adapt either of its two recognition strategies to select
services, with partial signal recognition offering the best results, as mentioned above.

In the case study, WSs with a variable number of replicates were analyzed using two
selection approaches—the first defined by OAEQoS and the second by GDSA—and both
algorithms used input features from our approach. WS composition was performed se-
quentially from WS1 to WS9, allowing the system to have flexibility in selecting the service
for each node on the ACM.

Tests were performed on the expected (effective) services, and our approach was com-
pared with two existing approaches. Table 8 shows how Ar_WSDS achieved the expected
services in its two recognition strategies, compared to the other two approaches; however,
there were two cases where our approach recognized another service. This situation arose
because the system analyzed all the selection possibilities, and the result of the compar-
ison was performed based on the user’s experience, such that the effective WS results
may be different.

Figure 12 demonstrates the effectiveness of our approach, with GDSA producing more
errors in the selection process as its solution strategy performed generic searches without
considering any improvement idea that offered acceptable results to the user. Therefore,
it is essential for the service selection process to have solution strategies that explore
the deep analysis of QoS parameters considering their type. The system must analyze them
in comparison to all the services that are similar in their functionality. OAEQoS produced
acceptable results, and its capacity to retain updated QoS parameters was notable. However,
the implementation of this approach necessitates the incorporation of additional routines
to analyze more QoS parameters. Likewise, the update process was performed in remote
invocations, which can improve the algorithm’s performance, and its analysis became
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static to the extent that the system was only based on pre-defined QoS parameters and
only defined a selection strategy. In contrast, Ar_WSDS, which can dynamically create
recognition modules for any QoS parameter and evaluate their thresholds on the basis of
reaching the QoS threshold of the composite service, allows the user to obtain better results
for each service involved in the composition.

Table A1 shows the ranking results of the WSs. We can appreciate that the two strate-
gies of Ar_WSDS offer a more appropriate selection, compared to the other two approaches.
A slight ranking difference existed in key vs. partial recognition, as the latter had a more ex-
tensive search space. OAEQoS presented differences under a larger number of WSs as, in its
selection process, it must choose more services, excluding some of the recognition. GDSA,
although its selection process is more extensive than the other approaches, showed signif-
icant differences in its ranking process, compared to Ar_WSDS. This approach selected
the vast majority of services when its QoS parameters had little variability.

Figure 12. Error rate in the selection process according to the various algorithms.

8. Conclusions

Service discovery and selection are complex because of the availability of resources
at either the design or execution stage, and their behavior can be uncertain and dynamic.
Currently, research concerning service composition faces challenges underlying the basic
idea of how to search and select a service in a time-efficient way. Furthermore, the dynamic
environment in the cloud has led to the specification of non-functional requirements to be
dynamic, and therefore a composition model can change from the design phase to its execution.

We constructed a system for WS discovery and selection based on the systemic op-
eration of the brain considering patterns. Its process uses two strategies: key and partial
signals. This recognition feature offers a method to split the problem into more straight-
forward jobs. Differently from the Ar2p framework, Ar_WSDS changes the condition
of the key and partial signals to adjust to a WS’s characteristics. Although Ar2p establishes
the two recognition strategies, it is indispensable to adjust its concept in the QoS field
for the case of services. Our approach can recognize multiple patterns and divide them into
sub-patterns (QoS criteria) to be recognized by the strategy selected by the software devel-
oper. Our approach can recognize multiple patterns and divide them into sub-patterns to
be recognized by the strategy selected by the software developer. Ar2p operates by giving
priority to the key signals. Conversely, we highlight that Ar_WSDS dynamically adapts to
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the recognition type for each pattern, and the system selects the services established both
in the ACM and for each WS (∆).

As a highlighted contribution, we developed Ar_WSDS based on the concept of rec-
ognizing a set of patterns that satisfy dynamic quality conditions, and the recognition
strategies were updated to establish a deeper level of analysis on the QoS parameters.
The dynamic recognition module creation, based on user requirements, provides an essen-
tial advantage for developers who wish to use this approach, as they can customize their
searches based on the desired requirement or refine them to obtain better results.

The operating principle of recognition strategy-based Ar_WSDS offers an approach to
divide the composition selection problem into functional and descriptive tasks. Researchers
can quickly adapt its solution concept to other search models needing a wide variety of
selection criteria.

In this work, we formalized WSs and the composition model from a mathematical
perspective, allowing for the interpretation and systematization of the system in a modular
architecture, thus facilitating its scalability for the addition of new QoS parameters. QoS has
a dynamic nature of values due to the information supplied by the providers, so Ar_WSDS
includes a module to assemble the new data without the need to alter its base programming.

According to the tests performed, KS recognition provided better performance than
PS recognition, as the former limits the number of candidate WSs and, so, the search space
is much smaller. However, the PS strategy was more versatile when selecting WSs, as it
offers a much more comprehensive range of SPs. The recognition success rate varied
with the number of constraints imposed on the model and the quality threshold placed
on the composition. System performance can be affected when there are similarities
in the QoS values of each WSs because the system would have to select all those services
within the SP, and in this case, the KS and PS recognition could generate the same results.

According to the results, Ar_WSDS achieved excellent results in discovering and
selecting WSs, compared to other existing approaches. Its strategy allows users to add
more recognizers by interpreting the desired QoS parameter quickly. Overall, the proposed
approach is much more effective in the selection and ranking of WSs. In particular, it
allows us to analyze each QoS value independently, and as these services can be selected
to achieve the WSC quality thresholds. As the system is not data-dependent, modules
implemented for each recognition task are easily scalable to other systems that require
element classification.

In future work, it will be essential to implementing a recognition module that eval-
uates the status of a service to be selected and discards those that stopped working
in the providers. Likewise, it is essential to create software modules to keep the data
sets updated in real-time. In order to increase the efficiency of recognition, a model could
be created to create a record of the services most used by the customers; thus, the system
will not need to carry out the initial search processes and will only carry them out when
the services are new. Finally, a recognition module can be implemented to analyze the flow
in the WSC to determine the redundancy of operations, which would allow us to refine
the composition and reduce the number of services.
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Abbreviations
The following abbreviations are used in this manuscript:

Ar_WSDS Pattern recognition algorithm for search and selection of web services
FR Functional requirement
NFR Non-functional requirement
ACM Abstract composition model
I Input parameter
O Output parameter
WSC Web service composition
WS Web service
QoS Quality of service
SP Solution pathway
PRTM Pattern recognition theory of mind
WSDL Web service description language
W3C World Wide Web Consortium
KS Key signal
PS Partial signal
QWS Quality of web service
GDSA Generic discovery and selection algorithm

Appendix A

Figures A2 and A3 show the analysis results for the three services specified in Figure 9.
The Ar_WSDS web application was used, and screenshots were captured. Each figure
shows the rankings for each signal.

Figure A1. BINDService recognition example.

Figure A2. DOTSGeoPhone recognition example.
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Figure A3. WebStoreService recognition example.

Appendix B

Table A1. Test results of WS ranking.

WS id Ar_WSDS Key Ar_WSDS Partial OAEQoS GDSA

1 (3,1)-(15,2)-(28,2)-
(31,2)

(3,1)-(15,2)-(28,2)-
(31,2)

(3,1)-(15,2)-(28,3)-
(31,3)

(3,1)-(15,12)-(28,6)-
(31,4)

2 (5,1) (5,1) (5,1) (5,3)

3 (19,1)-(2,1)-(8,1)
-(20,2)-(10,2)-(9,2)

(19,1)-(2,1)-(8,1)
-(20,2)-(10,2)-(9,2)

(19,2)-(2,3)-(8,0)-(20,2)-
(10,2)-(9,0)

*

(19,1)-(2,2)-(8,3)
-(20,2)-(10,1)-(9,2)

4 (2,1) (2,1) (2,1) (2,1)
5 (8,1)-(2,1)-(11,2)-(4,2) (8,1)-(2,1)-(11,2)-(4,3) (8,1)-(2,0)-(11,2)-(4,0) * (8,1)-(2,1)-(11,2) -(4,2)
6 (1,1)-(5,2) (1,1)-(5,2) (1,1)-(5,0) * (1,1)-(5,2)

7 (2,1)-(3,1)-(11,2)-
(7,3)-(6,3)

(2,1)-(3,1)-(11,2)
-(7,3)-(6,2)

(2,1)-(3,1)-(11,2)-(7,3)-
(6,2)

(2,1)-(3,2)-(11,3)-
(7,3)-(6,2)

8 (10,1)-(4,1)-(11,2) (10,1)-(4,1)-(11,1) (10,0)-(4,1)-(11,0) * (10,1)-(4,2)-(11,2)
9 (3,1) (3,1) (3,1) (3,1)

* Solution pathways along those in which one or more services were missing.
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