Journal of Physics: Conference Series

PAPER * OPEN ACCESS You may also like
Testing of software development using math and T —

. . R Elsen, A Latifah and A Sutedi
Com p Utatlo n al phys I C - Research on Key Test Methods of the
Smart Meter Software Based on Failure
Modes
Zhang Leping, Wang Baoshuai, Hu
Shanshan et al.

To cite this article: J P Rodriguez et al 2020 J. Phys.: Conf. Ser. 1645 012007

- The use of decision table for reducing
complex rules in software testing

View the article online for updates and enhancements. J Joosten, A E Permanasari and T B Adji

This content was downloaded from IP address 181.56.176.71 on 30/10/2021 at 20:16

https://doi.org/10.1088/1742-6596/1645/1/012007
https://iopscience.iop.org/article/10.1088/1742-6596/1402/7/077017
https://iopscience.iop.org/article/10.1088/1742-6596/1402/7/077017
https://iopscience.iop.org/article/10.1088/1742-6596/1325/1/012172
https://iopscience.iop.org/article/10.1088/1742-6596/1325/1/012172
https://iopscience.iop.org/article/10.1088/1742-6596/1325/1/012172
https://iopscience.iop.org/article/10.1088/1757-899X/732/1/012086
https://iopscience.iop.org/article/10.1088/1757-899X/732/1/012086
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsssY_gAylaMFhUMhieo0y4nIzuQ7H5uQTc6bXPODngPqYORmDpAlloqCUnjkMsJQHnikJoFxRDevD2dpskDDLwrbU6UPkgHmvPCu62MzZzFn1YrmmIInCnK_LXcTya6rjA2E4BsojWp7yQylmpj9_P4eadkCdWfbBmRTj8cSpWiXLzCPtD5s0Voa9m5KWEueXSuEapKdyibFEd_D6irPmoucOk_kq_8mYDLS1DR48sRCjnDghc_srm9CtQiHfhbI4tG81ZsNAraVfXJjbolX5R6UhFFfl9k78U&sig=Cg0ArKJSzItUocne1P7y&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books

XV Applied Mathematics Meeting and XII Statistics Meeting IOP Publishing
Journal of Physics: Conference Series 1645 (2020) 012007 doi:10.1088/1742-6596/1645/1/012007

Testing of software development using math and
computational physic

J P Rodriguez', M A Adarme', and O A Gallardo'
! Universidad Francisco de Paula Santander, San José de Cucuta, Colombia

E-mail: judithdelpilarrt@ufps.edu.co, madarme@ufps.edu.co

Abstract. In the perspective of math and physical-computational, software testing is conceived
as a modeling of scenarios based on the different levels of abstraction that software is developed.
These specifications allow marshaled representation of each software component as well as its
intra - extra process interactions. This work analyzes in a systems approach under the perspective
of computational physics how to identify, interpret, represent, and formally model functional
software tests and how, through critical path representations, white box testing is developed. A
test scenario is established for components built in the software called "Ferticacao," where white
box testing is applied. Results show that the use of modeling techniques based on critical paths
show the interaction of the code and its interoperability at the level of data structures and
component calls that allow to quickly analyze the functionality of the software at the source code
developing level.

1. Introduction

Since the beginning of computing, the goal of the first computers was to solve problems and equations
impossible for humans. This relationship between mathematics and engineering is by no means new,
but it has intensified considerably as the digital economy has become more specialized, and different
disciplines have been perfected. Systems Engineering is the application of mathematical and physical
sciences to develop systems that economically use the materials and forces of nature for the benefit of
humanity. Thus, mathematics has a formative character for an engineer since it serves as an instrument
to develop fundamental skills in his formation, such as writing, formalizing, acquiring skills to face new
situations, precision, and constancy.

Mathematics has several useful properties for software developers. One is the physical situation, an
object, or result of a Pressman [1] action. For a software engineer, the development of a specification is
fundamental to employ specialized mathematics, just as an electrical engineer does. These specifications
can be mathematically validated for contradictions and eliminate vagueness. A software engineer uses
them to represent, in an organized way, degrees of abstraction in the specification of a system and model
it, avoiding ambiguity. Using mathematical analysis is one of the options for software engineers since
it allows them to know the behavior of products in the real world. However, mathematics as the discrete
includes the knowledge of Mathematical Logic and its formal systems, brings together other aspects
that, although essential for an engineer (for their training and mental structure, in the construction of
criteria), contributes to the practice in students of generic skills such as a capacity for analysis and
synthesis, capacity for planning and programming, oral and written communication, capacity for
information management, problem-solving, decision-making, teamwork, critical reasoning, autonomous

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

XV Applied Mathematics Meeting and XII Statistics Meeting IOP Publishing
Journal of Physics: Conference Series 1645 (2020) 012007 doi:10.1088/1742-6596/1645/1/012007

learning, adaptation to new situations and creativity, motivation for quality and continuous improvement
and capacity to apply knowledge to practice, Machinery-ACM & Society [2].

Thus, mathematics offers the engineer a high degree of reliability when using validation methods in
software development. In other words, mathematics can be applied through models to demonstrate that
a software design corresponds to a specification, and its source code is the correct reflex of the plan [1].
Based on this preliminary analysis, this research is focused on the design of a formal case to develop
functional tests and how math has been developed as a science that has a relationship with necessary
route tests, the white box testing technique initially proposed by Tom McCabe in 1976. To carry it out,
it was applied, from a holistic perspective, starting from an example used to a project in which actors
and academic interests are articulated, a method that allows the software engineer or designer of test
cases to obtain a measure of the logical complexity of a procedural design that can be used as a guide to
define a basic set of execution routes.

The article has been organized as follows: section 2 describes the theoretical framework
underpinning this research; section 3 presents the advantages of using formal models applying software
tests, section 4 shows the application a test case, and finally, section 5 establishes the conclusions based
on the results obtained.

2. Theoretical framework

Software engineers did not apply rigorous mathematical methods to their products years ago. They
resorted to empirical verification methods, processes that did not guarantee the absence of errors, and in
which they allowed their software products to work and directly observe their behavior, making it
tedious and generating more errors each time they were debugged (location and correction of defects).
The reliability of the product increased throughout the development process. This work had to be
developed in parallel with product development at each stage of the software lifecycle.

Gibbs [3] quoted by Pressman, "the ability of engineers to measure the reliability of their products is
less than necessary in the quality approach, so it is desirable that engineers can mathematically
demonstrate the correctness of their programs, in the same way that other branches of engineering can
do". But what are formal methods? The concept of formal methods involves a series of logical
techniques with solid mathematical bases, usually provided by an official language of specifications,
with which information systems can be designed, implemented, and verified, Monin [4]. Formal
methods use set theory notation and logic to create a clear statement (requirements), i.e., a mathematical
specification (math) is created and analyzed to improve (prove) its correctness and consistency; being
the most rigorous formal methods, they apply techniques to check the arguments and justify the
requirements, or other aspects to be dealt with in the design and implementation of the system.

They are properties of a formal specification (consistency, integrity, and unambiguousness, the first
two are software quality metrics, while unambiguousness can be understood and interpreted in more
than one way) are the objectives of all specification methods; however, in employing formal methods,
the probability is much higher than these ideals. Applying formal methods produces a specification
represented in a formal language; thus, formal methods use discrete mathematics as a specification
mechanism, and apply logical tests to each function of the system to demonstrate that the specification
is correct.

2.1. Formal methods and software testing
In software engineering, formal methods are used to: ensure security policies and properties such as
reliability or data integrity. To describe the specification of system behavior, to develop matching tests
between the specification and requirements (were manual or automatic rigorous tests), to create tests
between the source code and the specification. This means that formal methods in software engineering
are mathematically precise.

The cost of using formal methods is generally used in the development of critical high integrity
systems. But formal methods are useful for software testing because they help avoid errors and can also
provide a framework for testing, which requires the support of tools. One of the challenges for software

XV Applied Mathematics Meeting and XII Statistics Meeting IOP Publishing
Journal of Physics: Conference Series 1645 (2020) 012007 doi:10.1088/1742-6596/1645/1/012007

developers is to perform reliable testing, discarding preconceived notions of what is right, the engineer
designs test and test cases; before delivering the product to the customer, it must be tested, which implies
that it must have undergone reviews and other software quality assurance activities and discover and
eliminate errors, but this is not enough. The software engineer must locate a large number of errors and
apply tests systematically and design test cases using software testing techniques.

Mpyers [5] indicates that when we test software, it requires an added value to what we are checking,
raise the quality and reliability, and this leads us to have to find and eliminate errors in the software.
Researchers, such as Myers, propose separating software development from verification and validation;
from this approach and following Deming [6], one option to fulfill this premise is to articulate the life
cycle with quality improvement. This means that we do not have to test software to prove that it works,
but we have to start from the assumption that the program is going to have errors.

Dijkstra [7], a computer scientist, defined the testing process as: "software testing can be an effective
way to show the presence of errors, but they are inadequate to explain their absence. Every one of the
definitions has in common that they focus on more or less error detection.

2.2. Advantages of using software testing in formal methods

Specification. Formally developing a specification requires detailed and precise knowledge of the
system, which helps to expose errors and omissions, and therefore the greatest advantage of formal
methods is given in the development of the Clarke & Wing specification. In the formalization of the
description of the system, ambiguities and omissions are detected, and a formal specification can
improve communication between engineers and clients. Formal methods were developed primarily to
allow better reasoning about systems and software [8]. After designing a formal specification, it can be
analyzed, manipulated and reasoned about.

Verification to ensure the quality of systems you need to test them, and to ensure that rigorous tests
are developed requires an accurate and complete description of their functions, even when formal
methods are used in the specification [9]. One of the most interesting applications of these is the
development of tools that can generate complete test cases from the formal specification. Although a
great number of tools to automate tests are available in the market, they automate only the simplest
aspects such as: they generate the test data, enter that data into the system and report results. Defining
the correct system response for a given set of input data is an arduous task that most tools cannot
accomplish when the system's behavior is specified in natural language. Because the expected response
of the system can only be determined by reading the specification.

Empirical measurements have been claimed to show that tests [10] generated with automatic tools
provide good or better coverage than manually obtained, so engineers choose between producing more
tests in the same time or reducing the number of hours needed to perform them.

Validation is a set of different activities that ensure that the software built corresponds to the
customer's requirements. While verification can be performed semi-automatically and tests
mechanically. A specific difference between verification and validation is that the first responds to
whether "the product is being built correctly”, and the second to whether "the right product is being
built". From the set of requirements, it is possible to verify, formally or informally, whether the system
implements them; however, validation is necessarily an informal process. Formal methods are applied
especially in large and complex applications, such as modeling and simulation. Thus, when modelling
requirements, there may be conflicts if they are not formally designed by not determining and exploring
their properties [11].

3. Results

Results show that the use of modeling techniques based on critical paths show the interaction of the

code and its interoperability at the level of data structures and component calls that allow to quickly

analyze the functionality of the software at the source code developing level (Algorithm 1).
FERTIL-CACAO is a web application for the fertilization of cocoa that will provide different

services to cocoa farmers, facilitating the processes of fertilization and registration of soil analysis and

XV Applied Mathematics Meeting and XII Statistics Meeting IOP Publishing
Journal of Physics: Conference Series 1645 (2020) 012007 doi:10.1088/1742-6596/1645/1/012007

can access the system at any time and place. This application will allow companies to keep a record of
the fertilization process of the evolution of the plant through the fertilizer used (which is surplus or lacks
nutrients). For the software web was necessary to apply various testing strategies and quality metrics for
ensuring that the software is quality requirements.

In the field of software engineering a metric is any measure or set of measures intended to know or
estimate the size or other feature of a software or an information system, usually to make comparisons
or for planning development projects. one could say that the concept of software metric refers to the
continuous application of measurements based on techniques for the development process of software
and its products. Some utilities include estimating test cases, understanding productivity ranges,
understanding project growth, calculating the real cost of the software, and estimating project cost,
programming, and effort.

In research, white box or structural technique tests are applied, which are based on an exhaustive
examination of the procedural details of the code to be evaluated [12]. It is necessary to know the logic
of the program and then describe one of the basic route or coverage technique tests applied in the
development and implementation of the FERTIL-CACAO nutritional monitoring and control platform.
It is necessary to apply different tests in all the methods performed, in such a way as to correct the errors
that occur during the software life cycle. The basic path technique is based on cyclomatic complexity
measurement which is a software metric that provides a quantitative measurement of the logical
complexity of a program.

Algorithm 1. Code source.
Funcion validarLogin ($usr,$password,$rol)

{
1 If ($rol==1) {
$usuario=new Usuario ();
$usuarioDAO=new Usuario DAO ();
$usuario->setcedula($user);
$usuario->setpassword($password);
2 $resultado $usuarioDAO->Login($usuario);
3 if (row_SusuarioDAO->getArray($resultado)){
4 return $row;
J
else {
5 return false;
H
J
6 If ($rol==2) {
$administrador = new Administrador();
$administradorDAO = new Administrador DAQO();
$administrador ->setcedula($user);
$administrador ->setpassword($password);
7 $resultado$AdministradorDAO->Login($administrador);
8 If ($row=$ AdministradorDAO->getArray($resultado)) {
9 return $row;
J
else {
10 return false;
H
J
}.

XV Applied Mathematics Meeting and XII Statistics Meeting IOP Publishing
Journal of Physics: Conference Series 1645 (2020) 012007 doi:10.1088/1742-6596/1645/1/012007

It calculates the number of independent paths in the basic set and provides an upper limit for the
number of cases necessary to execute all instructions at least once. Remembering a path is a sequence
of sentences chained from program entry to program exit. Enough test cases are written for all or some
of the paths in a program to be executed. You can have criteria such as: coverage of all roads, coverage
of sentences, branches, predicates, basic route. The procedure to apply the technique is: represent the
method in a flow chart, calculate cyclomatic complexity, determine the set of independent roads and
derive test cases. Below, only describes the method validate login method, responsible for validating the
login by a specific user type, for this case cocoa farmer and web system administrator complexity,
determine the set of independent roads and derive test cases.

Once the code is developed, the nodes that make up the network are numbered, only the executable
sentences are listed as shown in Algorithm 1 and Figure 1. Cyclomatic complexity is calculated, which
is performed with the following formula in Equation (1), Equation (2) and Equation (3):

V(G) = Number of regions)
V(G) = ARTISTS — NODES + 2)
V(G) = Number of predicates nodes + 1 3)

According to the example given, we have whit: V (G) = Number of regions = 5, V (G) = SURGEN
- NODES +2 =15 - 12 + 2 =5 and V (G) = Number of predicate nodes + 1 =4 + 1 = 5. This value
indicates the lower level of the number of tests that will be carried out to test at least all the existing
paths passing at least once for each node and once for each edge of the graph made. In this case it would
be five roads. Now we proceed to perform these five paths as shown in Table 1.

Table 1. Control flow graph specification.
Path Input Output

Condition 1 = True

1,2,3,4,F Condition 3 = True

Condition 1 = True « "

1,2,3,5,F Condition 3 = True Return “false
Condition 1 = False

1,6,7,8,9,F Condition 6 =True Return object $row
Condition 8 = True
Condition 1 = False « "

1.6, F Condition 6 = False Return “false
Condition 1 = False

1,6,7,8,10, F Condition 6 = True Return null
Condition 8 = False

Return object $row

Figure 1. Control flow graph.

4. Conclusions

Software testing is directly related to the field of mathematics, and this is evidenced by the use of testing
techniques that, through computational physics, offer mathematical models of validation through graph
theory. Its interpretation and application make the Software Engineer has a piece of comprehensive
knowledge in this area. Formal specification techniques and mathematics have been little used in
software development companies; however, its applicability has advantages over less formal methods,
that is, some tests can easily detect execution errors according to their requirements.

XV Applied Mathematics Meeting and XII Statistics Meeting IOP Publishing

Journal of Physics: Conference Series 1645 (2020) 012007 doi:10.1088/1742-6596/1645/1/012007

References

[1] Pressman R. 2010 Ingenieria del Software: Un enfoque Practico, Séptima edicion (México: Mc Graw Hill)

[2] Association for Computing Machinery (ACM) and IEEE Computer Society 2013 Computer Science
Curricula 2013. Curriculum Guidelines for Undergraduate Degree Programs in Computer Science (United
States of America: Association for Computing Machinery and IEEE Computer Society)

[3] Gibbs W 1994 Chronic software crisis Scientific American 218 72-81

[4] MoninJ F 2003 Understanging Formal Methods (Nueva York: Springer-Verlag)

[5] Myers G 2014 The Art of Software Testing (Nueva Jersey: John Wiley & Sons, Inc.)

[6] Deming W, Medina J N, Gozalbes M 1989 Calidad, Productividad y Competitividad (Espaia: Ediciones
Diaz de Santos)

[7] Dijkstra E 1976 Structured programming Sofiware Engineering, Concepts and Techniques ed Buxton J, et
al. (Nueva Jersey: Van Nostrand-Reinhold)

[8] Hinchley M, Bowan J 1997 Applications of Formal Methods (New Jersey: Printice Hall)

[9] Murata T 1989 Petri nets: properties, analysis and applications Proceedings of the IEEE 77(4) 541-580

[10] Farrell-Vinay P 2008 Manage Software Testing, st edition (Boca Raton: Auerbach Publication)

[11] Sommerville 12002 Ingenieria de Software, Sexta edicion (Mexico: Pearson Education)

[12] Pantaleon G, Rinaudo L 2015 Ingenieria de Software, Primera edicion (Buenos Aires: Alfaomega Grupo

Editor)

