	OFETI	GESTIÓN DE SERVICIOS ACADÉMICOS Y BIBLIOTECARIOS		CÓDIGO	FO-GS-15
	GESII			VERSIÓN	02
		ESCUENA NO LA DE DECUMEN		FECHA	03/04/2017
Vigilada Mineducación	ESQUEMA HOJA DE RESUMEN		PÁGINA	1 de 1	
ELABORÓ		REVISÓ		APROBÓ	
Jefe División de Biblioteca		Equipo Operativo de Calidad		Líder de Calidad	

RESUMEN TRABAJO DE GRADO

AUTOR(ES): NOMBRES Y APELLIDOS COMPLETOS

NOMBRE(S): <u>Laura Yuliana</u> APELLIDOS: <u>Caceres Gomez</u> NOMBRE(S): <u>Jorge Luis</u> APELLIDOS: <u>Galvis Cardenas</u>

FACULTAD: Ingenieria

PLAN DE ESTUDIOS: Ingenieria Civil

DIRECTOR:

NOMBRE(S): Yee Wan APELLIDOS: Yung Vargas

TÍTULO DEL TRABAJO (TESIS):

ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18ª ENTRE CALLES 3 Y 4ª, AV. 19 ENTRE CALLES 3 Y 4ª, CALLE 3 ENTRE AVENIDAS 20 Y 21, AV. 19ª ENTRE CALLES 3 Y 4ª, Y LA AV. 20 ENTRE CALLES 3 Y 4ª, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

El proyecto se realiza por la necesidad de la comunidad de mejorar las condiciones de las vías del sector urbano del barrio Cúcuta 75, que comprende: las calles 3 y 4, y las avenidad 17^a, 18, 18^a, 19, 19^a, 20 y como guía la 21.

Se llevó a cabo el levantamiento topográfico de los tramos de vía en estudio, se efectuaron los ensayos de laboratorio pertinentes para el diseño de la alternativa de rehabilitación del pavimento.

Se elaboraron estudios previos al diseño de rehabilitación, como: topográfico, geotécnico, y de tránsito, calculando las variables de diseño requeridas para la elaboración de las alternativas de diseño de la estructura de pavimento, en flexible y rígido diseñadas por INVIAS, y AASHTO 93, seleccionando la propuesta más económica y viable según las características del proyecto. Se elaboró el presupuesto para las alternativas de diseño del pavimento teniendo en cuenta las obras necesarias para la rehabilitación de la vía. Se efectuó los APU, las especificaciones técnicas de las actividades, y el cronograma de actividades y flujo de fondos para la alternativa de diseño seleccionada

PALABRAS CLAVES: Pavimentos, Ashto, Invias, rigido, flexible

CARACTERISTICAS: PÁGINAS: 285 Planos: 2 Ilustraciones: 35 CD: N/A.

ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18ª ENTRE CALLES 3 Y 4ª, AV. 19 ENTRE CALLES 3 Y 4ª, CALLE 3 ENTRE AVENIDAS 20 Y 21, AV. 19ª ENTRE CALLES 3 Y 4ª, Y LA AV. 20 ENTRE CALLES 3 Y 4ª, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

LAURA YULIANA CÁCERES GÓMEZ JORGE LUIS GALVIS CARDENAS

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
FACULTAD DE INGENIERÍA
PLAN DE ESTUDIOS DE INGENIERÍA CIVIL
SAN JOSÉ DE CÚCUTA

2020

ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18ª ENTRE CALLES 3 Y 4ª, AV. 19 ENTRE CALLES 3 Y 4ª, CALLE 3 ENTRE AVENIDAS 20 Y 21, AV. 19ª ENTRE CALLES 3 Y 4ª, Y LA AV. 20 ENTRE CALLES 3 Y 4ª, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

LAURA YULIANA CÁCERES GÓMEZ JORGE LUIS GALVIS CARDENAS

Trabajo de grado presentado como requisito para optar al título de Ingeniero Civil

Directora
YEE WAN YUNG VARGAS
Ingeniera Civil

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
FACULTAD DE INGENIERÍA
PLAN DE ESTUDIOS DE INGENIERÍA CIVIL
SAN JOSÉ DE CÚCUTA

2020

ACTA DE SUSTENTACION DE TRABAJO DE GRADO

FECH4: 22 DE OCTUBRE DE 2020 HORA: 8:00 a.m.

LUGAR: VIDEO CONFERENCIA GOOGLE MEET

PLAN DE ESTUDIOS: INGENIERIA CIVIL

TITULO: "ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA

ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4º DESDE LA AV. 17º HASTA LA AV. 20, AV. 17º ENTRE CALLES 3 Y 4º, AV. 18 ENTRE CALLES 3 Y 4º, AV. 18º ENTRE CALLES 3 Y 4º, AV. 19 ENTRE CALLES 3 Y 4º, CALLE 3 ENTRE AVENIDAS 20 Y 21, AV. 19º ENTRE CALLES 3 Y 4º, Y LA AV. 20 ENTRE CALLES 3 Y 4º, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA,

DEPARTAMENTO NORTE DE SANTANDER".

JURADOS: ING. ALBA NELLY AREVALO VERGEL ING. CARLOS ALBERTO PEÑA SOTO

DIRECTOR: ING. YEE WAN YUNG VARGAS.

NOMBRE DE LOS ESTUDIANTES: CODIGO CALIFICACION

LAURA YULIANA CACERES GOMEZ 1111855 4,6 CUATRO, SEIS
JORGE LUIS GALVIS CARDENAS 1112145 4,6 CUATRO, SEIS

MERITORIA

ING. ALBA NELLY AREVALO VERGEL

ING. CARLOS ALBERTO PEÑA SOTO

Vo Bo

JAVIER ALFONSO CARDENAS GUTIERREZ

Coordinador Comité Curricular

Betty M

Avenida Gran Colombia No. 12E-96 Barrio Colsag Teléfono (057)(7) 5776655 - www.ufps.edu.co oficinadeprensa@ufps.edu.co San José de Cúcuta - Colombia

Creada mediante decreto 323 de 1970

GESTIÓN DE SERVICIOS ACADÉMICOS Y BIBLIOTECARIOS

CARTA DE AUTORIZACIÓN DE LOS AUTORES PARA

LA CONSULTA, LA REPRODUCCIÓN PARCIAL O TOTAL Y LA PUBLICACIÓN ELECTRÓNICA DEL TEXTO COMPLETO

Cúcuta, Señores

BIBLIOTECA EDUARDO COTE LAMUS

Cordial saludo:

<u>Laura Caceres y Jorge Galvis</u>, identificado(s) con la C.C. N.º <u>1.090.488.194 y 1.093.886.183</u>, autor(es) de la tesis y/o trabajo de grado titulado:

ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 19 ENTRE CALLES 3 Y 4ª, CALLE 3 ENTRE AVENIDAS 20 Y 21, AV. 19ª ENTRE CALLES 3 Y 4ª, Y LA AV. 20 ENTRE CALLES 3 Y 4ª, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER, presentado y aprobado en el año 2020 como requisito para optar al título de Ingenieros Civiles ; autorizo(amos) a la biblioteca de la Universidad Francisco de Paula Santander, Eduardo Cote Lamus, para que, con fines académicos, muestre a la comunidad en general a la producción intelectual de esta institución educativa, a través de la visibilidad de su contenido de la siguiente manera:

- los usuarios pueden consultar el contenido de este trabajo de grado en la página web de la Biblioteca Eduardo Cote Lamus y en las redes de información del país y el exterior, con las cuales tenga convenio la Universidad Francisco de Paula Santander.
- Permita la consulta, la reproducción, a los usuarios interesados en el contenido de este trabajo, para todos los usos que tengan finalidad académica, ya sea en formato CD-ROM o digital desde Internet, Intranet etc.; y en general para cualquier formato conocido o por conocer.

Lo anterior, de conformidad con lo establecido en el artículo 30 de la ley 1982 y el artículo 11 de la decisión andina 351 de 1993, que establece que "los derechos morales del trabajo son propiedad de los autores", los cuales son irrenunciables, imprescriptibles, inembargables e inalienables.

Jorge L. Galvis C.

LAURA YULIANA CACERES GOMEZ 1.090.488.194 CUCUTA

JORGE LUIS GALVIS CARDENAS 1.093.886.183 SALAZAR

Tabla de contenido

1. Descripción del problema	24
1.2. Planteamiento del problema	24
1.3. Formulación del problema	26
1.4. Objetivos	26
1.4.1. Objetivo General.	26
1.4.2. Objetivos específicos.	26
1.5. Justificación	28
1.6. Alcance y limitaciones	29
1.6.1. Alcance.	29
1.6.2. Limitaciones.	29
1.7. Delimitación	30
1.7.1. Delimitación Espacial.	30
1.7.2. Delimitación temporal.	30
1.7.3. Delimitación conceptual.	30
2. Referentes teóricos	32
2.1. Antecedentes	32
2.2. Marco teórico	35
2.2.1. Localización	35
2.2.2. División administrativa.	36
2.2.3. Comuna Atalaya.	39

2.3. Referente conceptual	41
3. Metodología	51
3.1. Tipo de investigación	51
3.1.1. Descriptiva y de observación directa.	51
3.1.2. Investigación aplicada.	51
3.2. Población y muestra	51
3.2.1. Población.	51
3.2.2. Muestra.	51
3.3. Instrumentos para la recolección	52
4. Estudio de transito	53
4.1. Actividades de campo	53
4.2. Aforo vehicular	56
4.3. Categorización vehicular	56
4.4. Análisis y resultados del tránsito promedio diario semanal	59
4.4.1. Tránsito promedio diario semanal (TPDs).	59
4.4.2. Análisis y resultados tránsito promedio diario.	61
4.5. Proyección del transito	62
4.6. Periodo de diseño	62
4.7. Carga de diseño equivalente	64
4.7.1. Cálculo de Factor Camión.	64
4.8. Número de ejes equivalentes de 8.2 ton.	67
4.9. Cálculo del número de ejes equivalentes de 8.2 ton.	70

4.9.1.	Cálculo del número de ejes equivales de 8.2 toneladas en el carril de diseño pa	ra una
estructura de p	avimento flexible con periodo de diseño de 15 años.	70
4.9.2.	Cálculo del número de ejes equivales de 8.2 toneladas en el carril de diseño pa	ra una
estructura de p	avimento rígido con período de diseño de 20 años.	70
5. Estudio	geotécnico	72
5.1. Re	ecopilación de la información geotécnica	72
5.2. Es	tudio de suelo	73
5.2.1.	Resumen resultados obtenidos del estudio geotécnico.	74
5.3. De	eterminación CBR de diseño	77
5.3.1.	Cálculo del C.B.R. de diseño método percentil.	77
5.4. Ve	erificación capacidad de soporte	79
5.4.1.	Valor de CBR adoptado con estabilización.	79
6. Estudio	topográfico	81
6.1. Tr	abajo en campo	81
6.1.1.	Poligonal.	81
6.1.2.	Levantamiento topográfico.	81
6.1.3.	Referencia del equipo	81
6.2. Co	omisión de topografía	82
6.2.1.	Personal.	82
6.2.2.	Equipo utilizado.	82
6.3. Pr	oductos generados	82
6.3.1.	Datos convencionales.	82

6.3.2. Esquemas.	82
6.4. Plano topográfico	82
6.5. Resultados	82
7. Teoría sobre el diseño de la estructura de pavimento	85
7.1. Diseño del pavimento flexible	85
7.1.1. Elaboración de la alternativa de diseño de una estructura de pavimento flexible	por
el método AASHTO-93.	85
7.1.2. Elaboración diseño de pavimento flexible por método INVIAS.	92
7.2. Diseño pavimento rígido	96
7.2.1. Elaboración de la alternativa de diseño de una estructura de pavimento rígido p	or el
método AASHTO 93.	96
8. Cálculo de los espesores del pavimento y análisis de resultados	103
8.1. Determinación espesores de una estructura de pavimento flexible por el método	
AASHTO-93. 103	
8.2. Elaboración diseño de pavimento flexible por método INVIAS.	115
8.3. Elaboración de la alternativa de diseño de una estructura de pavimento rígido por el	l
método AASHTO 93.	120
8.4. Elaboración de la alternativa de diseño de una estructura de pavimento rígido por el	l
método INVIAS.	128
9. Teoría sobre el cálculo del índice de condición del pavimento	132
9.1. Índice de condición del pavimento (PCI – Pavement Condition Index).	132
9.2. Procedimiento de evaluación de la condición del pavimento	133
9.2.1. Unidades de Muestreo	134

9.2.2.	Determinación de las Unidades de Muestreo para Evaluación:	135
9.2.3.	Selección de las Unidades de Muestreo para Inspección	136
9.2.4.	Selección de Unidades de Muestreo Adicionales	137
9.2.5.	Evaluación de la Condición:	137
9.3. C	álculo del PCI de las unidades de muestreo	139
10. Cálc	culo del índice de condición del pavimento	141
10.1.	Cálculo del PCI para carreteras con capa de rodadura en concreto hidráulico.	141
10.2.	Cálculo CDV.	148
11. Pres	upuestos de obra	160
12. Reco	omendación alternativa de diseño mas favorable	163
13. Con	clusiones	164
14. Reco	omendaciones	171
15. Refe	erencias bibliograficas	173

Lista de ilustraciones

	Ilustración 1 Vista generalizada zona en estudio. Fuente: Google Earth	30
	Ilustración 2 Ubicación Departamento de Norte de Santander en el Territorio Nacional. Fuento	e:
Wikipe	edia.	37
	Ilustración 3 Localización Ciudad de Cúcuta en el Departamento de Norte de Santander. Fuen	te:
Wikipe	edia.	38
	Ilustración 4 Mapa de comunas de la Ciudad de Cúcuta	39
	Ilustración 5 Localización Barrio Cúcuta 75 en la comuna correspondiente	40
	Ilustración 6 Descripción de tipos de vehículos según INVIAS	57
	Ilustración 7 Localización de apiques efectuados	73
	Ilustración 8 C.B.R del proyecto	78
	Ilustración 9 Espesores de pavimento rígido por el método AASHTO 93	127
	Ilustración 10 Espesores de losa de concreto, de acuerdo con la combinación de variables- T0	130
	Ilustración 11 Espesores de la estructura vial, método del INVIAS	130
	Ilustración 12 Recomendaciones para la selección de los pasadores de carga	131
	Ilustración 13 Formato de exploración de condición para carreteras con superficie en concreto	
hidrául	lico	133
	Ilustración 14 Formato de exploración de condición para carreteras con superficie en concreto	
hidrául	lico	134
	Ilustración 15 Formato para las iteraciones del cálculo del CDV	140
	Ilustración 16 Resultados exploración de la condición unidad de muestreo 1 tramo Av. 17ª entra	re
calles 4	4 y 3	141
	Ilustración 17 . Resultados exploración de la condición unidad de muestreo 2 tramo Av. 17ª en	ntre
calles 4	4 y 3	142

Ilustración 18 Resultados exploración de la condición unidad de muestreo 3 tramo Av. 17ª entre	.
calles 4 y 3	.42
Ilustración 19 Resultados exploración de la condición unidad de muestreo 4 tramo Av. 17ª entre	•
calles 4 y 3	.43
Ilustración 20 Resultados exploración de la condición unidad de muestreo 5 tramo Av. 17ª entre	:
calles 4 y 3	.43
Ilustración 21 Curva para hallar el valor deducido tipo de falla de grietas en bloque o múltiples	
unidad de muestro 1	.44
Ilustración 22 Curva para hallar el valor deducido tipo de falla de pulimento de agregados unida	ad
de muestro 1	.44
Ilustración 23 Curva para hallar el valor deducido tipo de falla de grietas en bloque o múltiples	
unidad de muestro 2	.45
Ilustración 24 Curva para hallar el valor deducido tipo de falla de pulimento de agregados unida	ad
de muestro 2	.45
Ilustración 25 Curva para hallar el valor deducido tipo de falla de grietas en bloque o múltiples	
unidad de muestro 3	.45
Ilustración 26 Curva para hallar el valor deducido tipo de falla de pulimento de agregados unida	ad
de muestro 3	.46
Ilustración 27 Curva para hallar el valor deducido tipo de falla de grietas en bloque o múltiples	
unidad de muestro 4	.46
Ilustración 28 Curva para hallar el valor deducido tipo de falla de pulimento de agregados unida	ad
de muestro 4	.46
Ilustración 29 Curva para hallar el valor deducido tipo de falla de grietas en bloque o múltiples	
unidad de muestro 5	.47

Ilustración 30 Curva para hallar el valor deducido tipo de falla de pulimento de agregado	s unidad
de muestro 5	147
Ilustración 31 Cálculo CDV para un valor deducido total de 58, unidad de muestro 1	148
Ilustración 32 Cálculo CDV para un valor deducido total de 56, unidad de muestro 2	149
Ilustración 33 Cálculo CDV para un valor deducido total de 88, unidad de muestro 3	150
Ilustración 34 Cálculo CDV para un valor deducido total de 79, unidad de muestro 4	151
Ilustración 35 Cálculo CDV para un valor deducido total de 78, unidad de muestro 5	152

LISTA DE TABLAS

Tabla 1Formato de campo del estudio de volúmenes vehiculares	55
Tabla 2 Esquema de tipos de vehículos según Ministerio de transporte	57
Tabla 3 Composición del tránsito	61
Tabla 4 Resumen volumen de tránsito días aforados en ambos sentidos de circulación	61
Tabla 5 Periodos típicos de diseño pavimentos flexibles	63
Tabla 6 Distribución de vehículos, ejes y factores daño de 8.2 ton	64
Tabla 7 Factor direccional por ancho de vía	68
Tabla 8 Factor de distribución por carril	68
Tabla 9 Tasas promedio de crecimiento del tránsito	69
Tabla 10 Categorías de tránsito	70
Tabla 11 Niveles de tránsito	71
Tabla 12 Ensayos de laboratorio realizados	72
Tabla 13 Cálculo C.B.R de diseño	77
Tabla 14 Límites para selección de resistencia	77
Tabla 15 Uso de la subrasante de acuerdo al CBR	79
Tabla 16 Resumen información arrojada del perfil longitudinal	83
Tabla 17 Espesores mínimos	87
Tabla 18Niveles de tránsito para vías con volúmenes bajos	94
Tabla 19 Categorías de subrasante	95
Tabla 20 Confiabilidad recomendada por AASHTO	103
Tabla 21 Desviación normal estándar (Zr)	104
Tabla 22 Error estándar combinado (So)	104
Tabla 23 Valores recomendados de índice de servicio (ΔPSI)	105

Tabla 24 Valores mensuales de los principales parámetros meteorológicos	107
Tabla 25 Valores de coeficientes estructurales ai	108
Tabla 26 Capacidad de drenaje	110
Tabla 27 Boletín clima, estadística del IDEAM	111
Tabla 28 Coeficientes de drenaje (mi) recomendados capas granulares	112
Tabla 29 Espesores mínimos	112
Tabla 30 Valores mensuales de los principales parámetros meteorológicos	115
Tabla 31 Precipitación anual	116
Tabla 32 Niveles de tránsito para vías con volúmenes bajos	117
Tabla 33 CBR Adoptado	117
Tabla 34 Categorías de subrasante	117
Tabla 35 Parámetros de diseño INVIAS	118
Tabla 36 Costos del pavimento	119
Tabla 37 Índice de serviciabilidad final	120
Tabla 38 Valores de coeficiente de transferencia de carga (J)	121
Tabla 39 Calidad de drenaje	123
Tabla 40 Valores recomendados del nivel de confiabilidad en función del tipo de camino	124
Tabla 41 Desviación normal estándar (Zr)	125
Tabla 42 Error estándar combinado (So)	125
Tabla 43 Categorías de tránsito para la selección de espesores	128
Tabla 44 Clasificación de la sub-rasante de acuerdo con su resistencia	129
Tabla 45 Valores de resistencias a la flexotracción del concreto (Módulo de rotura).	129
Tabla 46 Rangos de clasificación del PCI	132
Tabla 47 Longitudes de unidades de muestreo	135

Tabla 48Áreas afectadas del tramo de la Av. 17 ^a entre calles 4 y 3	153
Tabla 49 Áreas afectadas del tramo Calle 3 entre avenidas 21 y 20	154
Tabla 50 Áreas afectadas del tramo Avenida 20 entre calles 3 y 4	154
Tabla 51 Áreas afectadas del tramo Calle 4 entre Avenidas 20 y 19a	155
Tabla 52 Áreas afectadas del tramo Avenida 19a entre calles 3 y 4	155
Tabla 53 Áreas afectadas del tramo Avenida 19 entre calles 3 y 4	156
Tabla 54 Áreas afectadas por rehabilitar	156
Tabla 55 Áreas afectadas del tramo Calle 4 entre Avenidas 19ª y 19	157
Tabla 56 Áreas afectadas del tramo Calle 4 entre Avenidas 19 y 18ª	157
Tabla 57 área a pavimentar en el tramo avenida 18a entre calles 4 y 3	158
Tabla 58 Áreas afectadas del tramo Avenida 18 entre calles 3 y 4	158
Tabla 59 Áreas afectadas del tramo Calle 4 entre Avenidas 18ª y 18	159

Lista de gráficas

	Gráfica 1 1Coeficiente estructural (a1), ábaco para Mr de la superficie de concreto asfáltico	90	
	Gráfica 2 Coeficiente estructural (a2), ábaco para Mr de la base.	91	
	Gráfica 3 Coeficiente estructural (a3), ábaco para Mr de la sub-base	92	
	Gráfica 4 Coeficiente estructural (a1), ábaco para Mr de la superficie de concreto asfáltico	109	
	Gráfica 5 Coeficiente estructural (a2), ábaco para Mr de la base	109	
	Gráfica 6 Coeficiente estructural (a3), ábaco para Mr de la sub-base	110	
	Gráfica 7 Estructura de pavimento diseñada por método AASHTO 93 usando CBR de sub ras	ante	
mejorado 1:			
	Gráfica 8 Opciones de estructura de pavimento según los parámetros de diseño calculados	118	
	Gráfica 9 Estructura de pavimento flexible obtenida del método INVIAS	119	

Lista de Anexos	19
Anexo A. Topografía	174
Anexo B. Estudio de tránsito.	189
Anexo C Estudio Geotécnico	198
Anexo D. Presupuestos de obra	222
Anexo E. Análisis de Precios Unitarios	230
Anexo FCronograma de actividades y flujos de fondos	268
Anexo GRegistro fotográfico	276
Anexo H Planos	286

RESUMEN

El proyecto se realiza por la necesidad de la comunidad de tener en mejores condiciones las vías del sector urbano del barrio Cúcuta 75, que comprende: la calle 4ª desde la avenida 17ª hasta la avenida 20, avenida 17ª entre calles 3 y 4ª, avenida 18 entre calles 3 y 4ª, avenida 18ª entre calles 3 y 4ª, avenida 19 entre calles 3 y 4ª, calle 3 entre avenidas 20 y 21, avenida 19ª entre calles 3 y 4ª, y la avenida 20 entre calles 3 y 4ª.

En este proyecto se llevó a cabo el levantamiento topográfico de los tramos de vía en estudio aplicando altimetría y planimetría, se efectuaron los ensayos de laboratorio pertinentes para el diseño de la alternativa de rehabilitación del pavimento, como: humedad natural, granulometría y clasificación del suelo, límites de Atterberg y CBR por el método del penetrómetro dinámico de cono.

A continuación, se elaboraron diversos estudios previos al diseño de rehabilitación, como: topográfico, geotécnico, y de tránsito, con el fin de calcular las variables de diseño requeridas para la elaboración de las alternativas de diseño de la estructura de pavimento, en flexible y rígido diseñadas mediante los métodos del INVIAS, y AASHTO 93, para posteriormente determinar la propuesta más económica y viable según las características del proyecto. Se elaboró el presupuesto para las cuatro alternativas de diseño del pavimento teniendo en cuenta todas las obras necesarias para la rehabilitación de la vía. Se efectuó los análisis de precios unitarios, las especificaciones técnicas de las actividades, y el cronograma de actividades y flujo de fondos para la alternativa de diseño seleccionada como la más favorable según el tipo de obra.

ABSTRACT

The project is carried out due to the need of the community to have in better conditions the roads of the urban sector of the Cúcuta 75 neighborhood, which includes: 4th street from 17th avenue to 20th avenue, 17th avenue between 3rd and 4th streets, 18 avenue between 3rd and 4th streets, 18th avenue between 3rd and 4th streets, 19th avenue between 3rd and 4th streets, 3rd street between 20th and 21st avenues, 19th avenue between 3rd and 4th streets, and 20th avenue between 3rd and 4th streets.

In this project, the topographic survey of the road sections under study was carried out applying altimetry and planimetry, the pertinent laboratory tests were carried out for the design of the pavement rehabilitation alternative, such as: natural humidity, granulometry and soil classification, Atterberg limits and CBR by the dynamic cone penetrometer method.

Subsequently, various studies were carried out prior to the rehabilitation design, such as: topographic, geotechnical, and transit, in order to calculate the design variables required for the elaboration of the design alternatives of the pavement structure, in flexible and rigid designed using the methods of INVIAS, and AASHTO 93, to later determine the most economical and viable proposal according to the characteristics of the project. The budget for the four pavement design alternatives was prepared taking into account all the works necessary for the rehabilitation of the road. The analysis of unit prices, the technical specifications of the activities, and the schedule of activities and cash flow were carried out for the design alternative selected as the most favorable according to the type of work.

INTRODUCCIÓN

La movilidad intra-regional constituye uno de los factores estratégicos para promover la integración regional, y una de las principales dificultades que se han identificado en la baja funcionalidad y eficiencia del territorio está relacionado con el estado actual de la red vial y la baja calidad y organización del transporte. En este sentido, juega un papel importante la construcción o rehabilitación de vías con técnicas apropiadas, buena calidad de materiales e implementación de diseños apropiados.

En Colombia la infraestructura vial viene en ascenso como desarrollo y enfoque a las regiones, para aminorar costos y tiempos de transporte como índice de acercamiento a los centros de producción que están a grandes distancias. El entorno de redes viales en las cabeceras municipales y ciudades se conforman por la llamada malla vial de un municipio o una ciudad constituye una de las bases de desarrollo económico y de competitividad para la calidad de vida de los usuarios y personas que habitan en su entorno.

En el presente documento, se realizó el diseño de una estructura de pavimento para el tramo en estudio sin capa de rodadura, es decir, el tramo de la avenida 18ª entre calles 3 y 4, presentando cuatro alternativas de diseño del pavimento. La alternativa de diseño 1, es una estructura de pavimento flexible diseñada mediante el método AASHTO-93, la alternativa de diseño 2, es una estructura de pavimento flexible diseñada por medio del método INVIAS, la alternativa de diseño 3, es una estructura de pavimento rígido diseñada mediante el método AASHTO-93, y la alternativa de diseño 4, es una estructura de pavimento rígido diseñada por medio del método INVIAS. Posteriormente se elaboró las alternativas de rehabilitación para los tramos en estudio deteriorados, es decir: la calle 4ª desde la avenida 17ª hasta la avenida 20, la avenida 17ª entre calles 3 y 4ª, la avenida 18 entre calles 3 y 4ª, la avenida 19 entre calles 3 y 4ª,

la calle 3 entre avenidas 20 y 21, la avenida 19ª entre calles 3 y 4ª, y la avenida 20 entre calles 3 y 4ª, en el barrio Cúcuta 75 de la ciudad de San José de Cúcuta, departamento norte de Santander.

Para efectos prácticos de este documento, la información de campo se obtuvo de información secundaria, como lo es el caso de la caracterización de la estructura de pavimento existente. Para la determinación del tránsito se llevó a cabo conteos vehiculares manuales, seleccionando como punto de aforo el sitio de mayor flujo vehicular del sector en estudio, es decir la Calle 4ª con Avenida 17ª del Barrio Cúcuta 75.

1. Descripción del problema

1.1.Título

ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18ª ENTRE CALLES 3 Y 4ª, AV. 19 ENTRE CALLES 3 Y 4ª, CALLE 3 ENTRE AVENIDAS 20 Y 21, AV. 19ª ENTRE CALLES 3 Y 4ª, Y LA AV. 20 ENTRE CALLES 3 Y 4ª, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER.

1.2. Planteamiento del problema

La Ciudad de San José de Cúcuta tiene una longitud de 10 km de norte a sur y 11 km de oriente a occidente. Está constituida por 10 comunas, las cuales contienen 6.185 manzanas. Existen cerca de 800 barrios. Por su parte, la zona rural está comprendida por 10 corregimientos y 9 caseríos.

La malla vial que se distribuye entre el casco urbano y los barrios de la ciudad, se encuentra con diversas patologías, que disminuyen la seguridad y comodidad de los usuarios.

La malla vial está constituida en gran porcentaje por pavimentos flexibles, segundo de los pavimentos rígidos, y en un mínimo porcentaje por los pavimentos articulados.

Según el Plan de ordenamiento territorial de la Alcaldía Municipal de Cúcuta en Norte de Santander, la malla vial de Cúcuta podría dejar atrás parcialmente las pésimas condiciones que a diario obligan a los conductores a maniobrar de manera peligrosa para evitar que sus autos se averíen en los baches; se contempla la pavimentación de 29 vías, que se traducen en 30 kilómetros de reparación del pavimento: parcheo y sobrecarpeta.

Aunque los pavimentos son diseñados y construidos para una vida útil mayor a 10 años, muchos de ellos presentan un avanzado deterioro, bien sea por falta de estudios para el diseño, construcción inadecuada, mala calidad de los materiales o por falta de mantenimiento periódico y

rutinario.

En el presente estudio, los tramos de vía tienen una longitud de más de 1 km, y presentan una estructura de pavimento rígido en deterioro, dicha situación está afectando negativamente a los habitantes del sector, los cuales ven la absoluta necesidad de que estos tramos sean intervenidos, ya que el buen estado de las vías contribuirá a brindar fácil acceso y movilización sobre las calles y avenidas que hacen parte de ella.

Por lo anterior, es necesario realizar el diseño de la estructura de pavimento de los tramos en estado de deterioro, para que se restituya cabalmente el tránsito del sector en estudio; este planteamiento lleva a buscar la solución de encontrar una alternativa de diseño del pavimento, con el fin de mejorar la transitabilidad vehicular y la calidad de vida de la comunidad.

El impacto social del presente proyecto se presenta con el mejoramiento de la movilidad peatonal, vehicular y entorno del sector en estudio.

El impacto económico se resume en unas vías con buenas condiciones de transitabilidad, constituyen un factor preponderante en los esquemas económicos de la población en general puesto que una vez culmine la intervención en las vías los costos de operación se reducirán y a su vez los tiempos de desplazamientos serán menores, lo cual finalmente redundará en mejores condiciones de vida para los habitantes de la población involucradas.

1.3.Formulación del problema

¿Cómo está afectando actualmente el estado del pavimento de las vías en estudio, a las personas que habitan en dicho sector de la Ciudad?

¿Con el desarrollo del proyecto se podrá plantear una alternativa de solución a la problemática que se tiene en el sector?

¿Cuál será el valor total de la obra física?

1.4. Objetivos

1.4.1. **Objetivo General.**

Elaborar estudios técnicos para la formulación del diseño de la estructura de pavimento, en flexible y rígido por el método de la AASHTO e INVIAS, para las vías de la Calle 4º desde la Av. 17º hasta la Av. 20, Av. 17º entre Calles 3 y 4º, Av. 18 entre Calles 3 y 4º, Av. 18º entre Calles 3 y 4º, Av. 19 entre Calles 3 y 4º, Calle 3 entre Avenidas 20 y 21, Av. 19º entre Calles 3 y 4º, y la Av. 20 entre Calles 3 y 4º, en el Barrio Cúcuta 75 de la Ciudad de San José de Cúcuta, departamento Norte de Santander.

1.4.2. Objetivos específicos.

- Llevar a cabo estudios técnicos de topografía, geotecnia y tránsito en la zona de estudio del proyecto.
- Determinar el índice de estado del pavimento existente de las vías en estudio a través de la metodología Pavement Condition Index (PCI).
- Efectuar el diseño de la estructura de pavimento, en flexible y rígido, mediante los métodos
 AASHTO e INVIAS.
- Realizar el presupuesto de obra para las alternativas de diseño propuestas.
- Seleccionar la alternativa de diseño más económica y viable según las condiciones generales del proyecto.

- Elaborar los análisis de precios unitarios de la alternativa de diseño seleccionada como la más favorable para este tipo de proyecto.
- Presentar el cronograma de actividades y flujos de fondo de la alternativa de diseño seleccionada como la más favorable para la estructura.

1.5. Justificación

El transporte es un gran elemento de influencia en la economía de las zonas urbanas y rurales, y la servicialidad de las carreteras contribuyen al desarrollo socioeconómico de los sectores de la población, por esto es necesario realizar una planificación en los proyectos viales con el fin de garantizar el mejoramiento de la calidad de vida de los habitantes; por tanto, es de gran importancia para cualquier municipio, que se encuentre con una red vial eficiente que permita la comunicación rápida y adecuada tanto en la zona urbana como rural.

Por el constante desarrollo y gran crecimiento en la sociedad actual, se ve, la mejora en las vías como un espacio para el crecimiento del sector, el municipio y por supuesto del país. En Colombia la infraestructura vial viene en ascenso. Debido a la gran importancia que tiene en la actualidad el desarrollo de las vías como canal de comunicación entre lugares, se encontró una importante área de estudio que puede ser muy valiosa de explorar y verificar el estado actual.

Los tramos de vía del sector en estudio se encuentran actualmente muy deteriorados; esta condición en la que se encuentran perjudica el flujo normal de los automóviles, busetas y camiones, que transitan por dichos tramos. Dada esta necesidad se hace necesario que se busquen alternativas para mejorar las condiciones, se realicen ya sea reemplazo total o parcial de la estructura tanto rígida como granular. Por tal motivo es de gran importancia la intervención en el sector, en razón de que una vez intervenido se obtendrán beneficios como:

- El mejoramiento del tráfico vehicular pues las viviendas tendrían acceso directo.
- El mejoramiento de la calidad de vida de los habitantes del sector en razón de la facilidad para el acceso a los servicios públicos.
- El goce y disfrute del espacio público por parte de la comunidad que habita en dichos sectores.

1.6. Alcance y limitaciones

1.6.1. **Alcance.**

Con base en los estudios de suelos y proyecciones del tránsito, actividades que se desarrollarán durante el presente trabajo de grado, se presentarán dos alternativas de diseño; una estructura de pavimento flexible diseñada mediante los métodos AASHTO e INVIAS, y el pavimento rígido diseñado a través de los métodos AASHTO e INVIAS, con el fin de seleccionar la alternativa de diseño pertinente, que optimice los recursos económicos presupuestados, y que satisfaga los requerimientos del tránsito. Con base en éstas condiciones se emplearán los métodos INVIAS y AASHTO para determinar los espesores de las capas de la estructura de pavimento a diseñar. Se presentará el presupuesto de cada alternativa de diseño, análisis de precios unitarios y la programación de obra de la alternativa seleccionada como la más favorable. La alternativa propuesta determinará la conveniencia de ejecutar el proyecto bajo los diseños actuales y/o se harán recomendaciones para optimizarlos.

1.6.2. Limitaciones.

La falta de recursos necesarios para llevar a cabo el proyecto y la disponibilidad de tiempo.

1.7. Delimitación

1.7.1. **Delimitación Espacial.**

La ejecución del proyecto se desarrollará en el sector urbano comprendido por la Calle 4ª desde la Av. 17ª hasta la Av. 20, Av. 17ª entre Calles 3 y 4ª, Av. 18 entre Calles 3 y 4ª, Av. 18ª entre Calles 3 y 4ª, Av. 19 entre Calles 3 y 4ª, Calle 3 entre Avenidas 20 y 21, Av. 19ª entre Calles 3 y 4ª, y Av. 20 entre Calles 3 y 4ª, en el Barrio Cúcuta 75 de la Ciudad de San José de Cúcuta, Departamento Norte de Santander.

Ilustración 1 Vista generalizada zona en estudio. Fuente: Google Earth

1.7.2. Delimitación temporal.

La duración estimada para lograr los objetivos planteados es de aproximadamente cuatro meses.

1.7.3. Delimitación conceptual.

Los conceptos que se emplearán en el transcurso del proyecto serán: rehabilitación, pavimento rígido, pavimento flexible, sub-rasante, rasante, sub-base granular, base granular, carpeta asfáltica, sobre carpeta, método de diseño estructura de pavimento flexible por medio de

AASHTO, método de diseño estructura de pavimento flexible mediante INVIAS, capacidad portante de la sub-rasante, levantamiento topográfico, planimetría, altimetría, tránsito promedio diario, conteo tránsito, aforo vehicular, número de ejes equivalentes, cargas de diseño equivalente, número estructural, módulo resiliente de la sub-rasante, precipitación media anual, temperatura media anual, período de diseño, factores climáticos, factores ambientales, coeficientes estructurales de la capa asfáltica, mezcla densa en caliente para bacheo, mezcla densa en frío para bacheo, granulometría, límites de Atterberg, CBR, humedad natural, proctor, fisuramiento, baches, huecos, corrugación, hundimientos, exudación, elevaciones, manchas, depresión, grietas de contracción, grietas de borde, abultamientos, ahuellamiento, piel de cocodrilo, riego de liga con emulsión asfáltica, riego de imprimación con emulsión asfáltica y bacheo.

2. Referentes teóricos

2.1.Antecedentes

A continuación, se presentan algunos trabajos de grado realizados con anterioridad al presente proyecto, en la Universidad Francisco de Paula Santander:

Mora Lizcano, Diana Carolina. Estudios y diseños para la pavimentación de los tramos viales correspondientes a la calle 17 entre avenidas 22 y vía Bocono, la calle 18 entre avenida 23 y 25 y avenidas 24 y 25 entre calles 17 y 18 del barrio Bocono, de la ciudad de San José de Cúcuta (archivo de computador)

Resumen: Este proyecto contiene estudios de topografía, suelos y tránsito. Dos alternativas de diseño de pavimento rígido, el método de la asociación de cemento Portland (pca) y el método de INVIAS, para el diseño de pavimentos de concreto. Los estudios y diseños, se realizaron en las vías de acceso de la urbanización betel y la esmeralda, del barrio Bocono de la ciudad de Cúcuta. También cuenta con el presupuesto estimado de la alternativa seleccionada. Esto contribuye a los conocimientos necesarios para la ejecución de este proyecto y dar solución al problema de los habitantes de esta zona.

Gallardo Hernández, María Fernanda. Estudios, presupuesto y diseño de pavimento rígido de la calle 7ª entre avenidas 4 y 3 y la avenida 4 entre calle 7ª Y 7A del barrio chapinero en la ciudad de Cúcuta, Norte de Santander. (Archivo de computador)

Cúcuta: Universidad Francisco de Paula Santander.

Resumen: En este proyecto se realizó el levantamiento topográfico de la vía, se realizaron los ensayos de laboratorio pertinentes para el diseño del pavimento incluye granulometría con lavado, límites de Atterberg, peso unitario, humedad natural, CBR inalterado, y clasificación del suelo. Seguidamente se elaboró el diseño del pavimento según las especificaciones y la

caracterización arrojada por los ensayos de suelos. Posteriormente se elaboraron dos alternativas de diseño de pavimento para determinar la propuesta más viable según las características del proyecto y por último se llevó a cabo la elaboración del presupuesto que recopile todas las obras necesarias para el mejoramiento de la vía.

Zambrano Parada, John Albert. Diseño geométrico de la vía, diseño del pavimento, diseño de obras urbanísticas complementarias, y presupuesto de la obra a diseñar en la vereda el pórtico, corregimiento san pedro. En el sector "la vía pista calderas" hasta el paradero de busetas de la carrera quinta. (Archivo de computador)

Cúcuta: Universidad Francisco de Paula Santander.

Resumen: Se realizó el levantamiento topográfico de la zona para el posterior diseño geométrico de la vía, llevando a cabo el estudio de tránsito. Igualmente, se definieron las características geométricas de la vía, ejecutando el diseño del pavimento. Por último, se diseñaron las obras urbanísticas complementarias (cunetas y andenes), elaborando el presupuesto del proyecto a diseñar.

Ramírez Jiménez, Wilmer Enrique. Diseño estructural de vías secundarias del asentamiento Humano Jerónimo Uribe ubicado en la comuna 9 del municipio de San José de Cúcuta, Norte de Santander. (Archivo de computador)

Cúcuta: Universidad Francisco de Paula Santander.

Resumen: Se realizaron los ensayos primarios de laboratorio de suelos por apique en el asentamiento humano Jerónimo Uribe, los cuales fueron ejecutados en el sitio donde se proyecta el diseño de las obras de tipo de estructural, por medio del estudio del tránsito (tpd) de las vías secundarias del asentamiento. Igualmente, diseñó por el método de la p.c.a. (pavimento rígido), teniendo en cuenta los parámetros establecidos por dicho método. Se plantearon obras de arte

(cunetas) para evacuar las aguas que afectan al pavimento y la señalización fortaleciendo el sistema de movilidad, mejorando las condiciones de accesibilidad de dicho asentamiento. Por último, se realizó el presupuesto del pavimento rígido del sector.

Trujillo Amaya, Felix Andres. Diseño vía principal entre los Barrios Rudesindo soto y 28 de febrero de la ciudad de San José de Cúcuta (Norte de Santander) (archivo de computador).

Cúcuta: Universidad Francisco de Paula Santander.

Resumen: existe la necesidad de construir una vía nueva entre los barrios 28 de febrero y Rudesindo Soto para mejorar las condiciones de vida de sus habitantes al igual que solucionar todo tipo de problemas e inconvenientes que el mal estado de esta genere en estos momentos, para ello es necesario realizar todo tipo de estudios, análisis y diseños los cuales aseguren una correcta ejecución y durabilidad de la misma.

2.2. Marco teórico

2.2.1. Localización

Ciudad de Cúcuta.

Cúcuta, oficialmente San José de Cúcuta, es un municipio colombiano, capital del departamento de Norte de Santander. Se encuentra situado en el noreste del país, en el Valle homónimo, sobre la Cordillera Oriental de los Andes, y frente a la frontera con Venezuela. Cúcuta cuenta con una población aproximada de 650 mil habitantes, tiene una longitud de 10 km de norte a sur y 11 de oriente a occidente. Está constituida por 10 comunas, y es el epicentro político, económico, administrativo, industrial, académico, artístico, cultural, deportivo y turístico de Norte de Santander.

Como capital del departamento, alberga los órganos gubernamentales del orden departamental como la Gobernación de Norte de Santander y la Asamblea de Norte de Santander. El municipio es cabecera del Distrito Judicial de Cúcuta, por lo cual es sede del Tribunal Superior de Cúcuta, el Tribunal Administrativo de Norte de Santander, el Consejo Superior de la Judicatura Seccional Norte de Santander y la Fiscalía General Seccional Norte de Santander.

El desarrollo urbano ha excedido los límites administrativos y se ha extendido por los municipios cercanos que conforman el Área Metropolitana de Cúcuta, cuya población asciende a más de 850 000 habitantes. Las ciudades venezolanas de San Antonio y Ureña hacen parte de la enorme conurbación, pero no son parte oficial del área metropolitana. La ciudad está conectada por carreteras con Bogotá, Bucaramanga, Valledupar, Tunja y Cartagena de Indias y debido su posición fronteriza también con toda Venezuela. Su terminal aéreo es el Aeropuerto

Internacional Camilo Daza. La Universidad Francisco de Paula Santander es la universidad pública de la ciudad.

En la ciudad se redactó y promulgó la primera constitución de Colombia, la Constitución de 1821. En 1821, Simón Bolivar, Francisco de Paula Santander, y otros próceres de la independencia se dieron cita en lo que hoy es Villa del Rosario para promulgar dicha constitución que oficialmente declaró a Colombia como república independiente. El edificio donde se promulgó la constitución hoy está en ruinas debido a un terremoto. El lugar hoy hace parte del Parque Gran colombiano, el cual también contiene la Casa Natal del General Francisco de Paula Santander.

2.2.2. División administrativa.

La ciudad está dividida en 10 comunas, las cuales contienen 6.185 manzanas. Existen cerca de 800 barrios. Por su parte, la zona rural está comprendida por 10 corregimientos y 9 caseríos.

Cada comuna y corregimiento cuenta con una Junta Administradora Local -JAL-, integrada por no menos de cinco ni más de nueve miembros, elegidos por votación popular para un período de cuatro años que deberán coincidir con el período del Concejo Municipal.

Una JAL cumple funciones concernientes con los planes y programas municipales de desarrollo económico y social de obras públicas, vigilancia y control a la prestación de los servicios municipales en su comuna o corregimiento, y las inversiones que se realicen con los recursos públicos, además de lo concerniente a la distribución de las partidas globales que les asigne el presupuesto municipal.

Ilustración 2 Ubicación Departamento de Norte de Santander en el Territorio Nacional. Fuente: Wikipedia.

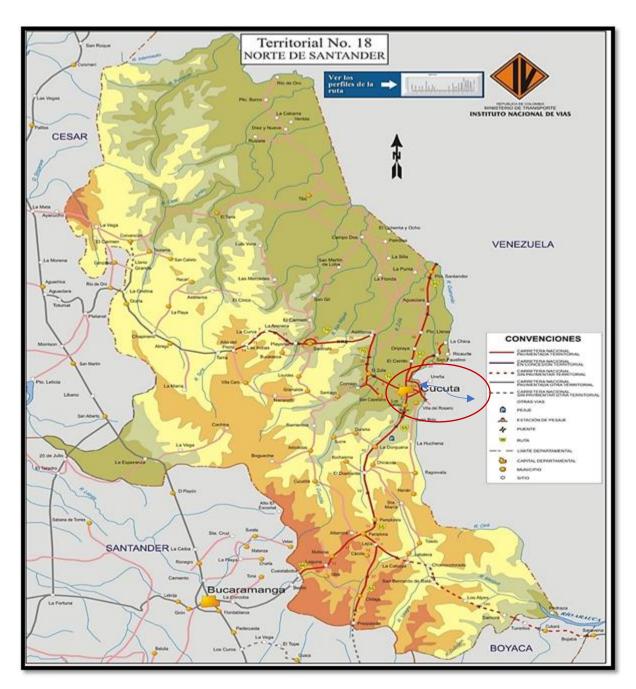


Ilustración 3 Localización Ciudad de Cúcuta en el Departamento de Norte de Santander. Fuente: Wikipedia.

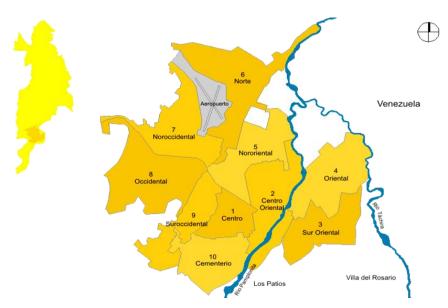


Ilustración 4 Mapa de comunas de la Ciudad de Cúcuta

2.2.3. Comuna Atalaya.

Ciudadela Atalaya. Atalaya es el nombre que recibe en conjunto las comunas Noroccidental y Occidental. Comprende:

- Comuna #7 noroccidental: primera etapa de Atalaya, Motilones, Tucunare, La primavera,
 Claret, Chapinero, Ospina Pérez, La Florida, Buenos Aires, La Hermita, Camilo Daza, Los
 Almendros, Carlos Ramírez Paris, Pueblo Nuevo y parte del Callejón.
- Comuna #8 occidental: Niña Ceci, 7 de Agosto, Cúcuta 75, El Desierto, Palmeras, Juan Atalaya, Tucunare, La primavera, El progreso, Minuto de Dios, Los Estoraques, Juan Pablo Segundo Coralinas, María Eugenia, La Isla, Villa Hermosa, Cruz de Canecas, Jerónimo Uribe, Valles del Rodeo, Manuela Beltrán.

Ilustración 5 Localización Barrio Cúcuta 75 en la comuna correspondiente

2.3.Referente conceptual

- Levantamiento topográfico: conjunto de operaciones ejecutadas sobre el terreno, con los instrumentos adecuados, el levantamiento topográfico necesita de una serie de mediciones y triangulaciones, que luego nos permitirá la elaboración del plano de ese lugar.
- Planimetría: es la parte de la topografía que estudia el conjunto de métodos y procedimientos que tienden a conseguir la representación a escala de todos los detalles interesantes del terreno sobre una superficie plana (plano geometría), prescindiendo de su relieve y se representa en una proyección horizontal. Altimetría: es la rama de la topografía que estudia el conjunto de métodos y procedimientos para determinar y representar la altura o "cota" de cada punto respecto de un plano de referencia. Con la altimetría se consigue representar el relieve del terreno, (planos de curvas de nivel, perfiles, etc.).
- Altimetría. Es la rama de la topografía que estudia el conjunto de métodos y
 procedimientos
 para determinar y representar la altura o "cota" de cada punto respecto de un plano de referencia.
 Con la altimetría se consigue representar el relieve del terreno, (planos de curvas de nivel, perfiles, etc.)
- Diseño geométrico y estructural de las carreteras. El diseño Geométrico consiste en el alineamiento horizontal y vertical de las características actuales de la vía apegándose a los procedimientos internacionalmente conocidos y empleados y aprobados por el Ministerio de Obras Públicas. El Diseño estructural consiste en la selección de espesores y calidad de materiales que satisfagan la demanda de tráfico esperada. Por ello, es necesario la selección de apropiados factores para el diseño estructural de pavimentos flexibles o Rígidos.
- **Terracería:** se llama terracería al conjunto de obras compuestas de cortes y

- Terraplenes: formadas principalmente por la sub-rasante y el cuerpo del terraplén, constituida generalmente por materiales no seleccionados y se dice que es la subestructura del pavimento. Cuando se va a construir un camino que presente un TPDA (Tránsito Promedio Diario Anual) mayor a 5000 vehículos, es necesario que se construya bajo la sub-rasante una capa conocida como sub-yacente; la cual deberá tener un espesor mínimo de 50 cm.
- **Estudios geotécnicos:** tiene por objeto determinar la información geológica, naturaleza y propiedades del terreno, necesarios para definir el tipo y condiciones de cimentación. Es muy importante porque nos ofrece una visión clara sobre el tipo de suelo que se piensa construir y así decidir el tipo de cimentación que vamos a diseñar.
- Ensayo CBR: el ensayo CBR (California Bearing Ratio) suele emplearse en carreteras y aeropuertos para la caracterización mecánica de los suelos por ser un ensayo sencillo para ser realizado in situ o en laboratorio. Es, posiblemente, el ensayo más utilizado en todo el mundo para estimar la capacidad de soporte de una explanada, factor básico para el dimensionamiento de los firmes. En España ya no se utiliza el CBR para la clasificación de la explanada, actualmente la norma 6.1-IC secciones de firme, clasifica las explanadas en función del módulo de compresibilidad en el segundo ciclo de carga del Ensayo de carga con placa (Ev2). Sin embargo, en la clasificación de los materiales para la formación de explanadas, dicha norma, sí utiliza el Índice CBR como prescripción complementaria a la clasificación de suelos del PG-3 a la hora de caracterizar dichos materiales.
- Pavimento: un pavimento está constituido por un conjunto de capas superpuestas relativamente horizontales, que se diseñan y se construyen técnicamente con materiales apropiados y adecuadamente compactados. Estás estructuras estratificadas se apoyan sobre la subrasante de una vía obtenida por el movimiento de tierras en el proceso de exploración y que

han de resistir adecuadamente los esfuerzos que las cargas repetidas del tránsito le transmiten durante el periodo para el cual fue diseñada la estructura del pavimento.

Características que debe reunir un pavimento: un pavimento para cumplir adecuadamente sus funciones debe cumplir los siguientes requisitos:

- Ser resistente a la acción de las cargas impuestas por el tránsito.
- Presentar una estructura superficial adaptada a las velocidades previstas de circulación de los vehículos por cuanto ella tiene una decisiva influencia en la seguridad vial. Además, debe ser resistente al desgaste producido por el efecto abrasivo de las llantas de los vehículos.
- Debe presentar una regularidad superficial, tanto trasversal como longitudinal que permita una adecuada comodidad a los usuarios en función de las longitudes de onda de las deformaciones y de la velocidad de circulación.
 - Debe ser durable.
 - Presentar condiciones adecuadas respecto al drenaje.

Clasificación del pavimento. En nuestro medio los pavimentos se clasifican en: pavimentos rígidos, pavimentos flexibles, pavimentos semi-rigidos o semi-flexibles y pavimentos articulados.

• Pavimentos rígidos: son aquellos que fundamentalmente están construidos por una losa de concreto hidráulico, apoyada sobre la subrasante o sobre una capa, de material seleccionado, la cual se denomina subbase del pavimento rígido. Debido a la alta rigidez del concreto hidráulico, así como de su elevado coeficiente de elasticidad, la distribución de los esfuerzos se produce en una zona muy amplia. Además, como el concreto es capaz de resistir, en cierto grado, esfuerzos a la tensión, el comportamiento rígido es suficientemente satisfactorio aun cuando existan zonas débiles en la subrasante. La capacidad estructural de un pavimento rígido depende

de la resistencia de las losas y, por lo tanto, el apoyo de las capas subyacentes ejerce poca influencia en el diseño del espesor del pavimento.

- Pavimentos flexibles: este tipo de pavimento está formado por una carpeta bituminosa apoyada generalmente sobre dos capas no rígidas, la base y la subbase. No obstante, puede prescindirse de cualquiera de estas capas dependiendo de las necesidades particulares de cada obra.
- Pavimentos semi- rígidos: aunque este tipo de pavimento guarda básicamente la misma estructura de un pavimento flexible, una de sus capas se encuentra rigidizada artificialmente con un aditivo que puede ser: asfalto, emulsión, cemento, cal y químicos.
- Pavimentos articulados: los pavimentos articulados están compuestos por una capa de rodadura que está elaborada con bloques de concreto prefabricado, llamados adoquines, de espesor uniforme e igual entre sí. Esta puede ir sobre una capa muy delgada de arena la cual, a su vez se apoya sobre una capa de base granular o directamente sobre la subrasante, dependiendo de la calidad de ésta y de la magnitud y frecuencia de las cargas que circularan por dicho pavimento.
- **Transito:** el transito se cuantifica por medio del número total de ejes de cada Carga que circularan por el pavimento durante el periodo de diseño.
- **Drenaje longitudinal:** El drenaje longitudinal indicará de manera gráfica la ubicación de las estructuras existentes, su tipo, su condición y dimensiones.

Se determinarán los caudales en los cauces transversales a través del Método Racional.

Las áreas serán determinadas en base a cuadrantes de restitución utilizando una escala adecuada.

La determinación del caudal de diseño para obras hidráulicas existentes se basará en períodos de retorno de 25 años y de 50 años como mínimo para obras hidráulicas nuevas.

Los parámetros de Intensidad, Duración y Frecuencia, se obtendrán de la estación más cercana al lugar.

Las cunetas serán revestidas considerando que la sección transversal será variada adaptándose a las condiciones topográficas del terreno.

- **Presupuesto:** es aquel que por medio de mediciones y valoraciones nos da un conste de la obra a construir, la valoración económica de la obra, acerca a la realidad, aunque el costo final puede variar del presupuesto de obra inicial.
- **Suelo:** El suelo es el sustrato físico sobre el que se desarrollan las obras. En el ámbito del urbanismo, por otra parte, el suelo es el espacio físico sobre el que se construye cualquier infraestructura.
- Vía: Calzada construida para la circulación rodada. Una calle es un espacio urbano lineal que permite la circulación de personas y, en su caso, vehículos y da acceso a los edificios y solares que se encuentran a ambos lados.
- Vías Locales: Corredor vial que permiten la accesibilidad a escala local en las diferentes zonas de la ciudad en articulación con las otras mallas viales.
- Calzada: Camino o parte de una calle o carretera reservada a los vehículos.
- **Subrasante**: Se denomina al suelo que sirve como fundación para todo el paquete estructural de un pavimento.
- **Rasante**: Línea que marca la cota del camino terminado.
- Base granular: Es un material granular grueso, el cuál dentro de la estructura de pavimentos, se encuentra entre el asfalto o el concreto y la sub-base granular. También está compuesta por un porcentaje de triturados, arena y una pequeña parte de materiales finos. Es un material regulado por la norma INVIAS e IDU.

- Subbase Granular: Se denomina sub-base granular a la capa granular localizada entre la subrasante y la base granular en los pavimentos asfálticos o la que sirve de soporte a los pavimentos de concreto hidráulico, Debido a que está sometida a menores esfuerzos que la base, su calidad puede ser inferior y generalmente está constituida por materiales locales granulares.
- **Humedad natural del suelo:** Se denomina humedad del suelo a la cantidad de agua por volumen de tierra que hay en un terreno.
- Granulometría: Se denomina clasificación granulométrica o granulometría, a la medición y graduación que se lleva a cabo de los granos de una formación sedimentaria, de los materiales sedimentarios, así como de los suelos, con fines de análisis, tanto de su origen como de sus propiedades mecánicas, y el cálculo de la abundancia de los correspondientes a cada uno de los tamaños previstos por una escala granulométrica.
- Límites de Atterberg: Los límites de Atterberg o límites de consistencia se utilizan para caracterizar el comportamiento de los suelos finos, aunque su comportamiento varía a lo largo del tiempo. El nombre de estos es debido al científico sueco Albert Mauritz Atterberg (1846-1916).

Los límites se basan en el concepto de que en un suelo de grano fino solo pueden existir cuatro estados de consistencia según su humedad. Así, un suelo se encuentra en estado sólido, cuando está seco. Al agregársele agua poco a poco va pasando sucesivamente a los estados de semisólido, plástico, y finalmente líquido. Los contenidos de humedad en los puntos de transición de un estado al otro son los denominados límites de Atterberg. Los ensayos miden la cohesión del terreno y su contenido de humedad, para ello se forma pequeños cilindros de espesor con el suelo. Siguiendo estos procedimientos se definen tres límites, Límite líquido, Límite plástico, Límite de retracción o contracción.

- **Índice de plasticidad (IP):** El índice de plasticidad (IP) es el rango de humedades en el que el suelo tiene un comportamiento plástico. Por definición, es la diferencia entre el Límite líquido y el Límite plástico. IP = LL LP.
- Carga portante del suelo: Capacidad del terreno para soportar las cargas aplicadas sobre él. Técnicamente la capacidad portante es la máxima presión media de contacto entre la cimentación y el terreno tal que no se produzcan un fallo por cortante del suelo o un asentamiento diferencial excesivo.
- Compactación de suelos: La compactación es el procedimiento de aplicar energía al suelo suelto para eliminar espacios vacíos, aumentando así su densidad y en consecuencia, su capacidad de soporte y estabilidad entre otras propiedades. Su objetivo es el mejoramiento de las propiedades de ingeniería del suelo.
- **Tránsito Promedio Diario:** Cantidad de vehículos que transitan a través de un corredor vial a lo largo de un día.
- **Periodo de Diseño:** Es el tiempo para el que se estima que la estructura de pavimento va a funcionar con un nivel de servicio adecuado, sin requerir actividades de rehabilitación.
- Sardinel: Elemento de concreto, asfalto u otros materiales para delimitar la calzada de una vía.
- **Eje Simple:** Ensamble de dos o cuatro llantas unidas entre sí por una línea de rotación.
- **Eje Tándem:** Eje conformado por dos líneas de rotación, dotado de una suspensión que permita la compensación de cargas y cuya separación se encuentra entre 1.00 y 1.60 metros.
- **Eje Tridem:** Eje conformado por tres líneas de rotación dotado de una suspensión que permita la compensación de carga y cuya separación entre las líneas de rotación extremas se encuentra entre 2.00 y 3.20 metros.

- Afirmado: Capa compactada de material granular natural o procesado con gradación específica que soporta directamente las cargas y esfuerzos del tránsito. Debe poseer la cantidad apropiada de material fino cohesivo que permita mantener aglutinadas las partículas. Funciona como superficie de rodadura en carreteras.
- **Agregados.** Son las arenas, gravas naturales y piedra triturada utilizadas para formar la mezcla que da origen al concreto, los agregados constituyen cerca del 75% de esta mezcla.
- Carril de Diseño. Carril por el que se espera circulen el mayor volumen de vehículos pesados.
- **Presupuesto:** es aquel que por medio de mediciones y valoraciones nos da un conste de la obra a construir, la valoración económica de la obra, acerca a la realidad, aunque el costo final puede variar del presupuesto de obra inicial.
- Plan de manejo de tránsito. Los Planes de Manejo de Transito (PMT) se establecen como propuestas técnicas que se desarrollan como estrategias de mitigación para los impactos generados por obras de infraestructura vial, las cuales afectan el funcionamiento tradicional de la movilidad y el transito produciendo problemas de desplazamiento vehicular y peatonal.

Para el desarrollo o diseño de un PMT es necesario conocer la situación actual de la zona de intervención, para establecer qué tipo de plan y actividades a realizar como lo son cierres de carril, demarcaciones, semaforización, instalación de señales o simplemente el diseño de esquemas de vías alternas para evacuación vehicular.

Al ejecutar una obra de construcción en una determinada vía o en una zona adyacente a la misma, se presentan condiciones especiales que afectan la circulación de personas y vehículos.

Para ello se determina que señales se deben de emplear para prevenir a peatones y/o conductores de la realización de obra. Esto con la finalidad de reducir incidentes y hacer más ágil el tránsito de los usuarios por este sector.

- **Vía terciaria:** son vías que unen las cabeceras municipales con sus veredas o unen veredas entre sí. Mayormente están en afirmado.
- Riostra: La riostra es una viga transversal de concreto reforzado en la que su acero de refuerzo se entrecruza con el acero de refuerzo de la placa-huella del módulo anterior y con el acero de refuerzo de la placa-huella del módulo siguiente.
- **Piedra pegada:** La piedra pegada es una capa de concreto ciclópeo con espesor de quince centímetros (0,15 m). Las funciones de la piedra pegada son:
 - Disminuir los costos de construcción del pavimento ya que es un material menos costoso que el concreto simple.
- Propiciar la canalización del tránsito dado que la alta rugosidad que presenta la piedra pegada desestimula a los conductores a circular por fuera de las placas-huella que son los elementos diseñados para soportar los esfuerzos producidos por el paso de los vehículos.
 - Contribuir a la estética del camino.
- **Berma-cuneta y bordillo:** La Berma-cuneta y el bordillo son elementos de drenaje superficial construidos en concreto reforzado, fundidos monolíticamente y articulados estructuralmente con la riostra.

La razón de fundir monolíticamente la berma-cuneta y el bordillo es evitar la junta de construcción que se formaría en la frontera entre ambos elementos, junta que con el paso del tiempo se convertiría en una fisura que permitiría la infiltración del agua que correría por la berma-cuneta con el consecuente deterioro del pavimento.

2.4. Marco legal

Titulo V. del trabajo de grado. Capitulo I. de las definiciones

Acuerdo 065 (agosto 26 de 1996) por la cual se establece el estatuto estudiantil de la Universidad Francisco de Paula Santander; capitulo v: Del trabajo de grado.

Artículo 139. El trabajo de grado es un componente del plan de estudios y tiene como objetivos:

- a. Brindar a los estudiantes la oportunidad de manifestar de manera especial su capacidad investigativa, su creatividad y disciplina de trabajo mediante la aplicación integral de los conocimientos y métodos requeridos.
- b. Servir como instrumento de extensión a la comunidad y medio de generación del conocimiento.
- c. Facilitar al estudiante su participación y concurso en la solución de problemas comunitarios.
- d. Facilitar al estudiante una mayor autonomía en el desarrollo de trabajos científicos, científico- tecnológico y profesional propio de su formación.

NTC 1486. Documentación, Presentación de Tesis, Trabajos de Grado y Otros Trabajos de Investigación.

Documentos técnicos. Manual de Diseño Geométrico de Carreteras Invias 2008 Manual de Diseño de Pavimentos Asfálticos en Vías con Medios y Altos Volúmenes de Tránsito, adoptado por Resolución No. 002857 de 1999, emanada De la Dirección General del Instituto.

Manual de Diseño Geométrico para Carreteras, adoptada por Resolución No. 005865 de 1998, emanada de la Dirección General del Instituto.

Manual de Diseño de Pavimentos Asfálticos para Vías con Bajos Volúmenes de Tránsito, Resolución No. 005867 de 1998, emanada de la Dirección General.

3. Metodología

3.1. Tipo de investigación

3.1.1. Descriptiva y de observación directa.

Procedimiento que se aplica con los trabajos de campo con el objeto de determinar e identificar los parámetros necesarios para el diseño.

3.1.2. Investigación aplicada.

Es la utilización de los conocimientos en la práctica, para aplicarlos, en la mayoría de los casos, en provecho de la sociedad.

3.2. Población y muestra

3.2.1. Población.

El proyecto de trabajo dirigido estará enfocado a la comunidad que habita el sector urbano de la Calle 4ª desde la Av. 17ª hasta la Av. 20, la Av. 17ª entre Calles 3 y 4ª, la Av. 18 entre Calles 3 y 4ª, la Av. 18ª entre Calles 3 y 4ª, la Av. 19 entre Calles 3 y 4ª, Calle 3 entre Avenidas 20 y 21, la Av. 19ª entre Calles 3 y 4ª, la Av. 20 entre Calles 3 y 4ª, en el Barrio Cúcuta 75 de la Ciudad de San José de Cúcuta, Departamento Norte de Santander, que requiera la intervención de estudiantes de último semestre de Ingeniería Civil de la Universidad Francisco de Paula Santander de Cúcuta, para ofrecer apoyo en los estudios básicos requeridos y así ayudar en la solución de la problemática planteada.

3.2.2. **Muestra.**

Será la información recopilada en los sectores aledaños a la Calle 4ª desde la Av. 17ª hasta la Av. 20, la Av. 17ª entre Calles 3 y 4ª, la Av. 18 entre Calles 3 y 4ª, la Av. 18ª entre Calles 3 y 4ª, la Av. 19 entre Calles 3 y 4ª, Calle 3 entre Avenidas 20 y 21, la Av. 19ª entre Calles 3 y 4ª, la Av. 20 entre Calles 3 y 4ª, en el Barrio Cúcuta 75 de la Ciudad de San José de Cúcuta, Departamento Norte de Santander.

3.3. Instrumentos para la recolección

Se utilizarán los equipos, herramientas, instrumentos y sistemas que facilite la Universidad Francisco de Paula Santander como: laboratorio de suelos incluye instrumentos apropiados para la elaboración de los ensayos geotécnicos, equipo de topografía y biblioteca Eduardo Cote Lamus.

4. Estudio de transito

El estudio de tránsito se elaboró de acuerdo a lo establecido por el Ministerio de Transporte e Instituto Nacional de Vías, (INVIAS).

La información se registró cada hora y se tuvo como parámetro la clasificación de vehículos, de acuerdo a la resolución 4100 de 2004.

4.1. Actividades de campo

A continuación, se describe el procedimiento de campo empleado en los conteos manuales de vehículos. Para llevar a cabo el trabajo de campo en forma adecuada, fue necesario desarrollar inicialmente las siguientes actividades que hicieron parte de la planeación del mismo:

- Visita al sitio de estudio
- Selección punto de aforo vehicular
- Selección y capacitación al personal requerido
- Codificación de los movimientos vehiculares

La información de campo se registró en formatos de campo, en períodos horarios, clasificándolos de acuerdo con el tipo de movimiento a aforar, y de acuerdo con el tipo de vehículo (auto o microbús, bus y camión), a medida que iban pasando por el sitio de aforo.

Formato de campo. En la Tabla 1, se presenta el formato empleado para la recopilación de la información. Cada formato de volúmenes vehiculares fue diligenciado por el aforador asignado a cada movimiento, consignando la siguiente información:

- Fecha (D.M.A): se anotó el día, el mes y el año de la observación.
- Hora de inicio: se registró la hora de iniciación del turno de observación de cada hoja.

- Hora Final: espacio en el cual se anotó la hora de terminación del turno de observación de cada hoja.
- Condición climática: se registró el estado del tiempo predominante durante la observación.
 - Aforadores: nombre completo de los aforadores.
- Ubicación: en este espacio se registró la nomenclatura del sector seleccionado como punto de aforo vehicular.
- Movimiento: aquí se incluirá los movimientos, identificados con letras que corresponden al punto cardinal de origen y de destino.
- Hoja: _____ de: _____: corresponde al control secuencial comenzando en uno, del número de formatos diligenciados por turno, anotándose el total de los mismos luego de la palabra "de".
- Celdas para cada tipo de vehículo: para cada tipo de vehículo se destinó una celda con el fin de registrar el paso de los vehículos.
- Total: se incluyó una celda para cada tipo de vehículo donde se totalizó el número de vehículos registrados en cada período.

Tabla 1Formato de campo del estudio de volúmenes vehiculares

EN EL FUTURO DE TODOS	AFORO VEHICULAR UBICACIÓN:				
Fecha (D.M.A): Hora de inicio: Condición climática: Movimiento: Aforadores:	Hora Final:			Hoja_	de
	AUTOS	BUSETA		CAMIONES	
HORA			C-2P	C-2G	C-3
5:00 - 6:00					
6:00 - 7:00					
7:00 - 8:00					
8:00 - 9:00					
9:00 - 10:00					
10:00 - 11:00					
11:00 - 12:00					
12:00 - 13:00					
13:00 - 14:00					
14:00 - 15:00					
15:00 - 16:00					
16:00 - 17:00					
17:00 - 18:00					
18:00 - 19:00					
19:00 - 20:00					
20:00 - 21:00					
21:00 - 22:00					
SUMATORIA					
TOTAL					

4.2.Aforo vehicular

Para el desarrollo del estudio de tránsito, se llevó a cabo el aforo vehicular tomando como punto de aforo "la Calle 4ª con Avenida 17ª del Barrio Cúcuta 75", puesto que en dicho sector en estudio se encuentra el mayor flujo de tránsito.

Los datos recolectados se tomaron por medio de conteos manuales realizados por los autores de este proyecto. Se definió, realizar conteos vehiculares durante tres días continuos, desde el jueves 18 hasta el sábado 20 de Julio del 2019, en horario de las 05:00 hasta las 22:00 horas, registrando ambos sentidos de circulación sobre el punto de aforo seleccionado.

4.3. Categorización vehicular

Tipos de vehículos: Para la categorización vehicular se usó la tipología para vehículos automotores de carga para transporte terrestre clasificación mostrada en la resolución 4100 de 2004, y el Manual de diseño de pavimentos de concreto de vías con bajos, medios y altos volúmenes de tránsito, de esta forma se hizo la categorización de los vehículos para los conteos manuales de tránsito ilustrados la Tabla 4. En la Tabla 2, se presenta la clasificación de vehículos en Colombia, según el INVIAS, la cual se utilizó para la toma de información en el punto de aforo.

En la categoría de ligeros se incluyeron los Autos; (Automóvil, Campero, Camioneta, Microbús), tanto de servicio público como privado, en la categoría de Buses; fueron incluidos los vehículos destinados al transporte público de pasajeros así como los privados bajo la denominación de (Buseta y Bus), y finalmente en la categoría de camiones se incluyeron los vehículos de transporte de carga de acuerdo a la configuración de sus ejes así: camión de dos ejes (C2), Camiones C3 y C4, Camión de cinco ejes (C5); mayores iguales a camión de seis ejes(C>=6).

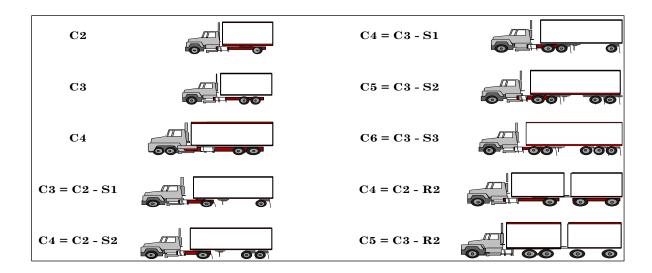


Ilustración 6 Descripción de tipos de vehículos según INVIAS

Tabla 2 Esquema de tipos de vehículos según Ministerio de transporte

	TIPO DE VEHÍCULO	ESQUEMA
	AUTOS	
	Buseta	
BUSES	Bus	
	Bus Metropolitano	
C2-P	Camión de dos ejes pequeños	

C2-G	Camión de dos ejes grandes	
	Camión C3	
	Camión C4	
C3 Y C4	Tractor-Camión C2-S1	
	Tractor-Camión C2-S2	
	Tractor-Camión C3-S1	
C5	Tractor-Camión C3-S2	
> C5	Tractor-Camión C3-S3	

4.4. Análisis y resultados del tránsito promedio diario semanal

A continuación, se hace el análisis específico para determinar el Tránsito Promedio Diario Semanal (TPDs).

4.4.1. Tránsito promedio diario semanal (TPDs).

Es el número de vehículos que circulan durante un periodo el cual se produce en la zona de influencia del proyecto como consecuencia de la evolución previsible de sus parámetros característicos y coincide, por tanto, con el que circulará por la red si no se realizara el proyecto. Esta componente se determina a través del análisis de la serie histórica de tránsito, si esta existe, o de un conteo vehicular. (TPDs).

Análisis y resultados tránsito promedio diario semanal. El cálculo del tránsito promedio diario semanal se adelantó a través de la información primaria obtenida en campo de la siguiente manera para completar los 7 días de la semana:

Se aforaron dos días típicos de la semana, para el caso jueves y viernes, los datos obtenidos de este conteo se sumaron, este resultado se dividió en 2 para sacar el promedio de los días típicos seleccionados, y este resultado se multiplicó por 5 días típicos que comprende la semana.

Se aforo un día atípico de la semana, en este caso el sábado, el resultado de este se multiplicó por 2 que son los días atípicos de la semana.

Los resultados obtenidos mediante la operación de los días típicos y atípicos se suman y se dividen en 7 que son los días totales de la semana; el resultado obtenido corresponde al TPD semanal del tramo estudiado.

Para el cálculo del Tránsito promedio diario semanal TPDs a partir de los volúmenes vehiculares para dos días típicos y uno atípico se utilizó la siguiente expresión:

$$TPDs = \frac{(PROMEDIO DIAS TIPICOS \times 5) + (DIA ATIPICO \times 2)}{7}$$

$$TPDs = \frac{(5024,5x 5) + (4724 x 2)}{7}$$

$$TPDs = 34570,50 \text{ veh/sem}$$

En la Tabla 3, se registra el volumen de transito obtenido durante los días aforados en ambos sentidos de circulación.

Para ver los formatos de campo empleados en el conteo manual vehicular, donde se registran los volúmenes de tránsito durante los tres días aforados en cada movimiento o sentido de circulación, ir al anexo B.

El tránsito promedio diario semanal obtenido con la información del aforo vehicular en el sector de la Calle 4ª con Avenida 17ª del Barrio Cúcuta 75, fue de 34571 veh/sem para el año 2019, registrando la siguiente composición vehicular: 93,61% para Automóviles (Vehículos livianos), 6.13% para vehículos de servicios públicos, y 0.26% para camiones, de los cuales el 96.18% corresponde a vehículos C2, y el 3.82% a vehículos C3.

Tabla 3 Composición del tránsito

	RESUMEN COMPOSICIÓN DEL TRÁNSITO						
	A	В		22	С3		
TIPO DE VEHÍCULO	AUTOMÓVIL	BUSETA	C2-P	C2-G	C3	TOTAL VEHÍCULOS	
Semanal	32361,5	2120	74,5	9,5	5	34570,5	
Diario	4623,06	302,74	10,87	1,48	0,49	4938,64	
Porcentaje	93,61	6,13	0,22	0,03	0,01	100	

4.4.2. Análisis y resultados tránsito promedio diario.

El tránsito promedio diario obtenido con la información del aforo vehicular en el sector de la Calle 4ª con Avenida 17ª del Barrio Cúcuta 75 como se puede observar en la Tabla 4, fue de 4939 veh/día para el año 2019, registrando la siguiente composición vehicular: 93,61% para Automóviles (Vehículos livianos), 6.13% para vehículos de servicios públicos, y 0.26% para camiones, de los cuales el 96.18% corresponde a vehículos C2, y el 3.82% a vehículos C3.

Tabla 4 Resumen volumen de tránsito días aforados en ambos sentidos de circulación

F	RESUMEN VOLUMEN DE TRÁNSITO DIAS AFORADOS EN AMBOS SENTIDOS DE CIRCULACIÓN						
		A	В		C2	C3	
FECHA	HORA	AUTOMÓVIL	BUSETA	C2-P	C2-G	C3	TOTAL VEHÍCULOS
18/07/2019	5 am - 10 pm	4653	313	14	2	1	4983
19/07/2019	5 am - 10 pm	4750	303	11	1	1	5066
20/07/2019	5 am - 10 pm	4427	290	6	1	0	4724

4.5. Proyección del transito

Para el diseño de una carretera nueva o la mejora de una existente debe basarse no solo en el tránsito existente sino en el tránsito que se podría tener en el futuro. Sería ideal que una carretera pudiese ser diseñada para que pase cómodamente por ella todo el tráfico que pudiera tener dentro de su vida útil. Pero esto es casi nunca económicamente factible y además es difícil de estimar cual será dicho volumen. Se debe diseñar entonces para el año para el cual se puede estimar el tránsito con una razonable exactitud; por tanto, se trabajará con el tránsito normal o existente antes de la rehabilitación de los tramos de vía en estudio.

4.6.Periodo de diseño

El período de diseño se define como el lapso transcurrido desde que se entrega al servicio la estructura, hasta que los deterioros producidos por el tránsito y los agentes ambientales normales hacen que la vía pierda su funcionalidad. Conviene recordar que, a la luz del conocimiento actual, el diseño de un pavimento constituye un complejo problema físicomecánico donde se interrelacionan variables tan diversas como las asociadas al ambiente, la geometría de las calzadas, las cargas del tránsito, los suelos de soporte, los materiales de construcción y la calidad de la construcción y del mantenimiento.

Los períodos de diseño suelen ser diferentes según se trate de pavimentos asfálticos o rígidos; en los pavimentos asfálticos depende de la importancia de la vía y suelen variar entre 10 y 20 años. Los pavimentos rígidos se acostumbran a diseñar para períodos de 20 años, independientemente de la importancia de la vía, por cuanto los incrementos de espesor y de costo al duplicar el período de diseño no suelen exceder de 10%.

Por las características funcionales de los pavimentos rígidos, se recomienda que el período de diseño sea igual o superior a los 20 años.

De acuerdo a los criterios anteriormente mencionados, que fueron establecidos por el manual para pavimento de concreto del INVIAS, se tomó como periodo de diseño (20) años.

Para la elección del periodo de diseño de la alternativa de pavimento flexible, dado el bajo nivel de tránsito de las vías en estudio y según la tabla 5, se ha considerado prudente adoptar un periodo de diseño estructural de diez (10) años.

Tabla 5 Periodos típicos de diseño pavimentos flexibles

Tipo de carretera	Período de diseño
	(Años)
Urbana de tránsito elevado	30 - 50
Interurbana de tránsito elevado	20 - 50
Pavimentada de baja intensidad de tránsito	15 - 25
De baja intensidad de tránsito,	10 - 20
pavimentación con grava	

Fuente: **American Association of State Highway and Transportation Officials**. (1993). Guía para el diseño de estructuras de pavimentos. Ottawa: AASTHO.

4.7. Carga de diseño equivalente

Estructuralmente, la carga de los automóviles y otros vehículos livianos se considera como despreciable frente al tránsito de vehículos de carga que se estiman en un pequeño porcentaje de cargas pesadas, por tal motivo esos vehículos se suelen ignorar o no tener en cuenta para los cálculos de tránsito destinados al diseño de pavimentos. Todo vehículo que circula por un pavimento causa en este y en la subrasante, deformaciones, esfuerzos y deflexiones, la cual genera una gran cantidad infinitesimal de daño en la estructura. Las cantidades de daño aumentan a medida que las repeticiones de carga se acumulan, disminuyendo así la vida útil del pavimento.

4.7.1. Cálculo de Factor Camión.

Es el parámetro empírico que permite convertir el tránsito real en aplicaciones equivalentes del eje de referencia para diseño de pavimentos asfálticos. El factor camión es el número de ejes simples equivalentes de referencia (80 KN) que producirían en el pavimento un daño equivalente al de una pasada de un vehículo comercial promedio.

A continuación, en la Tabla 6 se presenta la distribución de vehículos, ejes y factores daños de 8.2 ton adoptado del INVIAS.

Tabla 6 Distribución de vehículos, ejes y factores daño de 8.2 ton

		•		
	Tipo de vehículo	Factor daño	Configuración en ejes*	Carga máxima (ton.)
		INVÍAS (2003)	-	
	Automóvil	0.0	2S	-
A	Campero	0.0	2S	-
	Camioneta	0.0	2S	-

	Microbús	0.0	2S	-
	Buseta	0.05	2S	16
_	Bus	0.40	2S	17
В —	Bus Metropolitano	1.0	2S	17
_	Bus Alimentador	2.51	2S	20
	C2-P	1.14	2S	16
_	C2-G	2.15	2S	17
_	C3	3.15	1S+1T	28
_	C2-S1	3.13	3S	27
\mathbf{c}^-	C4	6.73	2T	34
_	C3-S1	2.33	2S+1T	39
_	C2-S2	2.27	2S+1T	39
_	C3-S2	4.21	1S+2T	50
_	C3-S3	5.31	1S+1T+1Tr	52

Fuente: Adoptado del libro Pavimentos: materiales, construcción y diseño. Bogotá: ECOE ediciones.

Cálculo del factor camión de vehículos comerciales. A continuación, mediante la siguiente fórmula se calculará el factor camión de vehículos comerciales. El vehículo comercial, es el vehículo automotor de cuanto menos dos ejes, que comprende bus, busetas, volquetas, y camiones.

FC camiones =
$$\frac{\Sigma Fd * \%C}{\Sigma \%C}$$

FC camiones = $(1.14 * 0.0022) + (2.15*0.0003) + (3.15 * 0.0001)$
 0.0026

FC camiones = 1.33

Sabiendo que el factor daño de las busetas es de 0.05, el porcentaje de busetas es 6.13% y el porcentaje total de camiones es 0.26%, entonces el factor camión de buses y camiones se calculará de la siguiente manera:

Fc buses + camiones =
$$\frac{\%B * Fcb + \%C * Fcc}{\%B + \%C}$$

Fc buses + camiones = $0.\underline{0613 * 0.05 + 0.0026*1.33}$
 $0.0613 + 0.0026$

Fc buses + camiones = 0.102

4.8. Número de ejes equivalentes de 8.2 ton.

El análisis de tránsito para el diseño de espesores de pavimentos, es posiblemente la variable más importante en el diseño de una vía, pues, si bien el volumen y dimensiones de los vehículos influyen en su diseño geométrico, el número y el peso de los ejes de estos son factores determinantes en el diseño de la estructura del pavimento.

El análisis se basa en el tránsito que se presenta en la vía, así como en sus proyecciones, para finalmente llegar a obtener el Número de Ejes Equivalentes que utilizará el pavimento durante la vida útil de éste.

Un pavimento debe ser diseñado para soportar el tránsito inicial y aquel que pase durante su vida de servicio. A continuación, se detalla el procedimiento empleado para la evaluación del tránsito de diseño expresado en el Número de Ejes Equivalentes, NEE.

4.8.1. Procedimiento de cálculo.

Utilizando los siguientes parámetros, se determina el número acumulado de repeticiones esperadas del eje sencillo equivalente a 8.2 toneladas, que se presenta en el carril de diseño durante el período de diseño, tal como se describe a continuación:

$$N = TPD * VC * DD * DC * FC * 365 * (1+r)^n - 1$$

$$Ln (1+r)$$

TPD= Tránsito promedio diario en ambas direcciones, durante el año.

VC= Proporción de vehículos comerciales (en cifras decimales).

DD= Distribución direccional del tránsito de vehículos comerciales (en cifras decimales).

DC= Distribución por carril.

FC= Factor camión de vehículos comerciales

r = Tasa de crecimiento del tránsito

n = Periodo de diseño de la estructura de pavimento flexible

Factor direccional. El INVIAS en el manual de diseño para este tipo de carreteras establece que el factor direccional (Fd) se estipula con base al ancho de carril como se denota en la Tabla 7. Para el caso, el ancho de vía promedio determinado para el diseño es de 6 m, por tanto, el factor direccional es 0.50.

Tabla 7 Factor direccional por ancho de vía

Ancho de la calzada	Tránsito de diseño	Fd
Menos de 5 m	Total en los dos sentidos	1.0
Igual o mayor de 5 m y menor de 6 m	3/4 del total en los dos sentidos	0.75
Igual o mayor de 6 m	1/2 de total en los dos sentidos	0.50

Fuente: Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.

Factor de distribución por carril. Se define por el carril de diseño aquel que recibe el mayor número de ESAL's. Para un camino de dos carriles, cualquiera de las dos puede ser el carril de diseño, ya que el tránsito por dirección forzosamente se canaliza por ese carril. Para caminos de varios carriles, el de diseño será el externo, por el hecho de que los vehículos pesados van en ese carril. Para el caso, puesto que el número de carriles en una sola dirección es 1, el factor de distribución del carril de diseño sería 1. Ver Tabla 8.

Tabla 8 Factor de distribución por carril

Número total de carriles en cada	Factor de
dirección	distribución para el
	carril de diseño
1	1.00
2	0.90
3	0.75

Fuente: American Association of State Highway and Transportation Officials. (1993). Guía para el diseño de estructuras de pavimentos. Ottawa: AASTHO.

Tasa de crecimiento del tránsito. Para la elección de la tasa de crecimiento del tránsito, con base en la información registrada en la Tabla 8 obtenida del análisis de las series históricas del Instituto Nacional de Vías, se pudo establecer la tasa de crecimiento. Se tomará 4% como valor para la tasa de crecimiento, teniendo en cuenta que este es el valor para un TPDS > 10.000, que según el conteo manual realizado el TPDS fue de 34.571 veh/sem.

Tabla 9 Tasas promedio de crecimiento del tránsito

TPDS	TASA DE CRECIMIENTO (
	Total Vehículos	Vehículos Comerciales
< 500	6.0 - 6.5	5.5 -6.0
500 -1000	5.7 - 6.3	5.5 - 6.0
1000 –2500	4.5 - 5.5	4.0 - 5.0
2500 -5000	4.5 - 5.5	4.0 - 5.0
5000 –10000	4.5 - 5.5	4.0 - 5.0
>10000	4.0 - 6.0	3.0 - 5.0

Fuente: Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.

- 4.9. Cálculo del número de ejes equivalentes de 8.2 ton.
- 4.9.1. Cálculo del número de ejes equivales de 8.2 toneladas en el carril de diseño para una estructura de pavimento flexible con periodo de diseño de 15 años.

Mediante la ecuación se obtuvo:

$$N = 4939* \ 0.0639* \ 0.5*1* \ 0.102* \ 365* \ \underline{(1+0.04)^{15} - 1}$$
 Ln (1+0.04)

N= 119974.6034

N=0.11997 X 10⁶ (Para un periodo de diseño de 15 años)

Para la elección del nivel de tránsito, según la Tabla 10 para un número de ejes equivalentes de 80 kN de 119970, el tránsito se clasifica en nivel T1.

Tabla 10 Categorías de tránsito

Nivel de tránsito	Número de ejes equivalentes de 80 kN durante el período de diseño en el carril de diseño
T1	< 150.000
T2	150.000 - 500.000

Fuente: Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.

4.9.2. Cálculo del número de ejes equivales de 8.2 toneladas en el carril de diseño para una estructura de pavimento rígido con período de diseño de 20 años.

Mediante la ecuación se obtuvo:

$$N = 4939* \ 0.0639* \ 0.5*1* \ 0.102* \ 365* \ \underline{(1+0.04)^{20}-1} = 178420.233$$

$$Ln\ (1+0.04)$$

N=0.17842 X 10⁶ (Para un periodo de diseño de 20 años)

Para la elección de la categoría de tránsito, según la Tabla 11 para un número de ejes equivalentes de 80 kN de 178420, el tránsito se clasifica en la categoría T2.

Tabla 11 Niveles de tránsito

Nivel de tránsito	Número de ejes equivalentes de 80 kN durante el período de diseño en el carril de diseño
T1	< 150.000
T2	150.000 - 500.000

Fuente: Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.

5. Estudio geotécnico

5.1. Recopilación de la información geotécnica

La obtención de la información geotécnica requerida para el proyecto desarrollado se logró conseguir mediante la exploración de campo, extracción de muestras de suelo y la realización de los ensayos correspondientes en el laboratorio de suelos civiles de la Universidad Francisco de Paula Santander.

Los estudios de suelos se elaboraron con el fin de obtener las características físicas y mecánicas del suelo; para la determinación del CBR de campo se empleó el método del cono dinámico de penetración. El ensayo de CBR evalúa la resistencia al esfuerzo cortante de un suelo para calcular la calidad del terreno como subrasante, sub base y base de pavimentos, su valor es expresado en porcentaje, como razón de la carga unitaria que se requiere para introducir un pistón a la misma profundidad en una muestra tipo de piedra partida.

A continuación, en la Tabla 12, Ensayos de laboratorio realizados, se reflejan los ensayos de laboratorio ejecutados con sus respectivas normas, para la determinación de las características físicas y mecánicas del suelo.

Tabla 12 Ensayos de laboratorio realizados

N° DE ENSAYOS	ENSAYOS	NORMAS
6	Determinación en laboratorio del contenido de agua (humedad) en suelo, roca y mezcla de suelo o agregado.	NORMAS I.N.V.E 122 - 07 ASTM D 2216
6	Análisis granulométrico por tamizado con lavado.	NORMAS I.N.V.E 123 - 07 ASTM D 422 AASHTO T88 NLT 104
6	Clasificación de suelos.	ASTM D 2487
6	Determinación del límite líquido, límite plástico e índice de plasticidad de los suelos.	NORMAS I.N.V.E 125 - 07, I.N.V.E 126 - 07 AASHTO T 89-790 NLT 105-105
6	Ensayo CBR mediante cono dinámico de penetración.	NORMA I.N.V.E - 172 - 07

5.2. Estudio de suelo

Con la finalidad de evaluar la capacidad de soporte de la sub-rasante se realizaron exploraciones tomando muestras a cada estrato de suelo observado ejecutando seis (6) apiques, que permitió observar las propiedades de los materiales gracias a los ensayos de humedad natural, granulometría con lavado por tamizado, caracterización del suelo por medio de los métodos SUCS y AASHTO, límites de Atterberg o consistencia, y CBR de la sub-rasante mediante el método del cono dinámico de penetración. La exploración e inspección del suelo correspondiente a los tramos de vía del proyecto, se llevó a cabo durante el mes de Julio del año 2019 realizando seis (6) apiques de un (1) metro de profundidad cada uno. En el anexo C se presentan los resultados de los ensayos de laboratorio realizados.

Posteriormente, en la Figura 7, se ilustra la distribución de los apiques realizados a lo largo de los tramos de vía en estudio.

Ilustración 7 Localización de apiques efectuados

Apique N°1 se encuentra localizado en el tramo 1 con abscisa K0+127.99.

Apique N°2 se encuentra localizado en el tramo 1 con abscisa K0+292.70.

Apique N°3 se encuentra localizado en el tramo 2 con abscisa K0+155.19.

Apique N°4 se encuentra localizado en el tramo 2 con abscisa K0+337.55

Apique N°5 se encuentra localizado en el tramo 2 con abscisa K0+466.15.

Apique N°6 se encuentra localizado en el tramo 3 con abscisa K0+79.03.

5.2.1. Resumen resultados obtenidos del estudio geotécnico.

Los ensayos de laboratorio permitieron identificar los tipos de suelos existentes a lo largo de 1129 m de vía, y presentar las características de cada uno de los tramos para desarrollar el diseño de la estructura de pavimento.

Tramo 1. (K0+000 a K0+385.15). Comprende: Calle 3 entre Avenidas 20 y 21, Avenida 20 entre Calles 3 y 4^a, Calle 4^a entre Avenidas 20 y 19^a, y Avenida 19^a entre Calles 3 y 4^a. En el tramo 1 se realizaron (2) dos apiques. La muestra tomada en el apique #1 efectuado, arrojó las siguientes características: Suelo limoso de baja plasticidad color naranja, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 45.95%, y finos del 54.05%. El suelo presenta valores promedios de límite de líquido del 17.06%, límite plástico del 13.09%, índice de plasticidad del 3.98% y humedad natural del 7.56%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 6.6% y a una profundidad de (0.20m – 0.90m) fue de 7.5%. Se tomó el valor de CBR más crítico o bajo que fue de 6.6%. La muestra tomada en el apique #2 efectuado, arrojó las siguientes características: Suelo limoso de baja plasticidad color naranja, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 46.16%, y finos del 53.84%. El suelo presenta valores promedios de límite de líquido del 16.76%, límite plástico del 13.05%, índice de plasticidad del 3.71% y humedad natural del 7.85%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 8.1% y a una profundidad de (0.20m - 0.90m) fue de 3.4%. Se tomó el valor de CBR más crítico o bajo que fue de 3.4%.

Tramo 2. K0+000 a K0+508.82: Comprende: Calle 4ª entre Avenidas 19 y 19ª, Avenida 19 entre Calles 3 y 4^a, Calle 4^a entre Avenidas 19 y 18^a, Avenida 18^a entre Calles 3 y 4^a, Calle 4^a entre Avenidas 18^a y 18, y Avenida 18 entre Calles 3 y 4^a. En el tramo 2 se realizaron (3) tres apiques. La muestra tomada en el apique #3 efectuado, arrojó las siguientes características: Suelo limoso de baja plasticidad color naranja, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 46.69%, y finos del 53.31%. El suelo presenta valores promedios de límite de líquido del 17.35%, límite plástico del 12.80%, índice de plasticidad del 4.55% y humedad natural del 7.01%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 33.7% y a una profundidad de (0.20m - 0.90m) fue de 4.8%. Se tomó el valor de CBR más crítico o bajo que fue de 4.8%. La muestra tomada en el apique #4 efectuado, arrojó las siguientes características: Suelo limoso de baja plasticidad color naranja, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 45.87%, y finos del 54.13%. El suelo presenta valores promedios de límite de líquido del 17.09%, límite plástico del 13.09%, índice de plasticidad del 4.00% y humedad natural del 7.15%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 14.1% y a una profundidad de (0.20m – 0.90m) fue de 3.2%. Se tomó el valor de CBR más crítico o bajo que fue de 3.2%. La muestra tomada en el apique #5 efectuado, arrojó las siguientes características: Suelo limoso de baja plasticidad color naranja, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 45.95%, y finos del 54.05%. El suelo presenta valores promedios de límite de líquido del 15.44%, límite plástico del 11.70%, índice de plasticidad del 3.74% y humedad natural del 8.34%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 7.8% y a una profundidad de (0.20m – 0.90m) fue de 3.2%. Se tomó el valor de CBR más crítico o bajo que fue de 3.2%.

Tramo 3. **K0+000 a K0+234.76:** Comprende: Calle 4ª entre Avenidas 17ª y 18, y Avenida 17ª entre Calles 3 y 4ª. La muestra tomada en el apique #6 efectuado, arrojó las siguientes características: Suelo limoso, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 45.95% y finos del 54.05%. El suelo presenta valores promedios de límite de líquido del 15.44%, límite plástico del 11.70%, índice de plasticidad del 3.74% y humedad natural del 7.15%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 13.55% y a una profundidad de (0.20m – 0.90m) fue de 6.4%. Se tomó el valor de CBR más crítico o bajo que fue de 3.4%.

5.3. Determinación CBR de diseño

Con base a los CBR obtenidos de campo se calcula el CBR de diseño del proyecto.

Se ordenan los valores de resistencia de menor a mayor y se determina el número y el porcentaje de valores iguales o mayores de cada uno. Ver Tabla 13.

Tabla 13 Cálculo C.B.R de diseño

No.	SUBRASANTE (%CBR)	%CBR ORDENADOS DE MENOR A MAYOR	MAYORES O IGUALES A EL MISMO	% MAYORES O IGUALES A ELMISMO
1	6.6	3.2	6	100
2	3.4	3.2	6	100
3	4.8	3.4	4	67
4	3.2	3.4	4	67
5	3.2	4.8	2	33
6	3.4	6.6	1	17

Se dibuja un gráfico que relacione los valores de C.B.R. con los porcentajes anteriormente calculados (Tabla 13) y en la curva resultante se determina el C.B.R, para el percentil elegido que, para este caso, según la Tabla 13 debe ser 75%, al cual le corresponde, un número de ejes de 8.2 toneladas en el carril de diseño, de 10⁶.

Tabla 14 Límites para selección de resistencia

Número de ejes de 8.2	Percentil a		
toneladas en el carril de diseño	seleccionar para hallar la		
(N)	resistencia		
<10^4	60		
10^4 - 10^6	75		
>10^6	87.5		

5.3.1. Cálculo del C.B.R. de diseño método percentil.

Se calculó el CBR del proyecto mediante el método percentil como se puede observar en la Figura 8, C.B.R del proyecto.

Ilustración 8 C.B.R del proyecto

Valor de CBR de diseño del proyecto: 3.4%

5.4. Verificación capacidad de soporte

Es necesario verificar que la capacidad de soporte del material que será considerado como subrasante alcance un valor mayor al 3% como resultado del ensayo de CBR definido en las especificaciones INVIAS, ya que, Según el Manual de Diseño de Pavimentos Asfálticos para Vías con Bajos Volúmenes de Tránsito, resultados menores al 3% de CBR, en el ensayo de Relación Suelo Soporte (Norma INVIAS I.N.V E-148), representan suelos blandos de baja calidad para una subrasante.

De acuerdo al valor obtenido del CBR de diseño del proyecto de 3.4%, y a la Tabla 15, Uso de la subrasante de acuerdo al CBR, se tiene una estructura de soporte apta para la estructura de pavimento, se dice o se concluye que la clasificación cualitativa del suelo como subrasante para el CBR del proyecto, es pobre.

Tabla 15 Uso de la subrasante de acuerdo al CBR

CBR%	Clasificación general	Usos
0 - 3	Muy pobre	Subrasante
3 - 7	Pobre a regular	Subrasante
7 - 20	Regular	Subbase
20 - 50	Bueno	Subbase y Base
>50	Excelente	Base

Fuente: Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.

Valor de CBR de diseño del proyecto = 3.4%

5.4.1. Valor de CBR adoptado con estabilización.

Como el valor de C.B.R del proyecto es muy bajo, se requiere aplicar un método de estabilización del suelo de sub rasante, con el fin de lograr la consistencia y mejoramiento de la calidad de la sub rasante. En este caso, el suelo del proyecto deberá ser tratado para obtener un incremento de la capacidad portante, por lo menos hasta un 7%, con cualquier método de

estabilización, por obligatoriedad, ya sea mediante aplicación de silicato de sodio como estabilizante del suelo, adición de cal y aditivos, o con uso de geotextil tejido como estabilizador. Por tanto, el valor de CBR adoptado tratando el suelo y aumentando su capacidad de soporte fue de 7%.

Valor de CBR adoptado con estabilización = 7%

6. Estudio topográfico

6.1.Trabajo en campo

6.1.1. **Poligonal.**

La poligonal que se realizó fue una poligonal abierta, materializando las referencias o deltas, con estacas o puntillas, en la poligonal.

6.1.2. Levantamiento topográfico.

Para el levantamiento topográfico, se realizaron las siguientes actividades, así:

- Inicia la labor de campo realizando una poligonal abierta, tomando como referencia dos puntos de coordenadas tomadas con el GPS MAP 60CSX.
- Tomadas las coordenadas se inicia la poligonal abierta con la radiación de los detalles necesarios como son los diferentes puntos de nivel, detalles de la vía, etc.
- Una vez obtenida la información de campo se procesa para la obtención de la cartera de oficina donde se obtienen las coordenadas de los detalles tomados.
- Obtenida la cartera de oficina, lo convertimos en un archivo **txt**, para importar la nube de puntos obtenida en la poligonal en el SOFTWARE AUTOCAD 2014 y se realiza el plano total de la vía.

6.1.3. Referencia del equipo

El equipo utilizado fue: **Estación total SOUTH 355** revisada, calibrada y sometido a pruebas técnicas.

6.2. Comisión de topografía

6.2.1. **Personal.**

Para el levantamiento topográfico, se requirió integrar el siguiente personal, así:

- Topógrafo 1
- Cadeneros 2

6.2.2. **Equipo utilizado.**

Para el levantamiento topográfico, se emplearon los siguientes equipos, así:

- Estación total SOUTH 355
- Trípode
- 2 bastones de 5.1 m
- 2 prismas
- Herramienta menor

6.3. Productos generados

6.3.1. Datos convencionales.

Carteras de oficina, coordenadas (Ver anexo A)

6.3.2. Esquemas.

Plano en planta de la vía del proyecto, perfil de terreno (eje) y secciones típicas o transversales (Ver anexo H)

6.4. Plano topográfico

Los planos se encuentran en el anexo H, el cual contiene: Plano en planta de la vía del proyecto y perfil de terreno (eje).

6.5. Resultados

Los datos obtenidos se tomaron con equipos de topografía (estación digital, prisma, y cinta métrica), además se contó con la asesoría y colaboración de personal experto en el tema.

El trabajo de campo se realizó durante el mes de Octubre de 2019, se llevó a cabo el abscisado junto con la demarcación del eje tomando como punto de referencia los postes existentes para facilitar su posterior ubicación. Esto se tuvo en cuenta con el fin de que sirvieran como puntos de referencia a la comunidad en el caso de que se logre ejecutar este proyecto.

Al obtener las coordenadas de los puntos con sus respectivas cotas se procedió a digitalizar los datos, mediante la ayuda de AutoCAD 2015 y su respectivo complemento CivilCAD 2015 se consiguió calcular las curvas de nivel.

Perfiles longitudinales. Con el estudio topográfico ejecutado se logró analizar los perfiles longitudinales de las vías del proyecto, arrojando las siguientes características mostradas en la tabla 16.

Tabla 16 Resumen información arrojada del perfil longitudinal

		*				
IN	FORMACIÓN	N ARROJADA	A DEL PERFIL	LONGITUDIN	NAL	
TRAMOS	ABSC	CISAS	PENDIENTE MÁXIMA	PENDIENTE MÍNIMA	PENDIENTE PROMEDIO	PENDIENTE MÁXIMA PERMITIDA
NOMENCLATURA	INICIAL	FINAL	(%)	(%)	(%)	
Calle 3 entre avenidas 21 y 20	0+000	0+142,07	0,41	0,39	0,404	6%
Avenida 20 entre calles 3 y 4	0+140	0+224,1	0,41	0,39	0,401	
Calle 4 entre avenidas 20 y 19a	0+227	0+283,46	0,20	0,11	0,180	
Avenida 19a entre calles 4 y 3	0+283,46	0+384,11	0,36	0,33	0,351	
Calle 3 entre avenidas 19a y 19	0+384,11	0+435,81	0,44	0,28	0,358	
Avenida 19 entre calles 3 y 4	0+434,11	0+532,55	0,45	0,41	0,420	
Calle 4 entre avenidas 19a y 19	0+000	0+083,32	0,33	0,21	0,244	
Calle 4 entre avenidas 19 y 18a	0+080	0+152,53	0,28	0,27	0,279	
Avenida 18a entre calles 4 y 3	0+149,05	0+227,82	0,40	0,40	0,400	

Calle 3 entre avenidas 18a y 18	0+237,33	0+295,26	0,48	0,44	0,453
Avenida 18 entre calles 3 y 4	0+295,26	0+379,52	0,42	0,35	0,377
Calle 4 entre avenidas 18a y 18	0+000	0+081,76	0,49	0,42	0,463
Calle 4 entre avenidas 18 y 17a	0+081,40	0+144,35	0,27	0,21	0,243
Avenida 17a entre calles 4 y 3	0+140,87	0+228,23	0,23	0,20	0,206

De la tabla anterior se puede observar que las pendientes promedio obtenidas para cada tramo, están dentro de la pendiente máxima permitida del 6% establecida en el manual de diseño geométrico para vías e intersecciones urbanas.

7. Teoría sobre el diseño de la estructura de pavimento

En el presente capítulo se muestra la parte teórica sobre el diseño de pavimentos rígidos y flexibles mediante los métodos: AASHTO-93 e INVIAS.

7.1.Diseño del pavimento flexible

7.1.1. Elaboración de la alternativa de diseño de una estructura de pavimento flexible por el método AASHTO-93.

La metodología AASHTO-93 utiliza para el diseño de un pavimento flexible un modelo de ecuaciones donde intervienen parámetros relacionados con el tránsito, la serviciabilidad terminal, el módulo resiliente de la sub-rasante, el módulo resiliente de las capas, el coeficiente estructural de las capas, el coeficiente de drenaje de capas granulares, el error desviación estándar combinado de la predicción del tráfico y de la predicción del comportamiento estructural, la desviación estándar normal, y de las condiciones ambientales. Dichos parámetros intervienen en un modelo de ecuaciones, con el objeto de determinar el número estructural de ese pavimento, el cual es llamado (SN). El número estructural (SN) del pavimento, hace referencia a la resistencia estructural de un pavimento que pueda soportar el nivel de carga solicitado, es decir el coeficiente estructural requerido para una combinación de soporte del suelo (Mr), para un número estimado de ejes equivalentes de 8.2 toneladas en el período de diseño (W18), una serviciabilidad terminal (ΔPSI), y de las condiciones ambientales. Para determinar el número estructural, el método se apoya en una serie de ecuaciones que relacionan los coeficientes, con sus respectivos números estructurales, los cuales se calculan con ayuda de un software, (AASHTO 93) el cual requiere unos datos de entrada como son el número de ejes equivalentes a 8.2 toneladas, el índice de pérdida de serviciabilidad, el porcentaje de confiabilidad, el

coeficiente de drenaje de las capas granulares, la desviación estándar normal, el error de la desviación estándar, y el módulo resiliente de la capa a analizar.

Número estructural efectivo. El método general se basa en determinar el número estructural efectivo (SN) aplicando la metodología de coeficientes establecida en la AASHTO 93 que está relacionada con la ecuación (1).

$$SN = a1*D1 + a2*D2*m2 + a3*D3*m3$$
 (1)

Dónde:

ai: Coeficiente estructural de la capa i.

Di: Espesor de la capa i en pulgadas.

mi: Coeficiente de drenaje de la capa i.

- Coeficiente estructural de las capas (a1, a2, y a3). Los materiales usados en cada una de las capas de la estructura de un pavimento flexible, de acuerdo a sus características ingenieriles, tienen un coeficiente estructural «ai». Este coeficiente representa la capacidad estructural del material para resistir las cargas solicitantes.
- Coeficiente de drenaje de capas granulares (m2 y m3). El valor de este coeficiente depende de dos parámetros: la capacidad del drenaje, que se determina de acuerdo al tiempo que tarda el agua en ser evacuada del pavimento, y el porcentaje de tiempo durante el cual el pavimento está expuesto a niveles de humedad próximos a la saturación, en el transcurso del año; dicho porcentaje depende de la precipitación media anual y de las condiciones de drenaje.
- Espesores de carpeta asfáltica y capas granulares (D1, D2 y D3). Una vez se han definido los parámetros anteriores, se deben adoptar espesores mínimos para las capas; la AASHTO recomienda adoptar valores de espesores mínimos para la carpeta asfáltica y la capa base granular, como se muestra en la tabla 17 adaptada de la AASHTO 93, dichos espesores

mínimos están en función del intervalo en el cual se encuentra el número de ejes equivalentes (W18), y el tipo de capa.

Tabla 17 Espesores mínimos

W18X10^6	Espesores mínir	nos en pulgadas	Espesores mínimos e	n centímetros
	Capa asfáltica	Base granular	Capa asfáltica	Base granular
< 0,05	2	4	6	11
0,05 - 0,15	2	4	6	11
0,15 - 0,50	2,5	4	7	11
0,50 - 2,0	3	6	8	16
2,0 - 7,0	3,5	6	9	16
> 7,0	4	6	11	16

Fuente: Adaptada del American Association of State Highway and Transportation Officials. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

Una vez se han definido los parámetros anteriores, se puede estimar el espesor de la capa sub-base granular siguiendo los siguientes criterios:

$$D1* \ge \underline{SN1}$$

$$a1$$
(2)

$$SN1* = a1.D1* \ge SN1 \tag{3}$$

$$D2* \ge \underline{SN2} - \underline{SN1*} \tag{4}$$

a2.m2

$$SN1* + SN2* \ge SN2 \tag{5}$$

$$D3*.a3.m3 + SN1* + SN2* \ge SN3*$$
 (6)

El espesor de la capa de sub base granular (D3) se obtiene reemplazando en los criterios mencionados anteriormente las siguientes variables: los espesores mínimos adoptados para la carpeta asfáltica y para la capa de base granular mediante la tabla 16, el coeficiente estructural de las capas, y el coeficiente de drenaje de las capas granulares, para posteriormente calcular el

número estructural efectivo reemplazando dichas variables obtenidas precedentemente, en la ecuación (1).

Número estructural requerido. Para determinar el número estructural requerido, el método se apoya en la siguiente ecuación:

$$Log(W) = ZR.So + 9,36.Log(SN + 1) - 0,20 + \underline{Log(\Delta PSI/(4,2-1,5))} + 2,32.Log(MR) - 8,07$$

$$0,40 + 1094/(SN + 1)^{5,19}$$

Dónde:

W: Número estimado de ejes equivalentes de 8.2 toneladas en el período de diseño.

ZR: Desviación estándar normal

So: Error desviación estándar combinado de la predicción del tráfico y de la predicción del comportamiento estructural

ΔPSI: Diferencia entre índice de servicio inicial y final

MR: Módulo resiliente de la subrasante (en PSI)

SN_{req}: Número estructural requerido

Determinación de variables para el cálculo del número estructural requerido (SN_{req}). A continuación, se presentan las variables de diseño para el cálculo del número estructural requerido.

- Tránsito (W_{18}). Mediante la realización del estudio de tránsito se obtiene la variable del número de ejes equivalentes a 8.2 toneladas en el carril de diseño para un periodo de vida útil.
- *Confiabilidad (%R)*. Hace referencia al grado de certidumbre o seguridad de una especifica alternativa de diseño, calculando así la probabilidad de que el pavimento pueda soportar el número de repeticiones de la carga que sea aplicada durante su vida útil. A medida que se escoja un R (nivel de confiabilidad) mayor, serán necesarios espesores más grandes.
- Error estándar combinado (So). Este parámetro se define como Error estándar combinado

de la predicción del tráfico y de la predicción del comportamiento estructural. El rango de valores que toma este parámetro esta entre 0,40 y 0,45.

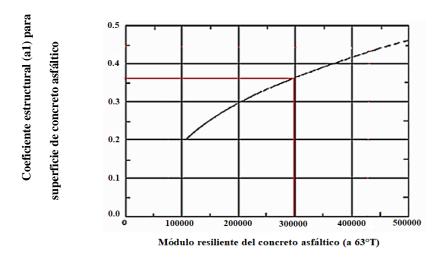
- Índice de serviciabilidad (ΔPSI). La serviciabilidad se usa como una medida del comportamiento del pavimento, la misma que se relaciona con la seguridad y comodidad que puede brindar al usuario (comportamiento funcional), cuando éste circula por la vialidad.

También se relaciona con las características físicas que puede presentar el pavimento como grietas, fallas, peladuras, etc, que podrían afectar la capacidad de soporte de la estructura (comportamiento estructural).

Los factores que influyen mayormente en la pérdida de serviciabilidad de un pavimento son: tráfico, medio ambiente y edad del pavimento Los efectos que causan estos factores en el comportamiento del pavimento han sido considerados en este método. El factor edad (tiempo) no está claramente definido. Sin embargo, en la mayoría de los casos es un factor negativo neto que contribuye a la reducción de la serviciabilidad.

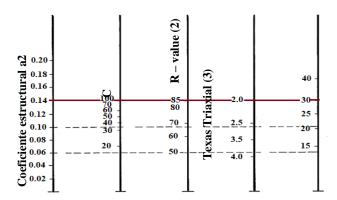
El PSI califica a la superficie del pavimento de acuerdo a una escala de valores de 0 a 5.

El diseño estructural basado en la serviciabilidad, considera necesario determinar el índice de serviciabilidad inicial (P0) y el índice de serviciabilidad final (Pt), para la vida útil o de diseño del pavimento.


La pérdida de serviciabilidad se define como la diferencia entre el índice de servicio inicial y terminal.

$$\Delta PSI = PO - Pt \tag{8}$$

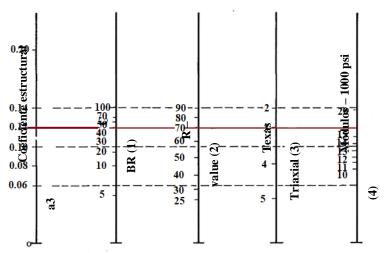
- a) Índice de serviciabilidad inicial (P0): El índice de serviciabilidad inicial (P0) se establece como la condición original del pavimento inmediatamente después de su construcción o rehabilitación.
- b) Índice de serviciabilidad final (Pt): El índice de serviciabilidad final (Pt), ocurre cuando la superficie del pavimento ya no cumple con las expectativas de comodidad y seguridad exigidas por el usuario.
- *Módulo resiliente de la sub-rasante (MR_{sub-rasante})*. El módulo resiliente de sub rasante se calcula con base en el C.B.R de la sub rasante, y mediante la ecuación (9) basada en el criterio de la AASHTO que recomienda emplearla para materiales de sub-rasante con CBR ≤ 7,2%.


$$MR_{Sub-rasante} = 1500 \text{ x } CBR$$
 (9)

- *Módulo resiliente de la carpeta asfáltica (MR_{carpeta asfáltica)*. El módulo resiliente de la carpeta asfáltica se calcula mediante la gráfica 1, adaptada del AASHTO 93, que está en función del coeficiente estructural de la superficie de concreto asfáltica.}

Gráfica 1 1Coeficiente estructural (a1), ábaco para Mr de la superficie de concreto asfáltico
Fuente: **American Association of State Highway and Transportation Officials**. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

- *Módulo resiliente de la capa base granular (MR_{capa base granular)*. El módulo resiliente de la capa base granular se halla mediante la gráfica 2, adaptada del AASHTO 93, y que está en función del coeficiente estructural de la capa base granular.}



- (1) Scale derived by averaging correlations obtained from Illinois (2) Scale derived by averaging correlations obtained from California,
- (2) Scale derived by averaging correlations obtained from California, New México and Wyoming
- (3) Scale derived by averaging correlations obtained from Texas (4) Scale derived on NCHRP project (3)

Gráfica 2 Coeficiente estructural (a2), ábaco para Mr de la base.

Fuente: **American Association of State Highway and Transportation Officials**. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

Módulo resiliente capa sub-base granular (MR_{capa sub-base granular}). El módulo resiliente de la capa sub- base granular se calculó mediante la gráfica 3, adaptada del AASHTO
 93, y que está en función del coeficiente estructural de la capa sub-base granular.

- (1) Scale derived by averaging correlations obtained from Illinois
- (2) Scale derived by averaging correlations obtained from California, New México and Wyoming
- (3) Scale derived by averaging correlations obtained from Texas
- (4) Scale derived on NCHRP project (3)

Gráfica 3 Coeficiente estructural (a3), ábaco para Mr de la sub-base

Fuente: American Association of State Highway and Transportation Officials. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

Cálculo del número estructural requerido (SN_{req}). Para el cálculo del número estructural requerido se hace el reemplazo de las variables anteriormente mencionadas en la ecuación (7).

Verificación de cumplimiento de número estructural requerido y efectivo – AASHTO 93.

Por último, se realiza la comprobación de cumplimiento del número estructural requerido y el efectivo que permite definir si los espesores mínimos supuestos inicialmente cumplen las solicitaciones de carga. El número estructural efectivo obtenido adoptando espesores mínimos debe ser mayor al número estructural requerido para cumplir con las solicitaciones de carga.

$$SN_{requerido} \leq SN_{efectivo}$$
 (CUMPLE)

7.1.2. Elaboración diseño de pavimento flexible por método INVIAS.

El método INVIAS está basado en una combinación de métodos y la teoría fundamental de comportamiento de estructuras y materiales. Las cartas para la determinación de los espesores

de las estructuras se desarrollaron con base en el Método AASHTO. El catálogo cubre los tipos de pavimentos, suelos, materiales que actualmente se utilizan en el diseño y construcción de vías en el país.

El diseño considera condiciones ambientales como la temperatura media anual que se puede presentar desde menos de 13 °C o hasta 30 °C y la precipitación media anual que varía desde menos 2000 a mayor a 4000 mm; en el caso de la resistencia a la subrasante se considera el valor promedio del suelo predominante en cada sector homogéneo definido y establece diferentes categorías que inician desde suelos con CBR menores a 3% que requieren la estabilización del suelo o el reemplazo parcial, o hasta suelos con un CBR mayor a 15%. El siguiente parámetro que evalúa el Método INVIAS es el tránsito de diseño que corresponde al número de ejes equivalente de 8.2 Ton en el carril de diseño durante el periodo de diseño del pavimento que varía desde 0.5 E6 hasta 40 E6 el cual posteriormente para garantizar una confiabilidad del 90% se mayora por 1.159, lo que nos brinda el tránsito de diseño. Definida la región climática, la categoría de la sub-rasante y de tránsito, se determina de las seis (6) cartas de diseño que presenta el manual, cual es la que corresponde a estas características y se procede a observar los espesores de las capas de pavimento recomendados.

Para el diseño del pavimento flexible por el método INVIAS se tienen en cuenta los siguientes parámetros: climáticos (temperatura, humedad y precipitación), tránsito y tipo de suelo dimensionamiento de pavimentos.

Variables de diseño. A continuación, para el cálculo de los espesores de la estructura de pavimento flexible por el método INVIAS se requiere la determinación de las variables de diseño como:

- Factores ambientales y climáticos. El municipio de San José de Cúcuta referente a la información climática, cuenta dentro de su área de jurisdicción con una estación del IDEAM que permite tener información puntual respecto a Temperatura, Precipitación, Humedad Relativa, entre otras.

Estación meteorológica, del Aeropuerto Camilo Daza del IDEAM, ubicada en el Municipio de Cúcuta, cuyas coordenadas son: 7°56' Latitud Norte y 72°31' Longitud Oeste, con una elevación de 250 m.s.n.m.

Clima: La temperatura de Cúcuta en la zona urbana tiene una temperatura media de 28°C. Las temperaturas más altas oscilan entre 27 °C y 34 °C y las más bajas oscilan entre 21 °C y 24 °C. La precipitación media anual es moderada: 806 mm según datos IDEAM estación meteorológica Aeropuerto Camilo Daza.

- *Nivel de tránsito*. La designación del tránsito se establece de acuerdo al número de ejes equivalentes de 8.2 toneladas durante el periodo de diseño en el carril de diseño, según el INVIAS que establece la siguiente tabla:

Tabla 18Niveles de tránsito para vías con volúmenes bajos

Nivel de tránsito	Número de ejes equivalentes de 8.2 Toneladas durante el período de diseño en el carril de diseño		
T1	< 150.000		
T2	150.000 - 500.000		

Fuente: Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.

- *CBR de diseño*. Para el cálculo del CBR de la sub rasante se deben tomar muestras inalteradas del suelo, para realizar el respectivo ensayo de laboratorio donde se obtiene la capacidad de soporte de la muestra de suelo extraída.

Categoría de sub rasante. Para la selección de la categoría de sub rasante el INVIAS

recomienda la siguiente tabla, donde la categoría de sub rasante está en función del intervalo del módulo resiliente, y el porcentaje de CBR.

Tabla 19 Categorías de subrasante

CATEGORIA	INTERVALO MÓDULO	INTERVALO C.B.R %
	RESILIENTE (E)	
	kg/cm^2	
S1	300 - 500	$3 \le CBR < 5$
S2	500 - 700	5 ≤ CBR < 7
S3	700 - 1000	7 ≤ CBR < 10
S4	1000 - 1500	$10 \le CBR < 15$
S5	> 1500	CBR ≥ 15

Fuente: Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.

7.2. Diseño pavimento rígido

7.2.1. Elaboración de la alternativa de diseño de una estructura de pavimento rígido por el método AASHTO 93.

El diseño del pavimento rígido involucra el análisis de diversos factores: tráfico, drenaje, clima, características de los suelos, capacidad de transferencia de carga, nivel de serviciabilidad deseado, y el grado de confiabilidad al que se desea efectuar el diseño acorde con el grado de importancia de la carretera. Todos estos factores son necesarios para predecir un comportamiento confiable de la estructura del pavimento y evitar que el daño del pavimento alcance el nivel de colapso durante su vida en servicio. Para el diseño del pavimento rígido se seguirá el método AASTHO 93 que se presenta a continuación:

La fórmula general para el diseño de pavimentos rígidos está basada en los resultados obtenidos de la prueba AASHTO. La fórmula es la siguiente:

$$Log W18 = ZRS0 + 7.35 log (D+1) - 0.06 + [log (\Delta PSI/4.5-1.5)]/[1.624 \times 10/(D+1)] + (4.22 - 0.32Pt)$$

$$log [(S´c Cd (D - 1.132))/(215.63J)(D - (18.42/(Ec/k))]$$
(10)

Donde:

W18 = Número de cargas de 18 kips (80 kN) previstas.

ZR = Es el valor de Z (área bajo la curva de distribución) correspondiente a la curva estandarizada, para una confiabilidad R.

S0 = Desvío estándar de todas las variables.

D = Espesor de la losa del pavimento en pulg.

 $\Delta PSI = Pérdida de serviciabilidad prevista en el diseño.$

Pt = Serviciabilidad final.

' c S = Módulo de rotura del concreto en psi.

J = Coeficiente de transferencia de carga.

Cd = Coeficiente de drenaje.

EC = Módulo de elasticidad del concreto, en psi.

K = Módulo de reacción de la subrasante (coeficiente de balastro), en pci (psi/pulg)

El diseño del pavimento rígido mediante el AASHTO 93 consiste en suponer un espesor de losa de concreto e iniciar a realizar tanteos reemplazando en la ecuación (10) dicho espesor supuesto como también todos los factores adicionales de diseño, tales como: confiabilidad, coeficiente de drenaje, desviación estándar, error estándar, pérdida de serviciabilidad prevista en el diseño, índice de serviciabilidad final, módulo de rotura del concreto, coeficiente de transferencia de carga, módulo de elasticidad del concreto, módulo de reacción combinado de la plataforma. Posteriormente se calcula el logaritmo de W18 (es el número de ejes equivalentes a 8,2 toneladas). Por último, si se cumple el equilibrio en la ecuación (10), el espesor supuesto es resultado del problema, de lo contrario se debe asumir otro valor de espesor de losa de concreto y repetir el procedimiento anterior.

Variables de diseño. Las variables de diseño de un pavimento rígido son:

a) Pérdida de serviciabilidad (ΔPSI). La serviciabilidad se define como la habilidad del pavimento de servir al tipo de tráfico (autos y camiones) que circulan en la vía, se mide en una escala del 0 al 5 en donde 0 (cero) significa una calificación para pavimento intransitable y 5 (cinco) para un pavimento excelente. La serviciabilidad es una medida subjetiva de la calificación del pavimento, sin embargo, la tendencia es poder definirla con parámetros medibles. El diseño estructural basado en la serviciabilidad, considera necesario determinar el índice de serviciabilidad inicial (P0) y el índice de serviciabilidad final (Pt), para la vida útil o de diseño del pavimento.

La pérdida de serviciabilidad se define como la diferencia entre el índice de servicio inicial y terminal. Por tanto:

$$\Delta PSI = P0 - Pt$$

Índice de serviciabilidad inicial (P0): AASHTO 93 estableció para pavimentos rígidos un valor inicial deseable de 4.5, si es que no se tiene información disponible para el diseño.

Índice de serviciabilidad final (Pt). El índice de serviciabilidad final (Pt), ocurre cuando la superficie del pavimento ya no cumple con las expectativas de comodidad y seguridad exigidas por el usuario.

- b) Transito (W18). La metodología AASHTO 93 considera la vida útil de un pavimento relacionada al número de repeticiones de carga que podrá soportar el pavimento antes de llegar a las condiciones de servicio final predeterminadas para el camino.
- c) Transferencia de carga. También se conoce como coeficiente de transmisión de carga (J) y es la capacidad que tiene una losa del pavimento de transmitir las fuerzas cortantes con sus losas adyacentes, con el objetivo de minimizar las deformaciones y los esfuerzos en la estructura del pavimento. Mientras mejor sea la transferencia de cargas, mejor será el comportamiento de las losas del pavimento.

La efectividad de la transferencia de carga entre las losas adyacentes depende de varios factores:

- Cantidad de tráfico
- Utilización de pasajuntas
- Soporte lateral de las losas

La utilización de pasajuntas es la manera más conveniente de lograr la efectividad en la transferencia de cargas, por lo que se recomienda su utilización cuando:

- El número de ejes equivalentes de diseño sea mayor de 5.0 millones de ESAL's.

Esta transferencia de cargas se realiza a través de los extremos de las losas (juntas o grietas) y su valor depende del tipo de pavimento, del tipo de borde u hombro y de la colocación de los elementos de transmisión de carga.

- c) Propiedades de concreto. Son dos las propiedades del concreto que influyen en el diseño y en su comportamiento a lo largo de su vida útil.
 - Resistencia a la tensión por flexión o Módulo de Ruptura (MR)
 - Módulo de elasticidad del concreto (Ec). Debido a que los pavimentos de concreto trabajan

principalmente a flexión es recomendable que su especificación de resistencia sea acorde con ello, por eso el diseño considera resistencia del concreto trabajando a flexión, que se conoce como resistencia a la flexión por tensión (S´c) o Módulo de ruptura (MR) normalmente especificada a los 28 días.

 Módulo de elasticidad del concreto (Ec): está relacionado con su módulo de ruptura y se determina mediante la norma ASTM C469. En su defecto correlacionarlo con otras características del material como puede ser su resistencia a la compresión (f´c). Esto es:

$$Ec = 57000* ((f'c*6,4516)/0,4536)^{0.5}$$

Resistencia a la tensión por flexión o Módulo de Ruptura (MR): Es un parámetro muy
importante como variable de entrada para el diseño de pavimentos rígidos, ya que va a
controlar el agrietamiento por fatiga del pavimento, originado por las cargas repetitivas de
camiones. Se le conoce también como resistencia a la tracción del concreto por flexión.

El módulo de rotura se puede determinar a través de la siguiente correlación:

$$MR = 43.5*(Ec/1000000) +488.5$$

e) Resistencia a la sub-rasante. La resistencia a la subrasante se obtiene mediante el módulo de reacción del suelo (K) por medio de la prueba de placa.

El módulo de reacción del suelo corresponde a la capacidad portante que tiene el terreno natural en donde se soportará el cuerpo del pavimento.

 Módulo de reacción de la base granular: se calcula el módulo de reacción de la capa base granular, con base en fórmulas adaptadas del AASHTO, y que están en función de la variable del CBR.

Para valores de CBR≥10% se emplea la siguiente ecuación:

$$K_{\text{base granular}} = 46 + 9.08*(\log(\text{CBR}))^{4.34}$$
 (11)

Para valores de CBR<10% se emplea la siguiente formula

$$K_{\text{base granular}} = 2,55 + 52,5*\log(CBR)$$
 (12)

Módulo de reacción de la sub-rasante: se calcula el módulo de reacción de la sub-rasante, con base en fórmulas adaptadas del AASHTO, y que están en función del CBR.
 Para valores de CBR≥10% se emplea la siguiente ecuación:

$$K_{\text{sub-rasante}} = 46 + 9.08*(\log(CBR))^{4.34}$$
 (13)

Para valores de CBR<10% se emplea la siguiente formula

$$K_{\text{sub-rasante}} = 2.55 + 52.5*\log(CBR)$$
 (14)

- *Módulo de reacción combinado de la plataforma:* A continuación, se calcula el módulo de reacción combinada, con base en la ecuación (15) adaptada del AASHTO, y que está en función de: módulo de reacción de la sub-base granular, módulo de reacción de la sub-rasante, y un valor de espesor asumido para la sub base granular, donde se asume un espesor de capa de sub base granular.

$$K = (1 + ((Espesor asumido sub-base/38)^2 \times (K_{sub-base}/K_{sub-rasante})^{2/3}))^{0.5}$$
 (15)

- f) Drenaje. En cualquier tipo de pavimento, el drenaje es un factor importante en el comportamiento de la estructura del pavimento a lo largo de su vida útil y por lo tanto en el diseño del mismo. Se puede evaluar mediante el coeficiente de drenaje (Cd) el cual depende de:
 - Calidad del drenaje: Viene determinado por el tiempo que tarda el agua infiltrada en ser evacuada de la estructura del pavimento.
 - *Exposición a la saturación:* Porcentaje de tiempo durante el año en que un pavimento esta expuesto a niveles de humedad que se aproximan a la saturación. Este valor depende de la precipitación media anual y de las condiciones del drenaje.
- g) Confiabilidad. La confiabilidad está definida como la probabilidad de que el sistema de pavimento se comporte de manera satisfactoria durante su vida útil en condiciones adecuadas para su operación. Otra manera de interpretar este concepto sería aquélla que la probabilidad de que los problemas de deformación y resistencia estén por debajo de los permisibles durante la vida de diseño del pavimento.
- Error estándar combinado (So): Este parámetro se define como Error estándar combinado de la predicción del tráfico y de la predicción del comportamiento estructural. El rango de valores que toma este parámetro esta entre 0,40 y 0,45.

h) Espesor. El espesor del pavimento rígido es la variable que se pretende determinar al realizar el diseño, el resultado del espesor se ve afectado por todas las demás variables de diseño que intervienen en los cálculos. El diseño del pavimento rígido mediante el AASHTO 93 consiste en suponer un espesor de losa de concreto e iniciar a realizar tanteos reemplazando en la ecuación (10) dicho espesor supuesto, y también todos los factores adicionales de diseño calculados anteriormente (confiabilidad, coeficiente de drenaje, desviación estándar, error estándar, pérdida de serviciabilidad prevista en el diseño, índice de serviciabilidad final, módulo de rotura del concreto, coeficiente de transferencia de carga, módulo de elasticidad del concreto, módulo de reacción combinado de la plataforma, y el espesor de la losa de concreto asumido). Se calcula el logaritmo de W18 (es el número de ejes equivalentes a 8,2 toneladas), y si se cumple el equilibrio en la ecuación (10), el espesor supuesto es resultado del problema, de lo contrario se debe de seguir iterando.

7.2.1. Elaboración de la alternativa de diseño de una estructura de pavimento rígido por el método INVIAS.

El propósito de este método es determinar los espesores mínimos de pavimento que permiten optimizar costos en una obra. Para el diseño del pavimento rígido por el método del INVIAS se tienen en cuenta los siguientes parámetros: CBR, categoría de tránsito, clasificación de las vías y módulo de rotura.

Variable de diseño.

- Clasificación de las vías del proyecto.
- Elección de categoría de tránsito.
- Selección de la sub-rasante de acuerdo a su resistencia.
- Resistencia que deba alcanzar el concreto.

8. Cálculo de los espesores del pavimento y análisis de resultados

En el presente capítulo se lleva a cabo la determinación de los espesores de los pavimentos rígido y flexible, mediante los métodos: AASHTO-93 e INVIAS.

8.1.Determinación espesores de una estructura de pavimento flexible por el método AASHTO-93.

Número estructural requerido. A continuación, se presentan las variables de diseño para el cálculo del número estructural requerido.

 Número de ejes equivalentes a 8.2 Toneladas en el carril de diseño para un periodo de diseño (W18). Teniendo en cuenta los resultados del estudio de tránsito, para un pavimento flexible se obtuvo un número de ejes equivalentes igual a:

 $W18 = 0.11997 \times 10^6$ (Para un período de diseño de 15 años)

W18 = 119974.6034 ejes equivalentes

- *Confiabilidad (%R)*. Para el caso específico del presente proyecto por tratarse de vías urbanas locales, con base en la tabla 20, se adoptó un valor de 80% de confiabilidad.

Tabla 20 Confiabilidad recomendada por AASHTO

Tipo de camino	Zona urbana	Zona rural
Rutas interestatales y autopistas	85 - 99.9	80 - 99.9
Arterias principales	80 - 99	75 - 99
Colectoras	80 - 95	75 - 95
Locales	50 - 80	50 - 80

Fuente: American Association of State Highway and Transportation Officials. (1993). Guía para el diseño de estructuras de pavimentos. Ottawa: AASTHO.

- Desviación estándar normal (Zr). Para el cálculo de la desviación estándar normal a partir

del porcentaje de confiabilidad ya anteriormente determinado, se utilizó la tabla 21 obteniendo para una confiabilidad de 80% un valor de Zr = -0.841.

Tabla 21 Desviación normal estándar (Zr)

CONFIABILIDAD Y
DESVIACIÓN ESTÁNDAR

Confiabilidad (R%)	Desviación normal estándar, Zr
50	0,000
60	-0,253
70	-0,524
75	-0,674
80	-0,841
85	1,037
90	-1,282
91	-1,340
92	-1,405
93	-1,476
94	-1,555
95	-1,645
96	-1,751
97	-1,881
98	-2,054
99	-2,327
99,9	-3,090
99,99	3,750

Fuente: **American Association of State Highway and Transportation Officials**. (1993). Guía para el diseño de estructuras de pavimentos. Ottawa: AASTHO.

- Error estándar combinado (So). Para efectos del presente diseño se tomará con base en la

tabla 22, como error estándar combinado un valor de So = 0.44.

Tabla 22 Error estándar combinado (So)

	SVIACIÓN AR (So)
Pav.	Pav.
Rígido	Flexible
0.34	0.44
0.39	0.49
	ESTÁND Pav. Rígido 0.34

Fuente: **American Association of State Highway and Transportation Officials**. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

- İndice de serviciabilidad (ΔPSI). Para la determinación del índice de pérdida de serviciabilidad se requiere de efectuar primero el cálculo del índice de serviciabilidad inicial y el índice de serviciabilidad final.
- *a) Índice de serviciabilidad inicial (P0):* Con base en la tabla 23, se determinó el índice de servicio inicial (P0), para un pavimento flexible la AASHTO recomienda seleccionar un valor de P0 = 4,2.

Tabla 23 Valores recomendados de índice de servicio (ΔPSI)

	Índice de servicio inicial	Índice de servicio terminal (final del periodo de diseño)				
Tipo de pavimento		Interestatales o autopistas mayores	Arterias principales y colectores	Calles y arterias menores		
Pavimento flexible	4.2	3.0	2.5	2.0		

Fuente: **American Association of State Highway and Transportation Officials**. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

b) Índice de serviciabilidad inicial (Pt): Dependiendo de la importancia de la vialidad, pueden considerarse los valores Pt indicados en la tabla 24, que para calles y arterias menores el valor recomendado y seleccionado fue Pt = 2,0.

Cálculo índice de pérdida de serviciabilidad (ΔPSI): A continuación, se llevó a cabo el cálculo del índice de pérdida de servicio mediante la ecuación (8), y se obtuvo el siguiente resultado:

$$\Delta PSI = 4, 2 - 2, 0$$
$$\Delta PSI = 2, 2$$

Módulo resiliente de la sub-rasante (MR_{sub-rasante}). El módulo resiliente de sub rasante se calcula con base en el C.B.R de subrasante mejorado por estabilización que es de 7,0%, y mediante la ecuación (9) basada en el criterio de la AASHTO que recomienda emplearla para materiales de sub-rasante con CBR ≤ 7,2%.

$$MR_{Sub-rasante} = 1500 \text{ x } CBR$$
 (9)
 $MR_{Sub-rasante} = 1500 \text{ x } 7,0$
 $MR_{Sub-rasante} = 10500 \text{ PSI}$

Cálculo del número estructural requerido (SN_{req}). A continuación, una vez calculadas las variables se realiza el cálculo mediante la ecuación (7).

Para un MR_{subrasante} de 10500 PSI se obtiene:

$$Log(119974.6034) = (-0.841x0.44) + 9.36xLog(SN_{req} + 1) - 0.20 + Log(2.2/(4.2-1.5)) + 2.32xLog(10500) - 8.07$$

$$0.40 + (1094/(SN_{req} + 1)^{5.19})$$

Calcular SN con ayuda de la herramienta solve:

$$SN_{req} = 1,96$$

Número estructural efectivo. A continuación, se presentan las variables de diseño para el cálculo del número estructural efectivo.

- Clima. La temperatura de Cúcuta en la zona urbana tiene una temperatura media de 28°C. Las temperaturas más altas oscilan entre 27 °C y 34 °C y las más bajas oscilan entre 21 °C y 24 °C. La precipitación media anual es moderada: 806 mm según datos IDEAM estación meteorológica Aeropuerto Camilo Daza.

A continuación, en la tabla 24 se dan a conocer los valores mensuales de los principales parámetros meteorológicos según datos IDEAM estación meteorológica Aeropuerto Camilo Daza.

EDIO S	NER O	EBRE RO	ARZ O	BRI L	AYO	UNI O	ULI O	GOS TO	EPTIE MBRE	CTUB RE	OVIE MBRE	ICIEM BRE
REC	6.1	4.9	6.9	01.3	1.9	9.6	7.8	0.9	4.1	47.7	19.8	2.3
o. DÍAS				0	2	3	4	2	3	5	3	
MÁX	6	8.5	8	8.2	7	7	7.5	7.8	7.7	6.6	6	6
MÍN	6.6	6.0	8	8.8	9	7.4	9	8.8	8.6	8.8	8	6.8
M- MÁX	0.3	0.8	1	1.3	2.5	2.5	2.6	3.5	3.6	3.6	0.9	9.7
EMP	5.7	6.2	6.7	6.9	7.6	7.9	7.8	8.2	8.1	8.1	6.3	5.4
M- MÍN	1.2	1.5	2.1	2.6	3.2	3.8	3.5	3.5	3.1	3.1	2.2	1.4
RILL O	08.2	70.2	59.9	41	79.6	71.7	99.7	10.7	98.3	98.3	90	91.3
UMED AD	5	3	4	5	1	3	2	2	5	3	8	9
VAP	60.9	53.9	60	60.6	91.8	15.7	46.4	45.8	13.6	78.8	40.3	39.7

Tabla 24 Valores mensuales de los principales parámetros meteorológicos

Fuente: IDEAM. (sf).

Por medio de la tabla 24 se estableció como temperatura media promedio anual 27 °C y precipitación promedio anual 72 mm.

$$TMAP = 27^{\circ}C$$

Precipitación media anual = 72 mm.

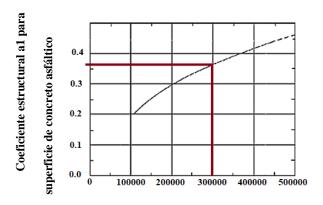
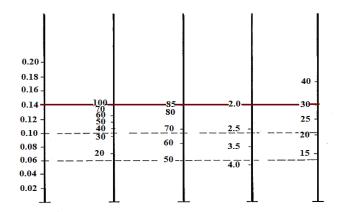

- Coeficiente estructural capa asfáltica (a1). El coeficiente estructural de la carpeta asfáltica se determinó mediante la tabla 25, adaptada del AASHTO. Para una mezcla asfáltica densa MDC-19, y con una temperatura media promedio anual de 27°C, se obtuvo un coeficiente estructural a1 = 0,37.

Tabla 25 Valores de coeficientes estructurales ai

Tipo de capa	Clasificación climática por temperatura	ai	
Descripción de la capa	Nomenclatura		
Mezcla asfáltica densa en caliente	MDC-19	Frío	0.44
		Templado	0.41
		Cálido	0.37
Mezcla asfáltica densa en frío tipo 2	MDF-2	Frío	0.40
		Templado	0.37
		Cálido	0.34
Suelo estabilizado con emulsión asfáltica	BEE-3	Todas las categorías	0.14
Suelo estabilizado con cemento Portland	BEC	Todas las categorías	0.14
Base granular	BG	Todas las categorías	0.14
Subbase granular	SBG	Todas las categorías	0.12
Afirmado que cumple la especificación INV. Artículo 311	AFR-1	Todas las categorías	0.08
Afirmado que no cumple la especificación INV. Artículo 311	AFR-2	Todas las categorías	0.06

Fuente: **American Association of State Highway and Transportation Officials**. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

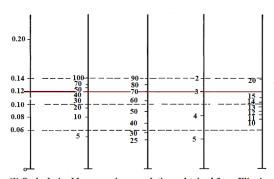

- Coeficiente estructural capa base granular (a2). El coeficiente estructural de la capa base granular se determinó mediante la tabla 26, adaptada del AASHTO. Para una base granular, se obtuvo un coeficiente estructural a2 = 0,14.
- Coeficiente estructural capa sub-base granular (a3). El coeficiente estructural de la capa Sub-base granular se determinó mediante la tabla 26, adaptada del AASHTO. Para una sub-base granular, se obtuvo un coeficiente estructural a3 = 0,12.
- *Módulo resiliente de la carpeta asfáltica (MR*_{carpeta asfáltica)}. El módulo resiliente de la carpeta asfáltica se calculó mediante la gráfica 4. Para un valor de coeficiente estructural de superficie de concreto asfáltico a1 = 0,37, se obtuvo un valor de MR_{carpeta asfáltica} = 300.000 PSI.

Módulo resiliente del concreto asfáltico

Gráfica 4 Coeficiente estructural (a1), ábaco para Mr de la superficie de concreto asfáltico Fuente: American Association of State Highway and Transportation Officials. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

Módulo resiliente de la capa base granular (MR_{capa base granular}). El módulo resiliente de la capa base granular se calculó mediante la gráfica 5. Para un valor de coeficiente estructural de base granular a2 = 0,14, se obtuvo un valor de MR capa base granular = 30.000 PSI.

- (1) Scale derived by averaging correlations obtained from Illinois
- (2) Scale derived by averaging correlations obtained from California, New México and Wyoming
- (3) Scale derived by averaging correlations obtained from Texas (4) Scale derived on NCHRP project (3)


Gráfica 5 Coeficiente estructural (a2), ábaco para Mr de la base

Fuente: American Association of State Highway and Transportation Officials. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

Módulo resiliente capa sub-base granular (MRcapa sub-base granular). El módulo resiliente de la capa sub- base granular se calculó mediante la gráfica 6, adaptada del AASHTO, y que está en función del coeficiente estructural de la capa sub-base granular.

Para un valor de coeficiente estructural de sub-base granular a3 = 0,12, se obtuvo un valor de

- (1) Scale derived by averaging correlations obtained from Illinois (2) Scale derived by averaging correlations obtained from California,
- New México and Wyoming
- (3) Scale derived by averaging correlations obtained from Texas (4) Scale derived on NCHRP project (3)

Gráfica 6 Coeficiente estructural (a3), ábaco para Mr de la sub-base

Fuente: American Association of State Highway and Transportation Officials. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

Capacidad de drenaje. La capacidad del drenaje, se determina de acuerdo al tiempo que tarda el agua en ser evacuada del pavimento. Según la tabla 26, adaptada del AASHTO, para una calidad de drenaje "Bueno" el tiempo que tarda el agua en ser evacuada es de (1) un día.

Tabla 26 Capacidad de drenaje

Capacidad de drenaje	% de tiempo en el que el pavimento está expuesto a niveles de humedad próximos a la saturación					
	Menos del 1%	1 a 5%	5 a 25%	Más del 25%		
Excelente	1.4 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20		
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00		
Regular	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80		
Malo	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60		
Muy malo	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40		

Fuente: American Association of State Highway and Transportation Officials. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

- Coeficiente de drenaje de capas granulares (m2 y m3). El valor de estos coeficientes depende de dos parámetros: la capacidad del drenaje, que se determinó anteriormente, y el porcentaje de tiempo durante el cual el pavimento está expuesto a niveles de humedad próximos a la saturación, en el transcurso del año.

Para el cálculo del porcentaje de tiempo en que la nueva estructura de pavimento estará expuesta a niveles de humedad cercano a la saturación, se adoptó un porcentaje de 43%, basado en las estadísticas del IDEAM, que se reflejan en la tabla 27.

Tabla 27 Boletín clima, estadística del IDEAM

REPÚBLICA DE COLOMBIA
MINISTERIO DE MEDIO AMBIENTE, VIVIENDA Y DESARROLLO
TERRITORIAL INSTITUTO
DE HIDROLOGÍA, METEREOLOGÍA Y ESTUDIOS AMBIENTALES "IDEAM"

MES: SEPTIEMBRE

DÍA: 29

AÑO: 2019

DE HIDROLOGIA, METEREOLOGIA Y ESTUDIOS AMBIENTA GRUPO DE METEREOLOGÍA AERONÁUTICA BOLETÍN DIARIO DEL ESTADO DEL TIEMPO

							TEMI	PERATURA	4 (°C)
Estación Aeropuer	PRECIPITACIÓN (mm)			DÍAS CON LLUVIA		MED DÍA	MÁX DÍA	MÍN DÍA	
to	Dí	Acumula	Promed	Acumula	Promed	ico			
	_ a	do en el	io	do en el	io	relevante			
	29	mes	mensua	mes	mensua		29	29	30
			1		1				
Cúcuta	4,	125,8	70	11	13	Lluvias	26,5	30,2	22,2
	8								

Fuente: IDEAM. (sf). http://www.ideam.gov.co/web/tiempo-y-clima/climatologico-mensual

En la Ciudad de Cúcuta durante el año el promedio mensual de días de lluvias es de 13 días. Entonces anualmente los días de lluvias son 156 días al año, puesto que 13 días*12 meses arrojan 156 días de lluvias en dicho año. Por tanto:

%Días anual = (156 días x 100%)/365 días

%Días anual = 43%

Con base en la tabla 29, adaptada del AASHTO, se llevó a cabo la determinación de *m*2 y *m*3. Para una calidad de drenaje "Bueno" y de acuerdo al tiempo obtenido que tarda el agua en

ser evacuada, que fue de (1) un día, y con base en la obtención del porcentaje de tiempo en que la nueva estructura de pavimento está expuesta a niveles de humedad cercano a la saturación, que fue de 43%, la tabla 28 recomienda un valor de coeficiente de drenaje para las capas granulares de 1. Por tanto, m2 = 1 y m3 = 1.

Tabla 28 Coeficientes de drenaje (mi) recomendados capas granulares

(Calidad de drenaje	% de tiempo en el que el pavimento está expuesto a niveles de humedad próximos a la saturación					
Categoría	Período en que se evacúa el agua	Menos del 1%	1 a 5%	5 a 25%	Más del 25%		
Excelente	2 horas	1.4 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20		
Bueno	1 día	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00		
Regular	1 semana	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80		
Malo	1 mes	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60		
Muy malo	No drenará	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40		

Fuente: **American Association of State Highway and Transportation Officials**. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

- Espesores de capas asumidos. Según la tabla 29 adaptada del AASHTO, para un valor de W18 = 0,119974 x10⁶ ejes equivalentes, se recomienda asumir para la capa asfáltica un espesor mínimo de 2 pulgadas que equivale a 6 cm, y para la capa base granular un espesor mínimo de 4 pulgadas equivalente a 11 cm.

Tabla 29 Espesores mínimos

W18X10^6

	Capa asfáltica	Base granular	Capa asfáltica	Base granular
< 0,05	2	4	6	11
0,05 - 0,15	2	4	6	11
0,15 - 0,50	2,5	4	7	11
0,50 - 2,0	3	6	8	16
2,0 - 7,0	3,5	6	9	16
> 7,0	4	6	11	16

Espesores mínimos en pulgadas Espesores mínimos en centímetros

Fuente: **American Association of State Highway and Transportation Officials**. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

Cálculo del número estructural efectivo (SN). Antes de llevar acabo el cálculo del número estructural efectivo es necesario determinar el espesor de la capa de sub base granular mediante la ecuación 6.

Anteriormente se obtuvieron las siguientes variables:

- **a1** = 0.37 - **a2** = 0,138 - **a3** = 0,121 - **m2** y **m3** = 1
- **D1 espesor mínimo** = 2 pulgadas
- **D2 espesor mínimo** = 4 pulgadas
- **SN3** (**Para un MR sub rasante de 10500**) = 1,96

Reemplazando en las ecuaciones (2), (3), (4), (5) y (6):

```
SN1* = 0.37 \text{ x D1 minimo}_{asfalto}

SN1* = 0.37 \text{ x } 2 = 0.74

SN2* = (D2\text{minimo}_{base g.} \text{ x } 0.14 \text{ x } 1) + SN1*

SN2* = (4 \text{ x } 0.138 \text{ x } 1) + 0.74

SN2* = 1.29

D3 = \underline{SN3 - SN2*}

a3 \text{ x } m3

Para un SN3 de 1.96:

D3 = (1.96 - 1.29)/(0.121 \text{ x } 1)

D3 = 5.537" = 14 \text{ cm}
```

El número estructural efectivo se calculó mediante la ecuación (1), reemplazando las variables calculadas anteriormente, se obtuvo el siguiente resultado:

Para un D3 de 14 cm se obtuvo:

$$SN_{efectivo} = a1.D1 + a2.D2.m2 + a3.D3.m3$$

 $SN_{efectivo} = (0,37 \times 6) + (0,138 \times 11 \times 1) + (0,121 \times 14 \times 1)$
 $SN_{efectivo} = 5,432 \text{ cm}$
 $SN_{efectivo} = 2,14$ "

Verificación de cumplimiento de número estructural requerido y efectivo – AASHTO 93.

Por último, se realiza la comprobación de cumplimiento del número estructural requerido y el

efectivo que permite definir si los espesores mínimos supuestos inicialmente cumplen las solicitaciones de carga. El número estructural efectivo debe ser mayor al número estructural requerido para cumplir con las solicitaciones de carga.

 $\label{eq:comparación} Comparación entre el ~SN_{requerido}~obtenido~con~un~valor~de~CBR~mejorado~de~7\%,~y~el$ $SN_{efectivo}$

$$SN_{requerido} \leq SN_{efectivo}$$

$$1,96 \le 2,14$$
 (CUMPLE)

Espesores de la estructura vial. Para un CBR de 7% se obtuvo una estructura de pavimento conformada por una carpeta asfáltica de 6 cm, base granular de 11 cm, y sub-base granular de 14 cm.

MDC - 19	6 cm
BG - 2	11 cm
SBG - 1	14 cm

Gráfica 7 Estructura de pavimento diseñada por método AASHTO 93 usando CBR de sub rasante mejorado

8.2. Elaboración diseño de pavimento flexible por método INVIAS.

A continuación, para el cálculo de los espesores de la estructura de pavimento flexible por el método INVIAS se requiere la determinación de las variables de diseño como:

- Factores ambientales y climáticos. El municipio de San José de Cúcuta referente a la información climática, cuenta dentro de su área de jurisdicción con una estación del IDEAM que permite tener información puntual respecto a Temperatura, Precipitación, Humedad Relativa, entre otras.

Estación meteorológica, del Aeropuerto Camilo Daza del IDEAM, ubicada en el Municipio de Cúcuta, cuyas coordenadas son: 7°56' Latitud Norte y 72°31' Longitud Oeste, con una elevación de 250 m.s.n.m.

Clima: La temperatura de Cúcuta en la zona urbana tiene una temperatura media de 28°C. Las temperaturas más altas oscilan entre 27 °C y 34 °C y las más bajas oscilan entre 21 °C y 24 °C. La precipitación media anual es moderada: 806 mm según datos IDEAM estación meteorológica Aeropuerto Camilo Daza.

A continuación, se dan a conocer los valores mensuales de los principales parámetros meteorológicos según datos IDEAM estación meteorológica Aeropuerto Camilo Daza.

Tabla 30 Valores mensuales de los principales parámetros meteorológicos

									CEDI	7		1
EDIOS	NERO	EBRER O	ARZO	BRIL	AYO	UNIO	ULIO	GOST O	EMBR1	CTUBR E	OVIEM BRE	ICIEMB RE
REC												
	6.1	4.9	6.9	01.3	1.9	9.6	7.8	0.9	4.1	47.7	19.8	2.3
o. DÍAS												
				0	2	3	4	2	3	5	3	
MÁX												
	6	8.5	8	8.2	7	7	7.5	7.8	7.7	6.6	6	6
MÍN												
	6.6	6.0	8	8.8	9	7.4	9	8.8	8.6	8.8	8	6.8
	7											
M- MÁX	0.3	0.8	1	1.3	2.5	2.5	2.6	3.5	3.6	3.6	0.9	9.7

EMP	5.7	6.2	6.7	6.9	7.6	7.9	7.8	8.2	8.1	8.1	6.3	5.4
•												
M-MÍN	1.2	1.5	2.1	2.6	3.2	3.8	3.5	3.5	3.1	3.1	2.2	1.4
]												
RILLO	08.2	70.2	59.9	41	79.6	71.7	99.7	10.7	98.3	98.3	90	91.3
]												,
UMED	5	3	4	5	1	3	2	2	5	3	8	9
AD												
]	I											
VAP	60.9	53.9	60	60.6	91.8	15.7	46.4	45.8	13.6	78.8	40.3	39.7

Fuente: IDEAM. (sf). http://bart.ideam.gov.co/cliciu/tablas.htm.

Por medio de la anterior tabla, se estableció como temperatura media promedio anual 27 °C y precipitación promedio anual 72 mm.

$$TMAP = 27^{\circ}C$$

Precipitación media anual = 72 mm.

Con base en los datos de temperatura anual, precipitación anual, y la tabla 32 Cúcuta está ubicada en la región R3.

Tabla 31 Precipitación anual

No	REGIÓN	TEMPERATURA TMAP	PRECIPITACIÓN MEDIA
		(°C)	ANUAL (mm)
R1	Fría seca y fría semihúmeda	< 13	< 2000
R2	Templado seco y templado semihúmedo	13 - 20	< 2000
R3	Cálido seco y Cálido semihúmedo	20 - 30	< 2000
R4	Templado húmedo	13 - 20	2000 - 4000
R5	Cálido húmedo	20 - 30	2000 - 4000
R6	Cálido muy húmedo	20 - 30	> 4000

Fuente: Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.

- *Tránsito*. Teniendo en cuenta los resultados del estudio de tránsito para el pavimento flexible, tenemos un número de ejes equivalentes igual a:

 $N=0,119974 \times 10^6$ ejes equivalentes

Con un valor de N=119974 ejes equivalentes, según la tabla 32 la designación del tránsito es T2.

Tabla 32 Niveles de tránsito para vías con volúmenes bajos

Nivel de tránsito	Número de ejes equivalentes de 80 kN durante el período de diseño en el carril		
	de diseño		
T1	< 150.000		
T2	150.000 - 500.000		

Fuente: Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.

- *CBR de diseño*. El valor de CBR de diseño mejorado de 7%, según la tabla 34 le corresponde un intervalo de módulo resiliente (E) de 500 – 700 Kg/cm². Exactamente para un valor de CBR del 7% se determinó un módulo resiliente de 700 Kg/cm² equivalente a 9956 PSI.

Tabla 33 CBR Adoptado

CBR (%) Adoptado	Módulo resiliente (PSI)	Módulo resiliente
		(Kg/cm2)
7	9956	700

Establecimos la categoría de subrasante por medio de la tabla 34, en la cual para un intervalo de CBR del 5 a 7 porciento, la categoría de subrasante para este caso es S2.

Tabla 34 Categorías de subrasante

CATEGORIA	INTERVALO MÓDULO	INTERVALO C.B.R %
	RESILIENTE (E)	
	kg/cm^2	
S1	300 - 500	$3 \le CBR < 5$
S2	500 - 700	5 ≤ CBR < 7
S3	700 - 1000	7 ≤ CBR < 10
S4	1000 - 1500	$10 \le CBR < 15$
S5	> 1500	CBR ≥ 15

Fuente: Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.

Establecimos la categoría de subrasante por medio de la tabla 35, en la cual para un intervalo de CBR del 5 a 7 porciento, la categoría de subrasante para este caso es S2.

En la tabla 35 se pueden observar los parámetros de diseño obtenidos anteriormente según las características del proyecto: que para un valor de módulo resiliente de 700 Kg/cm² se estableció la categoría de subrasante S2; para un valor de 0,119974 x10⁶ ejes equivalentes a 8.2 Toneladas se obtuvo una clasificación según el nivel de tránsito de T1, y bajo el criterio de temperatura climática y precipitación en la ciudad de Cúcuta, basados en los datos climáticos promedios del IDEAM, la temperatura media anual es de 27 °C, y la precipitación media anual de 72 mm, por lo cual la clasificación según el INVIAS de la ciudad de Cúcuta, se encuentra ubicada en la región R3.

Tabla 35 Parámetros de diseño INVIAS

Parámetros de diseño	Valor	Clasificación en el manual
Nivel de transito	0,119974 x10 ⁶	T1
Módulo resiliente	700 (Kg/cm2)	S2
Precipitación	72 mm/año	R3
TMPA	27°C	R3
	Carta de diseño Númer	ro 3

$M_r \left(\frac{kg}{cm^2}\right)$		S2
N 8.2 (10 ⁶)		500 ≤ Mr < 700
T1	La carta de diseño No. 3 sirve para las ciudades que se encuentran ubicadas en la Región 3. El presente proyecto esta ubicado en dicha región. Para el establecimiento de la estructua de pavimento con sus espesores de capas apropiados, se requiere obtener	MDC-2 7.5 MDC-2 7.5 MDF-2 7.5 BG-2 15 BEE-1 15 SBG-1 30 ODG 4 05
0.5 <n8.2<1< th=""><th>primeramente los parametros de diseño, tales como, la clasificación según el nivel de Tránsito, y según la clase de sub rasante. En el proyecto se obtuvo un nivel de transito T1, y la clasificación de la subrasante como S2.</th><th>SBG-1 35 SBG-1 35</th></n8.2<1<>	primeramente los parametros de diseño, tales como, la clasificación según el nivel de Tránsito, y según la clase de sub rasante. En el proyecto se obtuvo un nivel de transito T1, y la clasificación de la subrasante como S2.	SBG-1 35 SBG-1 35

Gráfica 8 Opciones de estructura de pavimento según los parámetros de diseño calculados Medidas en cm

Con los parámetros de diseño de la tabla 36 tenemos las siguientes opciones de pavimento según la carta 3 de diseño de INVIAS para pavimentos flexibles, Región No. 3, T1, y S2:

TSD: Tratamiento Superficial Doble. Artículo 431 de las Especificaciones Generales de Construcción de Carreteras del INV

MDC-19: Mezcla Densa en Caliente Tipo 2. Artículo 450


BG: Base granular. Artículo 330

SBG: Subbase Granular. Artículo 320

Tabla 36 Costos del pavimento

	COSTOS DEL	PAVIMENTO x m ³	
Material	Valor m3 (\$)	O _I	oción 1
		e Capa (m)	Costo x m3 (\$)
MDC-19	497.600	0.075	37.320
BG-2	86.400	0.20	17.280
SBG-1	68.700	0.35	24.045
		TOTAL (\$)	78.645

Espesores de la estructura vial. Está conformada por una capa de mezcla densa en caliente, de 7.5 cm, por la capa base granular de 20 cm, y por la sub-base granular de 35 cm, como se puede visualizar en la figura 9.

Gráfica 9 Estructura de pavimento flexible obtenida del método INVIAS

Medidas en cm

8.3. Elaboración de la alternativa de diseño de una estructura de pavimento rígido por el método AASHTO 93.

A continuación, para el cálculo de los espesores de la estructura de pavimento rígido por el método AASHTO 93 se requiere la determinación de las variables de diseño como:

- Índice de serviciabilidad inicial (P0): AASHTO estableció para pavimentos rígidos un valor inicial deseable de 4.5, si es que no se tiene información disponible para el diseño.
- Índice de serviciabilidad final (Pt). Dependiendo de la importancia de la vialidad, pueden considerarse los valores Pt indicados en la tabla 37. La clasificación de las vías del proyecto son vías residenciales, por tanto, se selecciona un valor de Pt de 2.00.

Tabla 37 Índice de serviciabilidad final

Pt	Clasificación
3.00	Autopistas
2.50	Colectores
2.25	Calles comerciales e industriales
2.00	Calles residenciales y estacionamientos

Fuente: American Association of State Highway and Transportation Officials. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

La pérdida de serviciabilidad se define como la diferencia entre el índice de servicio inicial y terminal. Por tanto:

$$\Delta PSI = P0 - Pt$$

$$\Delta PSI = 4,5 - 2,0$$

$$\Delta PSI = 2,5$$

- Tránsito (W18). Teniendo en cuenta los resultados del estudio de tránsito, para un pavimento rígido se obtuvo un número de ejes equivalentes igual a:

 $W18 = 0.17842 \text{ X } 10^6 \text{ (Para un periodo de diseño de 20 años)}$

 $W18 = 0.17842 \text{ X } 10^6 \text{ ejes equivalentes}$

- Transferencia de carga. En la siguiente tabla se muestran los valores del coeficiente de

transmisión de carga, para la losa de concreto hidráulico con pasadores se adopta un valor de 2.8.

Tabla 38 Valores de coeficiente de transferencia de carga (J)

TIPO DE BERMA	J								
_	Granular	o asfáltica	Concreto	hidraúlico					
VALORES J	SI (Con pasadores)	No(Con pasadores)	SI (Con pasadores)	No(Con pasadores)					
-	3.2	3.8 - 4.4	2.8	3.8					

Fuente: American Association of State Highway and Transportation Officials. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

- *Módulo de elasticidad del concreto (Ec):* Con un valor de resistencia a la compresión del

concreto de f'c = 210 kg/cm² se obtuvo un módulo elástico de Ec = 3'115.169,605 PSI.

Ec =
$$57000* ((f'c*6,4516)/0,4536)^{0.5}$$

Ec = $57000*((210*6,4516)/0,4536)^{0.5}$
Ec = $3'115.169,605$ PSI

- Resistencia a la tensión por flexión o Módulo de Ruptura (MR): El módulo de rotura se puede determinar a través de la siguiente correlación:

- *Módulo de reacción de la base granular:* A continuación, se calcula el módulo de reacción de la capa base granular, con base en fórmulas adaptadas del AASHTO, y que están en función de la variable del CBR.

Para valores de CBR≥10% se emplea la siguiente ecuación:

$$K_{base\ granular} = 46 + 9,08*(log(CBR))^{4,34}$$
 (11)

Para valores de CBR<10% se emplea la siguiente formula

$$K_{\text{base granular}} = 2,55 + 52,5*\log(CBR)$$
 (12)

Se obtuvo el módulo de reacción de la base granular mediante la ecuación (11), puesto que para una capa de base granular compactada al 100% de la MDS, se obtiene un valor de CBR_{base} = 80%, por tanto 80%≥10%.

$$K_{base\ granular} = 46 + 9.08*(log(80))^{4.34}$$

$$K_{\text{base granular}} = 1980,6 \text{ Kg/cm}^2$$

 Módulo de reacción de la sub-rasante: A continuación, se calcula el módulo de reacción de la sub-rasante, con base en fórmulas adaptadas del AASHTO, y que están en función del CBR.

Para valores de CBR≥10% se emplea la siguiente ecuación:

$$K_{\text{sub-rasante}} = 46 + 9,08*(\log(\text{CBR}))^{4,34}$$
 (13)

Para valores de CBR<10% se emplea la siguiente formula

$$K_{\text{sub-rasante}} = 2,55 + 52,5*\log(CBR)$$
 (14)

Se obtuvo el módulo de reacción de la sub-rasante mediante la ecuación (14), puesto que para un valor de CBR_{sub-rasante mejorada} = 7%, se tiene que 7%<10%.

$$K_{\text{sub-rasante}} = 2,55 + 52,5*\log(7)$$

$$K_{\text{sub-rasante}} = 46.92 \text{ MPa/m}$$

$$K_{sub\text{-rasante}} = 478,5 \text{ Kg/cm}^2$$

- *Módulo de reacción combinado de la plataforma:* A continuación, se calcula el módulo de reacción combinada, con base en la ecuación (15) adaptada del AASHTO, y que está

en función de: módulo de reacción de la base granular, módulo de reacción de la sub-rasante, y un valor de espesor asumido para la base granular.

Se asume un espesor base de 20 cm, y se obtiene un módulo de reacción combinado de:

$$K = (1 + ((Espesor asumido base/38)^2 x (K_{base}/K_{sub-rasante})^{2/3}))^{0.5}$$

$$K = (1 + ((20/38)^2 x (1980,6/478,5)^{2/3}))^{0.5}$$

$$K = 1,31 \text{ Kg/cm2}$$

- Calidad del drenaje: Viene determinado por el tiempo que tarda el agua infiltrada en ser evacuada de la estructura del pavimento. Según la tabla 39, adaptada del AASHTO, para una calidad de drenaje "Bueno" el tiempo que tarda el agua en ser evacuada es de (1) un día.

Tabla 39 Calidad de drenaje

	Calidad de drenaje
Categoría	Período en que se evacúa el agua
Excelente	2 horas
Bueno	1 día
Regular	1 semana
Malo	1 mes
Muy malo	No drenará

Fuente: **American Association of State Highway and Transportation Officials**. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

- Exposición a la saturación: Porcentaje de tiempo durante el año en que un pavimento esta expuesto a niveles de humedad que se aproximan a la saturación. Este valor depende de la precipitación media anual y de las condiciones del drenaje. Para el cálculo del porcentaje de tiempo en que la nueva estructura de pavimento estará expuesta a niveles de humedad cercano a la saturación, se adoptó un porcentaje de 43%, basado en las estadísticas del IDEAM, que se reflejan en la tabla 27.

Para una calidad de drenaje "Bueno" y de acuerdo al tiempo obtenido que tarda el agua en ser evacuada, que fue de (1) un día, y con base en la obtención del porcentaje de tiempo en que la nueva estructura de pavimento está expuesta a niveles de humedad cercano a la saturación, que fue de 43%, la tabla 29 recomienda un valor de coeficiente de drenaje para las capas granulares de 1.

- Confiabilidad. La confiabilidad está definida como la probabilidad de que el sistema de pavimento se comporte de manera satisfactoria durante su vida útil en condiciones adecuadas para su operación. Otra manera de interpretar este concepto sería aquélla que la probabilidad de que los problemas de deformación y resistencia estén por debajo de los permisibles durante la vida de diseño del pavimento.

En la Tabla 40 se observa la confiabilidad recomendada en función del tipo de camino, para este proyecto, por ser vías urbanas locales, se adoptó un valor de 80% de confiabilidad.

Tabla 40 Valores recomendados del nivel de confiabilidad en función del tipo de camino

Clasificación del camino	Urbano	Rural				
Autopistas	85% - 99.9%	80% - 99.9%				
Arterias principales	80% - 99%	75% - 99%				
Colectoras	80% - 95%	75% - 95%				
Locales	50% - 80%	50% - 80%				

Fuente: **American Association of State Highway and Transportation Officials**. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

- Desviación estándar normal (Zr): Para la determinación de la desviación estándar normal a partir del porcentaje de confiabilidad ya anteriormente determinado, se utilizó la tabla 41 obteniendo para una confiabilidad de 80% un valor de Zr = -0,841.

Tabla 41 Desviación normal estándar (Zr)

CONFIABILIDAD Y DESVIACIÓN ESTÁNDAR

Confiabilidad (R%)	Desviación normal estándar,
	Zr
50	0,000
60	-0,253
70	-0,524
75	-0,674
80	-0,841
85	1,037
90	-1,282
91	-1,340
92	-1,405
93	-1,476
94	-1,555
95	-1,645
96	-1,751
97	-1,881
98	-2,054
99	-2,327
99,9	-3,090
99,99	3,750

Fuente: American Association of State Highway and Transportation Officials. (1993). Guía para el diseño de estructuras de pavimentos. Ottawa: AASTHO.

- *Error estándar combinado (So):* Para efectos del presente diseño se tomará con base en la tabla 42, como error estándar combinado un valor de So = 0.34.

Tabla 42 Error estándar combinado (So)

CONDICIÓN DE DISEÑO	DESVIACIÓN ESTÁNDAR (So)					
	Pav. Rígido	Pav. Flexible				
Variación en la predicción del	0.34	0.44				
comportamiento del pavimento sin errores en						
el tránsito						
Variación en la predicción del	0.39	0.49				
comportamiento del pavimento con errores en						
el tránsito						

Fuente: American Association of State Highway and Transportation Officials. (1993). Diseño de estructuras de pavimentos. Ottawa: AASTHO.

- Espesor. El diseño del pavimento rígido mediante el AASHTO 93 consiste en suponer un espesor de losa de concreto e iniciar a realizar tanteos reemplazando en la ecuación (16) dicho espesor supuesto, y también todos los factores adicionales de diseño calculados anteriormente (confiabilidad, coeficiente de drenaje, desviación estándar, error estándar, pérdida de serviciabilidad prevista en el diseño, índice de serviciabilidad final, módulo de rotura del concreto, coeficiente de transferencia de carga, módulo de elasticidad del concreto, módulo de reacción combinado de la plataforma, y el espesor de la losa de concreto asumido), y calcular el logaritmo de W18 (es el número de ejes equivalentes a 8,2 toneladas), y si se cumple el equilibrio en la ecuación (16), el espesor supuesto es resultado del problema, de lo contrario se debe de seguir haciendo.

Se adopta un espesor de losa de concreto de 5,4146 Pulgadas.

Reemplazando las variables de diseño se obtiene a continuación un valor de Log W18 = 5,2514 ejes equivalentes a 8.2 Ton.

$$Log W_{18} = Z_R S_0 + 7.35 \log(D+1) - 0.06 + \frac{\log\left(\frac{\Delta PSI}{4.5 - 1.5}\right)}{\frac{1.624 \times 10^7}{(D+1)^{8.46}}} + (4.22 - 0.32 P_t) \log \left[\frac{S_e' C_d (D^{0.75} - 1.132)}{215.63 J \left[D^{0.75} - \frac{18.42}{\left[\frac{E_c}{k}\right]^{0.25}}\right]}\right]$$

$$(16)$$

Reemplazando:

$$Log W18 = (-0.841*0.34) + 7.35*log(5,4146+1) - 0.06 + ((log*(2,5/3))/(1,624x10^{7}/(5,4146+1)^{8.46})) + (4.22 - (0.32*2))*log((624*1*(5,4146^{0.75}-1,132))/((215,63*2,8)*(5,4146^{0.75}-((18,42/(3115170/1,31)^{0.25})))))$$

Resolviendo la ecuación se obtiene:

Log W18 =
$$5,2514$$
 ejes equivalentes a $8,2$ Ton. (17)

Reemplazando el valor de W18=178420 en la ecuación (17) para verificar el equilibrio en dicha ecuación, se presenta que:

Como se cumplió el equilibrio en la ecuación, el espesor de la losa de concreto supuesto de 5,4146" es resultado del problema. Por tanto, la dimensión de la losa de concreto es de 14 cm o 5,4146".

Espesores de la estructura vial. Está conformada por una losa de concreto de 14 cm, y por la capa base granular de 20 cm.

Ilustración 9 Espesores de pavimento rígido por el método AASHTO 93

8.4. Elaboración de la alternativa de diseño de una estructura de pavimento rígido por el método INVIAS.

A continuación, para el cálculo de los espesores de la estructura de pavimento rígido por el método INVIAS se requiere la determinación de las variables de diseño como:

Variable de diseño.

- Clasificación de las vías del proyecto. Las vías del sector en estudio son vías tipo residenciales.
- Elección de categoría de tránsito: Con base en la tabla 44 del INVIAS, las categorías de tránsito están en función del número de ejes acumulados de 8,2 t, por tanto, según los resultados del estudio de tránsito efectuado, se obtuvo para el pavimento rígido un valor de 0,178420 X 10⁶ ejes equivalentes de 8,2 ton; para dicho valor se asigna la categoría de transito T0.

Tabla 43 Categorías de tránsito para la selección de espesores

Categoría	Tipo de vía	TPDs	Ejes acumulados de 8.2 t
T0	(Vt) - E	0 a 200	< 1′000.000
T1	(Vs) - (M ó A) - (CC)	201 a 500	1′000.000 a 1′500.000
T2	(Vp) - (A) - (AP - MC - CC)	501 a 1.000	1′500.000 a 5′000.000
Т3	(Vp) - (A) - (AP - MC - CC)	1.001 a 2.500	5′000.000 a 9′000.000
T4	(Vp) - (A) - (AP - MC - CC)	2.501 a 5.000	9′000.000 a 17′000.000
T5	(Vp) - (A) - (AP - MC - CC)	5.001 a 10.000	17′000.000 a 25′000.000
T6	(Vp) - (A) - (AP - MC - CC)	Más de 10.001	25′000.000 a 100′000.000

Fuente: Instituto Colombiano de productores de cemento. (2008). Manual diseño de pavimentos de concreto para bajos, medios y altos volúmenes de tránsito. Bogotá: ICPC.

- Selección de la sub-rasante de acuerdo a su resistencia. Para efectos de diseño y elección de espesores de la estructura vial, se consideran 5 tipos de subrasante, que reflejan la gran sensibilidad del suelo a su capacidad de soporte, dichas categorías se definen en la tabla 44.

Para este caso, el CBR del proyecto mejorado es de 7% por lo tanto según la tabla 44, la

subrasante se clasifica como S3.

Tabla 44 Clasificación de la sub-rasante de acuerdo con su resistencia

Clasificación de los suelos de subrasante								
Clasificación de la subrasante	C.B.R %							
S1	2							
S2	3 - 5							
S3	6 - 10							
S4	11 - 20							
S5	> 20							

Fuente: Instituto Colombiano de productores de cemento. (2008). Manual diseño de pavimentos de concreto para bajos, medios y altos volúmenes de tránsito. Bogotá: ICPC.

- Resistencia que deba alcanzar el concreto. Para el diseño se tendrán en cuenta cuatro niveles de resistencia a la flexotracción del concreto, de acuerdo a criterios del diseñador (autores del proyecto), con base en la tabla 45, y con el propósito de producir una buena mezcla hidráulica, se seleccionó un valor de módulo de rotura de 42 Kg/cm2, que corresponde a MR3.

Tabla 45 Valores de resistencias a la flexotracción del concreto (Módulo de rotura).

Descripción	Resistencia a la flexión (Kg/cm2)
MR1	38
MR2	40
MR3	42
MR4	45

Fuente: Instituto Colombiano de productores de cemento. (2008). Manual diseño de pavimentos de concreto para bajos, medios y altos volúmenes de tránsito. Bogotá: ICPC.

Cálculo del espesor de la estructura vial. En la ilustración 10 se muestra que para una categoría de transito T0, y para una losa apoyada sobre una base granular de espesor de 15 cm, con una clasificación de sub-rasante S3, con un concreto MR3, y considerando el uso de dovelas, se obtiene un espesor de losa de 22 cm.

	ESPESORES DE LOSA DE CONCRETO (cm) DE ACUERDO CON LA COMBINACIÓN DE VARIABLES																			
		Tránsito T0																		
		S1 S2								S 3			S4				S 5			
		DyB Dy	No D y B	No D y no B	DуВ	D y no B	No D y B	No D y no B	DуВ	D y no		No D y no B	DуB	D y no B	No D y B	No D y no B	DуВ	D y no B	No D y B	No D y no B
	MR1		24	28	23	27	23	27	21	2	1 21	24	20	24	20	24	20	23	20	23
SN	MR2		23	27	22	26	22	26	20	2	1 20	24	20	23	20	23	19	22	19	22
	MR3		23	26	21	25	21	25	20	2	3 20	23	19	22	19	22	19	22	19	22
	MR4		21	24	20	24	20	24	19	2	2 19	22	18	21	18	21	18	21	18	21
	MR1		23	26	22	26	22	26	21	2	1 21	24	20	23	20	23	20	23	20	23
BG	MR2		22	25	21	25	21	25	20	2	3 20	23	19	22	19	22	19	22	19	22
ьч	MR3		21	24	20	24	20	24	20	-(22	2) 19	22	19	22	19	22	18	21	18	21
	MR4		20	23	19	23	19	23	28	2	1 18	21	18	21	18	21	17	20	18	20
	MR1		20	23	19	22	19	22	18	2	1 18	21	18	20	18	20	17	20	17	20
BEC	MR2		19	22	19	21	19	21	17	20) 17	20	17	20	17	20	17	19	17	19
BEC	MR3		18	21	18	21	18	21	17	19	17	19	16	19	17	19	16	19	17	19
	MR4		18	20	17	20	18	20	16	19	9 17	19	16	18	17	18	15	18	17	18

Ilustración 10 Espesores de losa de concreto, de acuerdo con la combinación de variables-T0

Fuente: Instituto Colombiano de productores de cemento. (2008). Manual diseño de pavimentos de concreto para bajos, medios y altos volúmenes de tránsito. Bogotá: ICPC.

Espesores del pavimento rígido. Está conformada por una losa de concreto de 22 cm, y por la capa base granular de 15 cm.

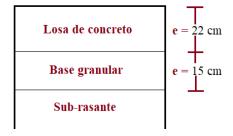


Ilustración 11 Espesores de la estructura vial, método del INVIAS

La ilustración 12 recomienda el diámetro, y la longitud del pasador, y separación entre centros, en función del espesor del pavimento. Para un espesor de losa de 22 cm o 220 mm, el diámetro del pasador recomendado es de 32 mm equivalente a 1 1/4 Pulgada, longitud de 450 mm, y de separación de centros 300 mm.

Espesor del pavimento	Diámetro	del pasador	Longitud	Separación entre centros
del pavimento	mm	Pulgada	mm	mm
0 - 100	13	1/2	250	300
110 - 130	16	5/8	300	300
140 - 150	19	3/4	350	300
160 - 180	22	7/8	350	300
190 – 200	25	1	350	300
210 - 230	29	1 1/8	400	300
240 - 250	32	1 1/4	450	300
260 - 280	35	1 3/8	450	300
290 - 300	38	1 1/2	500	300

Ilustración 12 Recomendaciones para la selección de los pasadores de carga

Fuente: Instituto Colombiano de productores de cemento. (2008). Manual diseño de pavimentos de concreto para bajos, medios y altos volúmenes de tránsito. Bogotá: ICPC.

9. Teoría sobre el cálculo del índice de condición del pavimento9.1.Índice de condición del pavimento (PCI – Pavement Condition Index).

El deterioro de la estructura de pavimento es una función de la clase de daño, su severidad y cantidad o densidad del mismo. La formulación de un índice que tuviese en cuenta los tres factores mencionados ha sido problemática debido al gran número de posibles condiciones. Para superar esta dificultad se introdujeron los "valores deducidos", como un arquetipo de factor de ponderación, con el fin de indicar el grado de afectación que cada combinación de clase de daño, nivel de severidad y densidad tiene sobre la condición del pavimento. El PCI es un índice numérico que varía desde cero (0), para un pavimento fallado o en mal estado, hasta cien (100) para un pavimento en perfecto estado. En la tabla 46 se presentan los rangos de PCI con la correspondiente descripción cualitativa de la condición del pavimento.

Tabla 46 Rangos de clasificación del PCI

Rangos de cl	Rangos de clasificación del PCI				
Rango	Clasificación				
100 - 85	Excelente				
85 - 70	Muy Bueno				
70 - 55	Bueno				
55 - 40	Regular				
40 - 25	Malo				
25 - I0	Muy malo				
10 - 0	Fallado				

Fuente: Ingeniería de pavimentos. (2002). Manual pavement condition index (PCI) para pavimentos asfálticos y de concreto en carreteras. Manizales: Ingepav.

El cálculo del PCI se fundamenta en los resultados de un inventario visual de la condición del pavimento en el cual se establecen CLASE, SEVERIDAD y CANTIDAD de cada daño presenta. El PCI se desarrolló para obtener un índice de la integridad estructural del pavimento y de la condición operacional de la superficie. La información de los daños obtenida como parte del inventario ofrece una percepción clara de las causas de los daños y su relación con las cargas o con el clima.

9.2. Procedimiento de evaluación de la condición del pavimento

La primera etapa corresponde al trabajo de campo en el cual se identifican los daños teniendo en cuenta la clase, severidad y extensión de los mismos. Esta información se registra en formatos adecuados para tal fin. Las ilustraciones 13 y 14 muestran los formatos para la inspección de pavimentos de concreto hidráulico, respectivamente.

No.	Tipe de Deão (unidad de madida)	Símbolo	Severidad				
NO.	Tipo de Daño (unidad de medida)		Baja (B)	Media (M)	Alta (A)		
		GRÆTAS	YAGRIETAMIENTOS				
1.	Grietas longitudinales (m)	GL	a<3mm	a<3mm 3 - 10mm			
2.	Grietas transversales (m)	GT	a<3mm	3 - 10mm	>10mm		
3.	Griefas de esquina (m)	GE	a<3mm	3 - 10mm	>10mm		
4.	Grietas en los extremos de los pasadores (m)	GP	a<3mm	3 - 10mm	>10mm		
5.	Griefas en bloque o múltiples (m2)	GB		Siempre altas			
6.	Griefas en pozos y sumideros (m2)	GA	<3mm	3 - 10mm	>10mm		
			JUNTAS				
7.	Separación de juntas (m)	SJ	<3 mm	3 - 25 mm	>25mm		
8.	Deficiencias de sellado (m)	DST, DSL	L < 0.5m	0.5 - 2.0 m	> 2.0m		
			ORO SUPERFICIAL				
9.	Desportillamiento (m)	DPT, DPL	a <5 cm	5 - 15 cm	>15cm		
10.	Descascaramientos (m2)	DE		Sin severidad			
11.	Pulimento (m2)	PU	Fácilmente perceptible	El área pulimentada tiene un	Apariencia de espejo		
	` '		r deminento perospano	acabado mate	7 parionola de sepejo		
12.	Desintegración (m2)	DI		Sin severidad			
13.	Cabezas duras (m2)	CD		Sin severidad			
14.	Escalonamiento de juntas (unidad)	EJ	h < 6 mm	6 - 13 mm	>13mm		
15.	Levantamiento localizado (m)	LET, LEL	h <5mm	5 - 10mm	>10mm		
16.	Parches (m2)	РСНА, РСНС	bueno	Daños leves y medios, asent<5mm	Daños severos, asent>5mm		
17.	Hundimientos o asentamientos (unidad)	HU	No genera molestia (o rebote) al	Genera poca molestia (o	Causa reducción de		
17.	nulidimentos o asentamientos (unidad)		conductor.	rebote) al conductor.	velocidad.		
			TROS DANOS				
18.	Fisuramiento por retracción (tipo malla) (m2)	FR	Sin descascarar	desc < 10%	desc > 10%		
19.	Fisuras ligeras de aparición temprana (m2)	FT	Sin descascarar	Con algunas zonas	Agrietamiento y		
				descascaradas	descascaramiento		
20.	Fisuración por durabilidad (m2)	FD		Sin severidad			
			El agua es expulsada sin arrastrar	Existe una pequeña cantidad	Existe una gran cantidad de		
21.	Bombeo (m)	BOT, BOL	finos.	del material bombeado en las	material bombeado sobre el		
			into 5.	juntas.	pavimento.		
			_	Genera rebote al vehículo con	Genera un rebote excesivo al		
22.	Ondulaciones (m2)	ON	Genera un rebote leve al vehículo.	algo de incomodidad.	vehículo, requiere reducir		
				ango do movinounda.	velocidad.		
oxdot			OS EN BERMAS				
23.	Descenso de la berma (m)	DB	h<10mm	10 - 30mm	>30mm		
24.	Separación entre berma y pavimento (m)	SB	Abertura < 3mm.	Entre 3mm y 10mm.	> 10mm.		

Ilustración 13 Formato de exploración de condición para carreteras con superficie en concreto hidráulico Fuente: Ingeniería de pavimentos. (2002). Manual pavement condition index (PCI) para pavimentos asfálticos y de concreto en carreteras. Manizales: Ingepav.

PCI-02. CARRETERAS CON SUPERFICIE EN CONCRETO HIDRÁULICO EXPLORACIÓN DE LA CONDICIÓN POR UNIDAD DE MUESTREO ZONA ABSCISA INICIAL UNIDAD DE MUESTREO CÓDIGO VÍA ABSCISA FINAL NÚMERO DE LOSAS INSPECCIONADA POR FECHA No. Daño No. Daño Daño No. 21 Blow up / Buckling. 27 Desnivel Carril / Berma. 34 Punzonamiento. Cruce de vía férrea 22 Grieta de esquina. 28 Grieta lineal. 35 Losa dividida. Parcheo (grande). Desconchamiento Grieta de durabilidad "D". Parcheo (pequeño) 37 Retracción 24 30 25 Escala. 31 Pulimento de agregados 38 Descascaramiento de esquina Sello de junta. Popouts 39 Descascaramiento de junta 26 32 33 Bombeo Severidad No. Losas Densidad (%) | Valor deducido **ESQUEMA** Daño o 10 8

ÍNDICE DE CONDICIÓN DEL PAVIMENTO

Ilustración 14 Formato de exploración de condición para carreteras con superficie en concreto hidráulico Fuente: Ingeniería de pavimentos. (2002). Manual pavement condition index (PCI) para pavimentos asfálticos y de concreto en carreteras. Manizales: Ingepav.

9.2.1. Unidades de Muestreo

Se divide la vía en secciones o "unidades de muestreo", cuyas dimensiones varían de acuerdo con los tipos de vía y de capa de rodadura:

a. Carreteras con capa de rodadura en losas de concreto de cemento Portland: El área de la unidad de muestreo debe estar en el rango 230.0 ± 93.0 m². En la tabla 47 se presentan algunas relaciones longitud – ancho de calzada pavimentada.

Tabla 47 Longitudes de unidades de muestreo

Ancho de calzada (m)	Longitud de la unidad de muestreo (m)
5.0	46.0
5.5	41.8
6.0	38.3
6.5	35.4
7.3 (máximo)	31.5

Fuente: Ingeniería de pavimentos. (2002). Manual pavement condition index (PCI) para pavimentos asfálticos y de concreto en carreteras. Manizales: Ingepav.

Se recomienda tomar el valor medio de los rangos y en ningún caso definir unidades por fuera de aquellos. Para cada pavimento inspeccionado se sugiere la elaboración de esquemas que muestren el tamaño y la localización de las unidades ya que servirá para referencia futura. (Varela, 2002)

9.2.2. Determinación de las Unidades de Muestreo para Evaluación:

En la "Evaluación De Una Red" vial puede tenerse un número muy grande de unidades de muestreo cuya inspección demandará tiempo y recursos considerables; por lo tanto, es necesario aplicar un proceso de muestreo. (Varela, 2002)

En la "Evaluación de un Proyecto" se deben inspeccionar todas las unidades; sin embargo, de no ser posible, el número mínimo de unidades de muestreo que deben evaluarse se obtiene mediante la Ecuación 1, la cual produce un estimado del PCI ± 5 del promedio verdadero con una confiabilidad del 95%. (Varela, 2002)

$$n = \frac{N \times \sigma^2}{\frac{e^2}{4} \times (N-1) + \sigma^2}$$

Dónde: n: Número mínimo de unidades de muestreo a evaluar.

N: Número total de unidades de muestreo en la sección del pavimento.

e: Error admisible en el estimativo del PCI de la sección (e = 5%)

σ: Desviación estándar del PCI entre las unidades.

Durante la inspección inicial se asume una desviación estándar (σ) del PCI de 10 para pavimento asfáltico (rango PCI de 25) y de 15 para pavimento de concreto (rango PCI de 35) En inspecciones subsecuentes se usará la desviación estándar real (o el rango PCI) de la inspección previa en la determinación del número mínimo de unidades que deben evaluarse. (Varela, 2002)

Cuando el número mínimo de unidades a evaluar es menor que cinco (n < 5), todas las unidades deberán evaluarse. (Varela, 2002)

9.2.3. Selección de las Unidades de Muestreo para Inspección

Se recomienda que las unidades elegidas estén igualmente espaciadas a lo largo de la sección de pavimento y que la primera de ellas se elija al azar (aleatoriedad sistemática) de la siguiente manera:

a. El intervalo de muestreo (i) se expresa mediante la siguiente ecuación:

$$i = \frac{N}{n}$$

Dónde: N: Número total de unidades de muestreo disponible.

n: Número mínimo de unidades para evaluar.

i: Intervalo de muestreo, se redondea al número entero inferior (por ejemplo, 3.7 se redondea a 3)

b. El inicio al azar se selecciona entre la unidad de muestreo 1 y el intervalo de muestreo i. Así, si i = 3, la unidad inicial de muestreo a inspeccionar puede estar entre 1 y 3. Las unidades de muestreo para evaluación se identifican como (S), (S + 1), (S + 2), etc.

Siguiendo con el ejemplo, si la unidad inicial de muestreo para inspección seleccionada es 2 y el intervalo de muestreo (i) es igual a 3, las subsiguientes unidades de muestreo a inspeccionar serían 5, 8, 11, 14, etc. Sin embargo, si se requieren cantidades de daño exactas

para pliegos de licitación (rehabilitación), todas y cada una de las unidades de muestreo deberán ser inspeccionadas.

9.2.4. Selección de Unidades de Muestreo Adicionales

Uno de los mayores inconvenientes del método aleatorio es la exclusión del proceso de inspección y evaluación de algunas unidades de muestreo en muy mal estado. También puede suceder que unidades de muestreo que tienen daños que sólo se presentan una vez (por ejemplo, "cruce de línea férrea") queden incluidas de forma inapropiada en un muestreo aleatorio. (Varela, 2002)

Para evitar lo anterior, la inspección deberá establecer cualquier unidad de muestreo inusual e inspeccionarla como una "unidad adicional" en lugar de una "unidad representativa" o aleatoria. Cuando se incluyen unidades de muestreo adicionales, el cálculo del PCI es ligeramente modificado para prevenir la extrapolación de las condiciones inusuales en toda la sección. (Varela, 2002)

9.2.5. Evaluación de la Condición:

El procedimiento varía de acuerdo con el tipo de superficie del pavimento que se inspecciona. Debe seguirse estrictamente la definición de los daños de este manual para obtener un valor del PCI confiable. (Varela, 2002)

La evaluación de la condición incluye los siguientes aspectos:

- a. Equipo.
- Odómetro manual para medir las longitudes y las áreas de los daños.
- Regla y una cinta métrica para establecer las profundidades de los ahuellamientos o depresiones.

- Manual de Daños del PCI con los formatos correspondientes y en cantidad suficiente para el desarrollo de la actividad.
- b. Procedimiento. Se inspecciona una unidad de muestreo para medir el tipo, cantidad y severidad de los daños de acuerdo con el Manual de Daños, y se registra la información en el formato correspondiente. Se deben conocer y seguir estrictamente las definiciones y procedimientos de medida los daños. Se usa un formulario u "hoja de información de exploración de la condición" para cada unidad muestreo y en los formatos cada renglón se usa para registrar un daño, su extensión y su nivel de severidad.
- c. El equipo de inspección deberá implementar todas las medidas de seguridad para su desplazamiento en la vía inspeccionada, tales como dispositivos de señalización y advertencia para el vehículo acompañante y para el personal en la vía.

9.3. Cálculo del PCI de las unidades de muestreo

Al completar la inspección de campo, la información sobre los daños se utiliza para calcular el PCI. El cálculo puede ser manual o computarizado y se basa en los "Valores Deducidos" de cada daño de acuerdo con la cantidad y severidad reportadas. (Varela, 2002)

Cálculo para Pavimentos con Capa de Rodadura en Concreto de Cemento Portland. Se presentan las siguientes etapas:

Etapa 1. Cálculo de los Valores Deducidos:

- a. Totalice cada tipo y nivel de severidad de daño y regístrelo en la columna TOTAL del formato PCI-01. El daño puede medirse en área, longitud ó por número según su tipo.
- b. Divida la CANTIDAD de cada clase de daño, en cada nivel de severidad, entre el ÁREA TOTAL de la unidad de muestreo y exprese el resultado como porcentaje. Esta es la DENSIDAD del daño, con el nivel de severidad especificado, dentro de la unidad en estudio.
- c. Determine el VALOR DEDUCIDO para cada tipo de daño y su nivel de severidad mediante las curvas denominadas "Valor Deducido del Daño" que se adjuntan al final de este documento, de acuerdo con el tipo de pavimento inspeccionado.

Etapa 2. Cálculo del Número Máximo Admisible de Valores Deducidos (m)

- a. Si ninguno ó tan sólo uno de los "Valores Deducidos" es mayor que 2, se usa el "Valor Deducido Total" en lugar del mayor "Valor Deducido Corregido", CDV, obtenido en la Etapa 4. De lo contrario, deben seguirse los pasos 2.b. y 2.c.
 - b. Liste los valores deducidos individuales deducidos de mayor a menor.
- c. Determine el "Número Máximo Admisible de Valores Deducidos" (m), utilizando la Ecuación 3:

$$m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$$
 Ecuación 3. Carreteras pavimentadas.

Dónde: mi: Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i.

HDVi: El mayor valor deducido individual para la unidad de muestreo i.

d. El número de valores individuales deducidos se reduce a m, inclusive la parte fraccionaria. Si se dispone de menos valores deducidos que m se utilizan todos los que se tengan.

Etapa 3. Cálculo del "Máximo Valor Deducido Corregido", CDV.

El máximo CDV se determina mediante el siguiente proceso iterativo:

- a. Determine el número de valores deducidos, q, mayores que 2.0.
- b. Determine el "Valor Deducido Total" sumando TODOS los valores deducidos individuales.
- c. Determine el CDV con q y el "Valor Deducido Total" en la curva de corrección pertinente al tipo de pavimento.
- d. Reduzca a 2.0 el menor de los "Valores Deducidos" individuales que sea mayor que 2.0 y repita las etapas 3.a. a 3.c. hasta que q sea igual a 1.
 - e. El máximo CDV es el mayor de los CDV obtenidos en este proceso.

Etapa 4. Calcule el PCI de la unidad restando de 100 el máximo CDV obtenido en la Etapa 3.

En la ilustración 15 se presenta un formato para el desarrollo del proceso iterativo de obtención del "Máximo Valor Deducido Corregido", CDV.

N°	VALO	ORES DEDUCIDOS	TOTAL	q	CDV
1		·			
2					
3					
4					

Ilustración 15 Formato para las iteraciones del cálculo del CDV

Fuente: Ingeniería de pavimentos. (2002). Manual pavement condition index (PCI) para pavimentos asfálticos y de concreto en carreteras. Manizales: Ingepav.

10. Cálculo del índice de condición del pavimento

10.1. Cálculo del PCI para carreteras con capa de rodadura en concreto hidráulico.

De los tramos de vía en estudio, la Avenida 17a entre calles 4 y 3 presenta capa de rodadura en concreto hidráulico. Dicho tramo tiene una longitud de 84,78 ml, y un ancho promedio de calzada de 6,11 m. A continuación, se muestran las tablas con los resultados de la exploración de la condición por unidad de muestreo del tramo de vía con capa de rodadura asfáltica deteriorada.

				Exploración de la condici	ón por unidad de	muestreo			
Fecha	: 12 de Octubre 20	019			Abscisa inicial:	0+137.07	Esquema:		
Zona:	Avenida 17a entre	calles 4 y 3			Abscisa final:	0+147.11	Design of the second	and the second second	7
lmama		Laura Cásarsa v Jar	ao Cábrio	Unidad de muestreo: 1					
mspe	eccionado por:	Laura Cáceres y Jorg	ge Gaivis	Área tramo "s	ección 1" (m2):	518			
No.	Daño		No.	Daño	·				
1	Grietas en bloqu	ue o múltiples (m2)	11	Parcheo (m2)					
2	Descaramientos	s (m2)	12	Pulimento de agregados (m2)					
3	Desportillamien	to (m)	13	Cabezas duras (m2)					
4	Abultamientos y	hundimientos (Und)	14	Separación de juntas (m)			1.4		
5	Ondulaciones (r	m2)	15	Deficiencias de sellado (m)					
6	Levantamiento I	ocalizado (m)	16	Fisuramiento por retracción (tipo	malla) (m2)				
7	Grieta de esquir	na (m)	17	Grietas en pozos y sumideros (n	n2)				
8	Grietas en los e pasadores (m)	xtremos de los	18	Fisuras ligeras de aparición tem	prana (m2)				
9	Escalonamiento	de juntas (Und)	19	Desintegración (m2)					
10	Grietas longitud (m)	inales y transversales	20	Fisuración por durabilidad (m2)					
	Da	ño	Severidad	Fórmula para el calculo de cantidad parcial	Cantidades parciales	Unidad de medida	Total	Densidad (%)	Valor deducido
	Grietas en bloo	ue o múltiples	Н	3,5*3,5	12,25	m2	12,25	2,36	31
	Pulimento de	agregados	Н	4,5*4,022	18,10	m2	18,10	3,49	27
					-			Total valor deducido:	58

Ilustración 16 Resultados exploración de la condición unidad de muestreo 1 tramo Av. 17ª entre calles 4 y 3

				Exploración de la condicion	ón por unidad de	muestreo			
Fecha:	12 de Octubre 20)19			Abscisa inicial:	0+151.06	Esquema:		
Zona: /	Avenida 17a entre	calles 4 y 3			Abscisa final:	0+157.00		THE RESERVE OF THE PARTY OF THE	7.7
lnone	eccionado por:	Laura Cáceres y Jorg	ao Cáluio	Unida	d de muestreo:	2			
ilispe	eccionado por.	Laura Gaceres y Jorg	ge Gaivis	Área tramo "s	ección 1" (m2):	518		自然	
No.	Daño		No.	Daño				19 To 19 The	
1	Grietas en bloqu	ie o múltiples (m2)	11	Parcheo (m2)					
2	Descaramientos	(m2)	12	Pulimento de agregados (m2)					3 3
3	Desportillamient	o (m)	13	Cabezas duras (m2)					
4	Abultamientos y	hundimientos (Und)	14	Separación de juntas (m)					de tratage
5	Ondulaciones (n	n2)	15	Deficiencias de sellado (m)					
6	Levantamiento l	ocalizado (m)	16	Fisuramiento por retracción (tipo	malla) (m2)		Carrier !		T DE
7	Grieta de esquir	ia (m)	17	Grietas en pozos y sumideros (n	12)		the stage of the		
8	Grietas en los ex pasadores (m)	xtremos de los	18	Fisuras ligeras de aparición tem	orana (m2)				
9	Escalonamiento	de juntas (Und)	19	Desintegración (m2)				Market State	
10	Grietas longitudi (m)	nales y transversales	20	Fisuración por durabilidad (m2)					
	Daŕ	ňo	Severidad	Fórmula para el calculo de cantidad parcial	Cantidades parciales	Unidad de medida	Total	Densidad (%)	Valor deducido
	Grietas en bloq	ue o múltiples	Н	(1*0,6)+(1,5*1,2)	2,40	m2	2,4	0,46	21
	Pulimento de	agregados	Н	5,94*5,885	34,96	m2	34,96	6,75	35
			·	·				Total valor deducido:	56

Ilustración 17. Resultados exploración de la condición unidad de muestreo 2 tramo Av. 17ª entre calles 4 y 3

				Exploración de la condici-	ón por unidad de	muestreo			
Fecha: 12 de Octubre 2019					Abscisa inicial:	0+163.79	Esquema:		
Zona: /	Avenida 17a entre	e calles 4 y 3			Abscisa final:	0+173.15			
		Laura Céanna II la	041	Unida	d de muestreo:	3			"
inspe	eccionado por:	Laura Cáceres y Jor	ge Gaivis	Área tramo "s	ección 1" (m2):	518			
No.	Daño		No.	Daño					
1	Grietas en bloqu	ue o múltiples (m2)	11	Parcheo (m2)					
2	Descaramientos	s (m2)	12	Pulimento de agregados (m2)				34 97 7	
3	Desportillamien	to (m)	13	Cabezas duras (m2)					
4	Abultamientos y	hundimientos (Und)	14	Separación de juntas (m)					元达特的
5	Ondulaciones (r	m2)	15	Deficiencias de sellado (m)					等人现实
6	Levantamiento	localizado (m)	16	Fisuramiento por retracción (tipo	malla) (m2)			The second	
7	Grieta de esquir	na (m)	17	Grietas en pozos y sumideros (n	12)				
8	Grietas en los e pasadores (m)	xtremos de los	18	Fisuras ligeras de aparición tem	orana (m2)		State of		
9	Escalonamiento	de juntas (Und)	19	Desintegración (m2)				E. ELEM	the the sail
10	Grietas longitud (m)	inales y transversales	20	Fisuración por durabilidad (m2)			100		
	Da	ño	Severidad	Fórmula para el calculo de cantidad parcial	Cantidades parciales	Unidad de medida	Total	Densidad (%)	Valor deducido
	Grietas en bloo	ue o múltiples	Н	5,6*5,8	32,48	m2	32,48	6,27	58
	Pulimentos d	e agregados	Н	4,63*5,194	24,05	m2	24,05	4,64	30
								Total valor deducido:	88

Ilustración 18 Resultados exploración de la condición unidad de muestreo 3 tramo Av. 17ª entre calles 4 y 3

				Exploración de la condició	n por unidad de	muestreo			
Fecha: 12 de Octubre 2019					Abscisa inicial:	0+190.19	Esquema:		
Zona: /	Avenida 17a entre	e calles 4 y 3			Abscisa final:	0+199.31	The same of the sa		Made
Inene	occionado nor:	Laura Cácoros y Jor	ao Cálvic	Unida	d de muestreo:	4	- Walter		
ilispe	Inspeccionado por: Laura Cáceres y Jorge		ge Gaivis	Área tramo "se	ección 1" (m2):	518	The second		
No.	Daño		No.	Daño			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1	Grietas en bloqi	ue o múltiples (m2)	11	Parcheo (m2)			200		* 11500
2	Descaramientos	s (m2)	12	Pulimento de agregados (m2)			1		
3	Desportillamien	to (m)	13	Cabezas duras (m2)					
4	Abultamientos y	hundimientos (Und)	14	Separación de juntas (m)			13	No.	
5	Ondulaciones (r	m2)	15	Deficiencias de sellado (m)			4		
6	Levantamiento	localizado (m)	16	Fisuramiento por retracción (tipo	malla) (m2)				
7	Grieta de esquir	na (m)	17	Grietas en pozos y sumideros (m	2)				
8	Grietas en los e pasadores (m)	xtremos de los	18	Fisuras ligeras de aparición temprana (m2)					1
9	Escalonamiento	de juntas (Und)	19	Desintegración (m2)				1	
10	Grietas longitud (m)	inales y transversales	20	Fisuración por durabilidad (m2)					
	Da	ño	Severidad	Fórmula para el calculo de cantidad parcial	Cantidades parciales	Unidad de medida	Total	Densidad (%)	Valor deducido
	Grietas en bloque o múltiples H		Н	(1,2*1,4)+(2,3*1,2)+(1,8*1,2)+(2 *0,9)+ (2*1)+ (2,8*1,257)	13,92	m2	13,92	2,69	44
	Pulimento de	e agregados	Н	4,3*8	34,40	m2	34,40	6,64	35
						_		Total valor deducido:	79

Ilustración 19 Resultados exploración de la condición unidad de muestreo 4 tramo Av. 17ª entre calles 4 y 3

				Exploración de la condici	ón por unidad de	muestreo				
Fecha: 12 de Octubre 2019					Abscisa inicial:	0+211.52	Esquema:	Esquema:		
Zona: /	Zona: Avenida 17a entre calles 4 y 3				Abscisa final:	0+221.84				
lnone	accionado nom	Laura Cáceres y Jor	ao Cáluio	Unidad de muestreo: 5					TOTAL	
inspe	Inspeccionado por: Laura Cáceres y Jo		ge Galvis	Área tramo ":	sección 1" (m2):	518				
No.	Daño		No.	Daño			6 - 32 -	A STATE OF THE STA		
1	Grietas en bloqu	ue o múltiples (m2)	11	Parcheo (m2)					- The state of the	
2	Descaramientos	s (m2)	12	Pulimento de agregados (m2)						
3	Desportillamient	to (m)	13	Cabezas duras (m2)			* 4	A STATE OF THE STA	N	
4	Abultamientos y	hundimientos (Und)	14	Separación de juntas (m)						
5	Ondulaciones (r	m2)	15	Deficiencias de sellado (m)						
6	Levantamiento I	localizado (m)	16	Fisuramiento por retracción (tipo	malla) (m2)					
7	Grieta de esquir	na (m)	17	Grietas en pozos y sumideros (r	m2)					
8	Grietas en los e pasadores (m)	xtremos de los	18	Fisuras ligeras de aparición temprana (m2)			1		1	
9	Escalonamiento	de juntas (Und)	19	Desintegración (m2)						
10	Grietas longitud (m)	inales y transversales	20	Fisuración por durabilidad (m2)						
	Da	ño	Severidad	Fórmula para el calculo de cantidad parcial	Cantidades parciales	Unidad de medida	Total	Densidad (%)	Valor deducido	
	Grietas en bloq	ue o múltiples	Н	4*4,55	18,20	m2	18,20	3,51	49	
	Pulimento de	e agregados	Н	4*6	24,00	m2	24,00	4,63	29	
								Total valor deducido:	78	

Ilustración 20 Resultados exploración de la condición unidad de muestreo 5 tramo Av. 17ª entre calles 4 y 3 El valor deducido para cada tipo de daño se logró determinar mediante el uso de las curvas para pavimentos rígidos que se presentan a continuación:

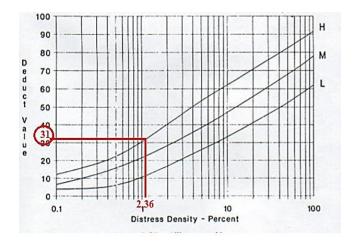


Ilustración 21 Curva para hallar el valor deducido tipo de falla de grietas en bloque o múltiples unidad de muestro 1

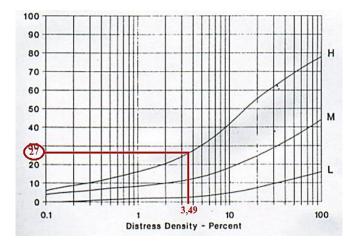


Ilustración 22 Curva para hallar el valor deducido tipo de falla de pulimento de agregados unidad de muestro 1

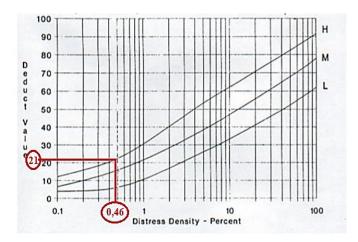


Ilustración 23 Curva para hallar el valor deducido tipo de falla de grietas en bloque o múltiples unidad de muestro 2

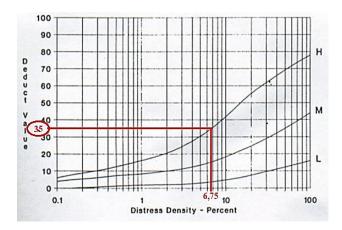


Ilustración 24 Curva para hallar el valor deducido tipo de falla de pulimento de agregados unidad de muestro 2

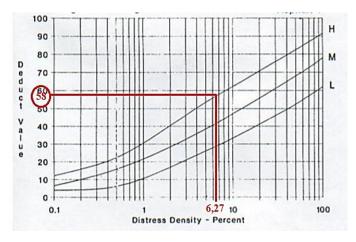


Ilustración 25 Curva para hallar el valor deducido tipo de falla de grietas en bloque o múltiples unidad de muestro 3

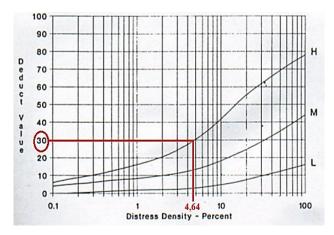


Ilustración 26 Curva para hallar el valor deducido tipo de falla de pulimento de agregados unidad de muestro 3

Ilustración 27 Curva para hallar el valor deducido tipo de falla de grietas en bloque o múltiples unidad de muestro 4

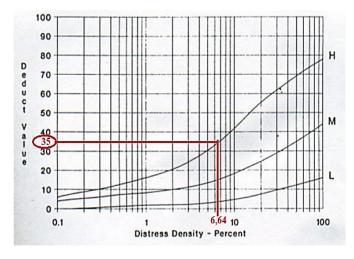


Ilustración 28 Curva para hallar el valor deducido tipo de falla de pulimento de agregados unidad de muestro 4

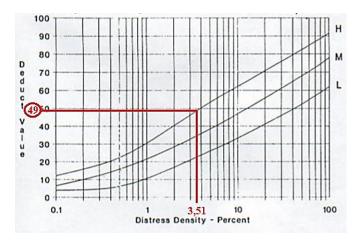


Ilustración 29 Curva para hallar el valor deducido tipo de falla de grietas en bloque o múltiples unidad de muestro 5

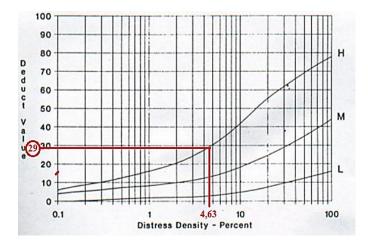


Ilustración 30 Curva para hallar el valor deducido tipo de falla de pulimento de agregados unidad de muestro 5

10.2. Cálculo CDV.

Se determina mediante la curva de corrección, con el valor deducido total de la unidad de muestreo, y el q (número de valores deducidos para la unidad de muestreo). Antes se hace el cálculo del Valor total deducido de cada unidad de muestreo, para posteriormente con dicho dato ir a la curva de corrección con el fin de obtener el CDV.

Valor deducido total. A continuación, se lleva a cabo el cálculo del valor deducido total para la unidad de muestreo 1.

Para la unidad de muestreo 1: Valor deducido total = 31+27 = 58

Una vez calculado el valor deducido total de la unidad de muestreo 1 se continua el proceso, que posteriormente es, efectuar la determinación del CDV por medio de la curva de corrección que se muestra a continuación.

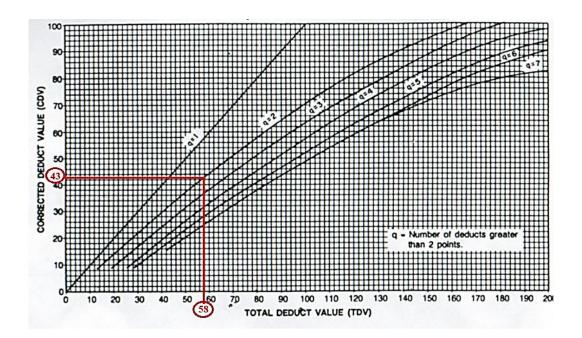


Ilustración 31 Cálculo CDV para un valor deducido total de 58, unidad de muestro 1

De la curva de corrección anterior se obtuvo para un valor deducido total de 58 en la unidad de muestreo 1, y para q = 2, un CDV de 43.

Valor deducido total. A continuación, se lleva a cabo el cálculo del valor deducido total para la unidad de muestreo 2.

Para la unidad de muestreo 2: Valor deducido total = 21+35=56

Una vez calculado el valor deducido total de la unidad de muestreo 2 se continua el proceso que posteriormente es efectuar la determinación del CDV por medio de la curva de corrección que se muestra a continuación.

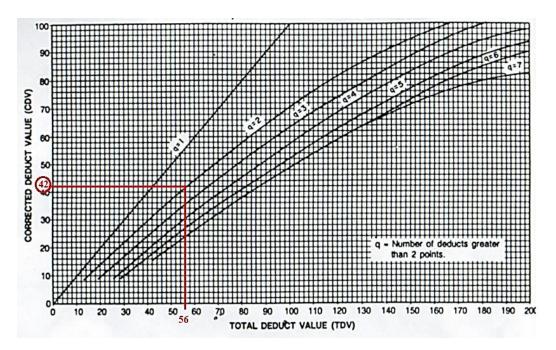


Ilustración 32 Cálculo CDV para un valor deducido total de 56, unidad de muestro 2

De la curva de corrección anterior se obtuvo para un valor deducido total de 56 en la unidad de muestreo 2, y para q = 2, un CDV de 42.

Valor deducido total. A continuación, se lleva a cabo el cálculo del valor deducido total para la unidad de muestreo 3.

Para la unidad de muestreo 3: Valor deducido total = 58+30 = 88

Una vez calculado el valor deducido total de la unidad de muestreo 3 se continua el proceso que posteriormente es efectuar la determinación del CDV por medio de la curva de corrección que se muestra a continuación.

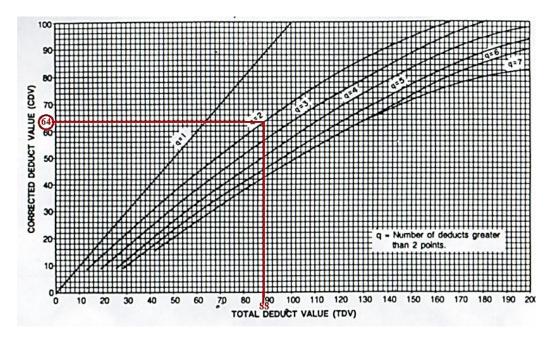


Ilustración 33 Cálculo CDV para un valor deducido total de 88, unidad de muestro 3

De la curva de corrección anterior se obtuvo para un valor deducido total de 88 en la unidad de muestreo 3, y para q = 2, un CDV de 64.

Valor deducido total. A continuación, se lleva a cabo el cálculo del valor deducido total para la unidad de muestreo 4.

Para la unidad de muestreo 4: Valor deducido total = 44+35 = 79

Una vez calculado el valor deducido total de la unidad de muestreo 4 se continua el proceso que posteriormente es efectuar la determinación del CDV por medio de la curva de corrección que se muestra a continuación.

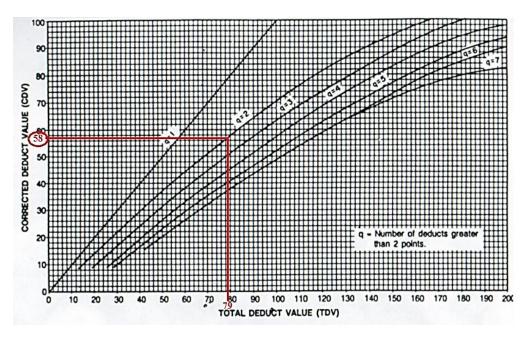


Ilustración 34 Cálculo CDV para un valor deducido total de 79, unidad de muestro 4

De la curva de corrección anterior se obtuvo para un valor deducido total de 79 en la unidad de muestreo 4, y para q = 2, un CDV de 58.

Valor deducido total. A continuación, se lleva a cabo el cálculo del valor deducido total para la unidad de muestreo 5.

Para la unidad de muestreo 5: Valor deducido total = 49+29 = 78

Una vez calculado el valor deducido total de la unidad de muestreo 5 se continua el proceso que posteriormente es efectuar la determinación del CDV por medio de la curva de corrección que se muestra a continuación.

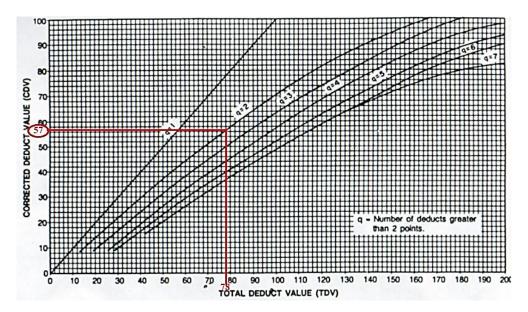


Ilustración 35 Cálculo CDV para un valor deducido total de 78, unidad de muestro 5

De la curva de corrección anterior se obtuvo para un valor deducido total de 78 en la unidad de muestreo 5, y para q = 2, un CDV de 57.

Cálculo del PCI. El PCI de la sección se calcula restando de 100 el máximo CDV obtenido.

Para cada unidad de muestreo de la sección 1 se obtuvieron los siguientes CDV.

CDV unidad de muestreo 1 sección 1= 43

CDV unidad de muestreo 2 sección 1= 42

CDV unidad de muestreo 3 sección 1= 64

CDV unidad de muestreo 4 sección 1= 58

CDV unidad de muestreo 5 sección 1= 57

Por consiguiente, el máximo CDV obtenido fue de 64.

PCI = 100 - Máximo CDV

$$PCI = 100 - 64 = 36$$

En conclusión, para la sección 1 comprendida por el tramo de la Av. 17ª entre calles 4 y 3, se obtuvo un índice de condición de pavimento de 36, basados en la tabla 50 adaptada del manual pavement condition index para pavimentos asfálticos y de concreto en carreteras, dicho valor está dentro del rango de clasificación de PCI del 40 al 25, por tanto, aplica para clasificación de PCI "Malo". Con base en los planos topográficos (Ver anexo H) donde se muestran las áreas afectadas por rehabilitar en metro cuadrado del tramo de vía de la Av. 17ª entre calles 4 y 3, y teniendo en cuenta de que el índice de condición calculado para dicho tramo fue de 36 clasificación "Malo", se recomienda que la técnica de rehabilitación sea reemplazar la capa de rodamiento en las áreas afectadas. A continuación, en la tabla 48 se muestran las áreas afectadas que arrojó la topografía en metros cuadrados, del tramo de la Avenida 17ª entre calles 4 y 3.

Tabla 48Áreas afectadas del tramo de la Av. 17ª entre calles 4 y 3

	ÁREAS A I	REHABILITAR	EN TRAM	O AV. 17A	ENTRE CA	ALLES 4 Y 3
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)
A17	6,044	5,9317	5,06845			30,35
A18	6,3332	6,2426	5,9411			37,36
A19	6,9377	6,2915	8,54555			56,53
A20	5,3686	5,0963	9,2346			48,32
A21	4,2294	3,974	10,2875			42,20
	TOTAL D	E ÁREAS AFEC	TADAS EN	EL TRA	MO(M2):	214,75
			ÁREA I	DEL TRA	MO(M2):	518

Áreas a rehabilitar en los tramos de vía en estudio. A continuación, se exponen en tablas las áreas por rehabilitar en los tramos de vía en estudio, arrojadas por la topografía.

Tabla 49 Áreas afectadas del tramo Calle 3 entre avenidas 21 y 20

ÁREAS A REHABILITAR EN EL TRAMO CALLE 3 ENTRE AVENIDAS 21 Y 20

TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)
A1	6,0714	5,8567	5,9705	39,3091	5,3312	682,90
	TOTAL	DE ÁREAS AFEC	TADAS EN	EL TRAN	MO(M2):	682,90
			ÁREA D	EL TRAN	MO(M2):	754
		PORCENTAJE A	FECTADO	DEL TRA	AMO(%)	90,6

TÉCNICA DE REHABILITACIÓN: De acuerdo al porcentaje afectado del tramo que fue de 90,6%, se recomienda rehabilitar todo el tramo de 754 m2 con la técnica de reemplazo de capa de rodadura puesto que dicho tramo se encuentra bastante deteriorado con niveles de severidad ALTO para cada uno de los tipos de daños encontrados en el pavimento rígido existente. Durante la inspección visual se observaron los siguientes tipos de daño en el pavimento de dicho tramo: Desintegración NS (H), Punzonamiento NS (H), Fragmentación múltiple NS (H), y Grietas longitudinales y transversales NS (H). Por tanto, no fue necesario aplicar el método del PCI debido al notable deterioro expandido en casi toda la totalidad del área del tramo. (Ver Anexo G de Registro fotográfico)

Tabla 50 Áreas afectadas del tramo Avenida 20 entre calles 3 y 4

ÁREAS A REHABILITAR EN EL TRAMO AVENIDA 20 ENTRE CALLES 3 Y 4

TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)	
A2				78,5813	6,10995	480,13	
	TOTAL DE ÁREAS AFECTADAS EN EL TRAMO(M2):						
	ÁREA DEL TRAMO(M2): 491						
		PORCENT	AJE AFECT	ADO DEL T	RAMO(%)	97,9	

TÉCNICA DE REHABILITACIÓN: De acuerdo al porcentaje afectado del tramo que fue de 97,9%, se recomienda rehabilitar todo el tramo de 491 m2 con la técnica de reemplazo de capa de rodadura puesto que dicho tramo se encuentra bastante deteriorado con niveles de severidad ALTO para cada uno de los tipos de daños encontrados en el pavimento rígido existente. Durante la inspección visual se observaron los siguientes tipos de daño en el pavimento de dicho tramo: Desintegración NS (H), y Fragmentación múltiple NS (H). Por tanto, no fue necesario aplicar el método del PCI debido al notable deterioro expandido en casi toda la totalidad del área del tramo. (Ver Anexo G de Registro fotográfico)

	ÁREAS A REH	ABILITAR EN EL	TRAMO CA	ALLE 4 ENT	RE AVENII	OAS 20 Y 19a
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)
A3				20,6508	6,1544	127,09
A4	8,8206	6,4589	6,44765	16,6768	6,36075	155,34
	TO	ΓAL DE ÁREAS A	FECTADAS	EN EL TR	AMO(M2):	282,43
			ÁRI	EA DEL TR	AMO(M2):	383
		PORCENTA	AJE AFECTA	DO DEL T	RAMO(%)	73,8

TÉCNICA DE REHABILITACIÓN: De acuerdo al porcentaje afectado del tramo que fue de 73,8%, se recomienda rehabilitar solo el área afectada de 282,43 m2 con la técnica de reemplazo de capa de rodadura puesto que dichas áreas afectadas se encuentran bastante deterioradas con niveles de severidad ALTO para cada uno de los tipos de daños encontrados en el pavimento rígido existente. Durante la inspección visual se observaron los siguientes tipos de daño en el pavimento de dicho tramo: Desintegración NS (H), Fragmentación múltiple NS (H), y Grietas longitudinales NS (H). Por tanto, no fue necesario aplicar el método del PCI debido al notable deterioro en el 73,8% del tramo. (Ver Anexo G de Registro fotográfico)

Tabla 52 Áreas afectadas del tramo Avenida 19a entre calles 3 y 4

ÁREAS A REHABILITAR EN EL TRAMO AVENIDA 19a ENTRE CALLES 3 Y 4								
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)		
A 5	8,1025	7,6068	6,55405	77,1994	6,6867	567,69		
		TOTAL DE	ÁREAS AFECT	ADAS EN EL	TRAMO(M2):	567,69		
				ÁREA DEL	ΓRAMO(M2):	641		
		PC	ORCENTAJE AF	ECTADO DEI	TRAMO(%)	88,6		

TÉCNICA DE REHABILITACIÓN: De acuerdo al porcentaje afectado del tramo que fue de 88,6%, se recomienda rehabilitar solo el área afectada de 567,69 m2 con la técnica de reemplazo de capa de rodadura puesto que dichas áreas afectadas se encuentran bastante deterioradas con niveles de severidad ALTO para cada uno de los tipos de daños encontrados en el pavimento rígido existente. Durante la inspección visual se observaron los siguientes tipos de daño en el pavimento de dicho tramo: Fragmentación múltiple o losa dividida NS (H). Por tanto, no fue necesario aplicar el método del PCI debido al notable deterioro en el 88,6% del tramo. (Ver Anexo G de Registro fotográfico)

Tabla 53 Áreas afectadas del tramo Avenida 19 entre calles 3 y 4

	ÁREAS A REHA	BILITAR EN E	L TRAMO	AVENIDA 1	19 ENTRE (CALLES 3 Y 4
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)
A6	96,8355	96,8228	7,6243			738,25
	TOTA	L DE ÁREAS A	FECTADAS	EN EL TR	AMO(M2):	738,25
			ÁRI	EA DEL TR	AMO(M2):	741
		PORCENTA	JE AFECTA	ADO DEL T	RAMO(%)	99,6

TÉCNICA DE REHABILITACIÓN: De acuerdo al porcentaje afectado del tramo que fue de 99,6%, se recomienda rehabilitar todo el tramo de 741 m2 con la técnica de reemplazo de capa de rodadura puesto que dichas áreas afectadas se encuentran bastante deterioradas con niveles de severidad ALTO para cada uno de los tipos de daños encontrados en el pavimento rígido existente. Durante la inspección visual se observaron los siguientes tipos de daño en el pavimento de dicho tramo: Fragmentación múltiple o losa dividida NS (H), Punzonamiento NS (H), y Desintegración NS (H). Por tanto, no fue necesario aplicar el método del PCI debido al notable deterioro en el 99,6% del tramo. (Ver Anexo G de Registro fotográfico)

Cuantificación áreas afectadas por tramo, y recomendación método de

rehabilitación. A continuación, en la tabla 54 se presentan las áreas afectadas por rehabilitar en metros cuadrados.

Tabla 54 Áreas afectadas por rehabilitar

	1					
		ÁRE	AS A REHA	BILITAR		
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)
A1	6,0714	5,8567	5,9705	39,3091	5,3312	682,90
A2				78,5813	6,10995	480,13
A3				20,6508	6,1544	127,09
A4	8,8206	6,4589	6,44765	16,6768	6,36075	155,34
A5	8,1025	7,6068	6,55405	77,1994	6,6867	567,69
A6	96,8355	96,8228	7,6243			738,25
A7				21,2053	5,339	113,22
A8				17,581	5,3804	94,59
A9				16,6133	5,3824	89,42
A10	7,0591	5,0327	6,4389	16,0369	5,3408	124,58
A12				8,4901	6,6806	56,72
A13	22,2637	22,2393	2,14575			47,75
A14				10,7516	6,8488	73,64
A15				13,5677	5,3484	72,57
A16				11,1587	5,3574	59,78
A17	6,044	5,9317	5,06845			30,35
A18	6,3332	6,2426	5,9411			37,36
A19	6,9377	6,2915	8,54555			56,53
A20	5,3686	5,0963	9,2346			48,32
A21	4,2294	3,974	10,2875			42,20
					TOTAL	3698,43

Tabla 55 Áreas afectadas del tramo Calle 4 entre Avenidas 19ª y 19

	ÁREAS A REHA	BILITAR EN EL T	TRAMO CAL	LE 4 ENTE	RE AVENID	AS 19A Y 19
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)
A7				21,2053	5,339	113,22
A8				17,581	5,3804	94,59
	TO	TAL DE ÁREAS A	AFECTADAS	EN EL TR	AMO(M2):	207,81
			ÁRF	EA DEL TR	AMO(M2):	406
		PORCENTA	AJE AFECTA	DO DEL T	RAMO(%)	51,2

TÉCNICA DE REHABILITACIÓN: De acuerdo al porcentaje afectado del tramo que fue de 51,2%, se recomienda rehabilitar solo las áreas afectadas de 207,81 m2 con la técnica de reemplazo de capa de rodadura puesto que dichas áreas afectadas se encuentran bastante deterioradas con niveles de severidad ALTO para cada uno de los tipos de daños encontrados en el pavimento rígido existente. Durante la inspección visual se observaron los siguientes tipos de daño en el pavimento de dicho tramo: Fragmentación múltiple tipo malla o losa dividida NS (H). Por tanto, no fue necesario aplicar el método del PCI debido al notable deterioro en el 51,2% del tramo. (Ver Anexo G de Registro fotográfico)

Tabla 56 Áreas afectadas del tramo Calle 4 entre Avenidas 19 y 18ª

	,					
	ÁREAS A REHA	BILITAR EN EL	TRAMO CA	ALLE 4 EN	ITRE AVEN	NIDAS 19 Y 18A
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)
A9				16,6133	5,3824	89,42
A10	7,0591	5,0327	6,4389	16,0369	5,3408	124,58
	TOTAL	DE ÁREAS AFE	ECTADAS E	N EL TRA	MO(M2):	214,00
			ÁREA	DEL TRA	MO(M2):	332
		PORCENTAJE	AFECTAD	O DEL TR	AMO(%)	64,4

TÉCNICA DE REHABILITACIÓN: De acuerdo al porcentaje afectado del tramo que fue de 64,4%, se recomienda rehabilitar solo las áreas afectadas de 214 m2 con la técnica de reemplazo de capa de rodadura puesto que dichas áreas afectadas se encuentran bastante deterioradas con niveles de severidad ALTO para cada uno de los tipos de daños encontrados en el pavimento rígido existente. Durante la inspección visual se observaron los siguientes tipos de daño en el pavimento de dicho tramo: Fragmentación múltiple tipo malla o losa dividida NS (H). Por tanto, no fue necesario aplicar el método del PCI debido al notable deterioro en el 64,4% del tramo. (Ver Anexo G de Registro fotográfico)

Tabla 57 área a pavimentar en el tramo avenida 18a entre calles 4 y 3

Á	REA A PAVIME	NTAR EN EL T	RAMO AVE	NIDA 18A	ENTRE CA	LLES 4 Y 3
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)
A11	77,7615	77,5797	6,15965			478,42
TOTA	L DE ÁREA SIN	CAPA DE RODA	AMIENTO E	EN EL TRA	MO(M2):	478,42
			ÁREA	DEL TRA	MO(M2):	478
	PORCENTAJE	SIN CAPA DE R	ODAMIENT	TO DEL TE	RAMO(%)	100,0
Dicho tra	amo no tiene capa	de rodadura, se	recomienda i	pavimentar (es decir reen	nplazo de las capas

Dicho tramo no tiene capa de rodadura, se recomienda pavimentar es decir reemplazo de las capas granulares y construcción de la capa de rodadura. Para ver el estado del tramo (Ver Anexo G de Registro fotográfico)

Tabla 58 Áreas afectadas del tramo Avenida 18 entre calles 3 y 4

	ÁREAS A REI	HABILITAR EN	EL TRAMO	AVENIDA	A 18 ENTRE	CALLES 3 Y 4
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)
A12				8,4901	6,6806	56,72
A13	22,2637	22,2393	2,14575			47,75
A14				10,7516	6,8488	73,64
	TOTAL	DE ÁREAS AFE	CTADAS E	N EL TRA	MO(M2):	178,10
			ÁREA	DEL TRA	MO(M2):	519
		PORCENTAJE	AFECTAD	O DEL TR	AMO(%)	34,3

TÉCNICA DE REHABILITACIÓN: De acuerdo al porcentaje afectado del tramo que fue de 34,3%, se recomienda rehabilitar solo las áreas afectadas de 178,10 m2 con la técnica de reemplazo de capa de rodadura puesto que dichas áreas afectadas se encuentran bastante deterioradas con niveles de severidad ALTO para cada uno de los tipos de daños encontrados en el pavimento rígido existente. Durante la inspección visual se observaron los siguientes tipos de daño en el pavimento de dicho tramo: Desconchamiento NS (H). Para ver el estado de deterioro de dichas áreas afectadas (Ver Anexo G de Registro fotográfico)

Tabla 59 Áreas afectadas del tramo Calle 4 entre Avenidas 18ª y 18

ÁR	ÁREAS A REHABILITAR EN EL TRAMO CALLE 4 ENTRE AVENIDAS 18A Y 18						
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)	
A15				13,5677	5,3484	72,57	
	TO	ΓAL DE ÁREAS A	FECTADAS	EN EL TRA	AMO(M2):	72,57	
			ÁRE	CA DEL TRA	AMO(M2):	403	
PORCENTAJE AFECTADO DEL TRAMO(%)					18,0		

TÉCNICA DE REHABILITACIÓN: De acuerdo al porcentaje afectado del tramo que fue de 18%, se recomienda rehabilitar solo el área afectada de 72,57 m2 con la técnica de reemplazo de capa de rodadura puesto que dichas áreas afectadas se encuentran bastante deterioradas con niveles de severidad ALTO para cada uno de los tipos de daños encontrados en el pavimento rígido existente. Durante la inspección visual se observaron los siguientes tipos de daño en el pavimento de dicho tramo: Losa dividida NS (H), Descaramiento de esquina NS (H), y Pulimento de agregados NS (H). Para ver el estado de deterioro de dichas áreas afectadas (Ver Anexo G de Registro fotográfico)

Tabla 68. Áreas afectadas del tramo Calle 4 entre Avenidas 18 y 17ª

	ÁREAS A REHA	BILITAR EN EL '	TRAMO CAI	LLE 4 ENT	RE AVENI	DAS 18 Y 17A
TIPO	BASE MAYOR	BASE MENOR	ALTURA	LARGO	ANCHO	ÁREA (M2)
A16				11,1587	5,3574	59,78
	TOTA	AL DE ÁREAS AI	FECTADAS I	EN EL TRA	MO(M2):	59,78
			ÁREA	A DEL TRA	MO(M2):	289
PORCENTAJE AFECTADO DEL TRAMO(%)					20,7	

TÉCNICA DE REHABILITACIÓN: De acuerdo al porcentaje afectado del tramo que fue de 20,7%, se recomienda rehabilitar solo el área afectada de 59,78 m2 con la técnica de reemplazo de capa de rodadura puesto que dichas áreas afectadas se encuentran bastante deterioradas con niveles de severidad ALTO para cada uno de los tipos de daños encontrados en el pavimento rígido existente. Durante la inspección visual se observaron los siguientes tipos de daño en el pavimento de dicho tramo: Losa dividida NS (H), Descaramiento de esquina NS (H), y Pulimento de agregados NS (H). Para ver el estado de deterioro de dichas áreas afectadas (Ver Anexo G de Registro fotográfico)

11. Presupuestos de obra

La alternativa de diseño 1 es una estructura de pavimento flexible diseñada mediante el método AASHTO – 93. Es decir, si se selecciona la alternativa de diseño 1 se deberá instalar un pavimento flexible en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una mezcla densa en caliente mdc-19 de 6 cm, la capa de base granular de 11 cm, y sub-base granular de 14 cm. En los tramos deteriorados como se trató en el capítulo 10, se recomienda rehabilitar el pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y llevar a cabo la reparación hasta la capa sub base granular, por lo que se deberán adoptar los espesores obtenidos en el diseño de la alternativa de pavimento flexible por el método AASHTO - 93, el cual arrojó un espesor de mezcla densa en caliente mdc-19 de 6 cm, un espesor de base granular de 11 cm, y la sub-base granular de 14 cm. El costo total de la obra obtenido con la alternativa de diseño 1 es de, seiscientos cuarenta y siete millones ciento seis mil cuatrocientos pesos (\$ 647.106.400,00).

La alternativa de diseño 2 es una estructura de pavimento flexible diseñada mediante el método INVIAS. Es decir, si se selecciona la alternativa de diseño 2 se deberá instalar un pavimento flexible en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una mezcla densa en caliente mdc-19 de 7,5 cm, la base granular de 20 cm, y sub-base granular de 35 cm. En los tramos deteriorados como se trató en el capítulo 10, se recomienda rehabilitar los tramos de vía de pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y realizar la reparación hasta la capa de sub-base granular; para el reemplazo de dichas capas se recomienda adoptar los espesores obtenidos en el diseño de

la alternativa de pavimento flexible mediante el método INVIAS, es decir un espesor de mezcla densa en caliente de 7,5 cm, para la capa de base granular un espesor de 20 cm, y de sub base granular un espesor de 35 cm. El costo total de la obra obtenido con la alternativa de diseño 2 es de, seiscientos cuarenta y ocho millones seiscientos ocho mil cuatrocientos cuarenta y un pesos (\$ 648.608.441,00).

La alternativa de diseño 3 es una estructura de pavimento rígido diseñada mediante el método AASHTO - 93. Es decir, si se selecciona la alternativa de diseño 3 se deberá instalar un pavimento rígido en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una losa de concreto de 14 cm, y una base granular de 20 cm. En los tramos deteriorados como se trató en el capítulo 10, se recomienda rehabilitar los tramos de vía de pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y llevar a cabo la reparación hasta la capa subyacente a la losa de concreto, en este caso la capa de base granular, por lo que se deberán adoptar los espesores obtenidos en el diseño de la alternativa de pavimento rígido por el método AASHTO – 93, el cual arrojó un espesor de losa de concreto de 14 cm, y para la capa de base granular se obtuvo un espesor de 20 cm. El costo total de la obra obtenido con la alternativa de diseño 3 es de, ochocientos treinta y seis millones doscientos cuarenta y un mil setecientos diez pesos (\$836.241.710,00).

La alternativa de diseño 4 es una estructura de pavimento rígido diseñada mediante el método INVIAS. Es decir, si se selecciona la alternativa de diseño 4 se deberá instalar un pavimento rígido en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una losa de concreto de 22 cm, y una base granular de 15 cm. En los tramos

deteriorados como se trató en el capítulo 10, se recomienda rehabilitar los tramos de vía de pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y llevar a cabo la reparación hasta la capa subyacente a la losa de concreto, en este caso la capa de base granular, por lo que se deberán adoptar los espesores obtenidos en el diseño de la alternativa de pavimento rígido por el método INVIAS, el cual arrojó un espesor de losa de concreto de 22 cm, y para la capa de base granular se obtuvo un espesor de 15 cm. El costo total de la obra obtenido con la alternativa de diseño 4 es de, novecientos cincuenta y un millones setecientos noventa mil quinientos noventa y ocho pesos (\$951.790.598,00).

En el Anexo D se presentan los presupuestos de obra de las alternativas de diseño.

Los análisis de precios unitarios se realizaron en base a precios actuales y teniendo como guía el libro construprecios edición 2019, y los APUS del INVIAS para Norte de Santander. En el Anexo E se muestran los análisis de precios unitarios.

12. Recomendación alternativa de diseño mas favorable

La alternativa de diseño 1 es la más económica y viable a día de hoy, teniendo en cuenta las características expuestas en el desarrollo de dicha alternativa, es decir, su periodo de diseño de 15 años, consiste en una estructura de pavimento flexible (Período de diseño 15 años) diseñada mediante el método AASHTO – 93. Dicha alternativa es la más económica para ejecutar basados en el presupuesto general calculado en el proyecto; dicho presupuesto no tiene en cuenta los costos que acarrea el mantenimiento a lo largo de la vida útil del pavimento flexible diseñado mediante la alternativa 1 por el método AASHTO-93.

Es decir, si se selecciona la alternativa de diseño 1 se deberá instalar un pavimento flexible en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una mezcla densa en caliente mdc-19 de 6 cm, la capa de base granular de 11 cm, y sub-base granular de 14 cm. En los tramos deteriorados como se trató en el capítulo 10, se recomienda rehabilitar el pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y llevar a cabo la reparación hasta la capa sub base granular, por lo que se deberán adoptar los espesores obtenidos en el diseño de la alternativa de pavimento flexible por el método AASHTO - 93, el cual arrojó un espesor de mezcla densa en caliente mdc-19 de 6 cm, un espesor de base granular de 11 cm, y la sub-base granular de 14 cm.

Se selecciona la Alternativa de diseño 1 que presenta como costo total de la obra \$647.106.400,00.

13. Conclusiones

De la exploración de campo y ensayos de laboratorio efectuados, se pudo identificar los tipos de suelos existentes a lo largo de 1129 m de vía, y las características de cada clase de suelo. En el tramo 1, que comprende la Calle 3 entre Avenidas 20 y 21, Avenida 20 entre Calles 3 y 4^a, Calle 4ª entre Avenidas 20 y 19ª, y Avenida 19ª entre Calles 3 y 4ª, se realizaron (2) dos apiques. La muestra tomada en el apique #1 efectuado, arrojó las siguientes características: Suelo limoso de baja plasticidad color naranja, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 45.95%, y finos del 54.05%. El suelo presenta valores promedios de límite de líquido del 17.06%, límite plástico del 13.09%, índice de plasticidad del 3.98% y humedad natural del 7.56%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 6.6% y a una profundidad de (0.20m - 0.90m) fue de 7.5%. Se tomó el valor de CBR más crítico o bajo que fue de 6.6%. La muestra tomada en el apique #2 efectuado, arrojó las siguientes características: Suelo limoso de baja plasticidad color naranja, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 46.16%, y finos del 53.84%. El suelo presenta valores promedios de límite de líquido del 16.76%, límite plástico del 13.05%, índice de plasticidad del 3.71% y humedad natural del 7.85%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 8.1% y a una profundidad de (0.20m – 0.90m) fue de 3.4%. Se tomó el valor de CBR más crítico o bajo que fue de 3.4%. En el tramo 2, que comprende la Calle 4ª entre Avenidas 19 y 19ª, Avenida 19 entre Calles 3 y 4^a, Calle 4^a entre Avenidas 19 y 18^a, Avenida 18^a entre Calles 3 y 4^a, Calle 4^a entre Avenidas 18^a y 18, y Avenida 18 entre Calles 3 y 4^a, se realizaron (3) tres apiques en dicho tramo. La muestra

tomada en el apique #3 efectuado, arrojó las siguientes características: Suelo limoso de baja plasticidad color naranja, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 46.69%, y finos del 53.31%. El suelo presenta valores promedios de límite de líquido del 17.35%, límite plástico del 12.80%, índice de plasticidad del 4.55% y humedad natural del 7.01%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m -0.20m) fue de 33.7% y a una profundidad de (0.20m – 0.90m) fue de 4.8%. Se tomó el valor de CBR más crítico o bajo que fue de 4.8%. La muestra tomada en el apique #4 efectuado, arrojó las siguientes características: Suelo limoso de baja plasticidad color naranja, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 45.87%, y finos del 54.13%. El suelo presenta valores promedios de límite de líquido del 17.09%, límite plástico del 13.09%, índice de plasticidad del 4.00% y humedad natural del 7.15%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 14.1% y a una profundidad de (0.20m – 0.90m) fue de 3.2%. Se tomó el valor de CBR más crítico o bajo que fue de 3.2%. La muestra tomada en el apique #5 efectuado, arrojó las siguientes características: Suelo limoso de baja plasticidad color naranja, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 45.95%, y finos del 54.05%. El suelo presenta valores promedios de límite de líquido del 15.44%, límite plástico del 11.70%, índice de plasticidad del 3.74% y humedad natural del 8.34%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 7.8% y a una profundidad de (0.20m - 0.90m) fue de 3.2%. Se tomó el valor de CBR más crítico o bajo que fue de 3.2%. En el tramo 3, que comprende la Calle 4ª

entre Avenidas 17^a y 18, y Avenida 17^a entre Calles 3 y 4^a, se realizó (1) un apique en dicho tramo. La muestra tomada en el apique #6 efectuado, arrojó las siguientes características: es un suelo limoso, en este sector se encuentran materiales muy finos de características pobres a malas (ML). Con un porcentaje promedio de arenas del 45.95% y finos del 54.05%. El suelo presenta valores promedios de límite de líquido del 15.44%, límite plástico del 11.70%, índice de plasticidad del 3.74% y humedad natural del 7.15%. La resistencia de sub rasante obtenida mediante el método del cono dinámico de penetración a una profundidad de (0.00m - 0.20m) fue de 13.55% y a una profundidad de (0.20m – 0.90m) fue de 6.4%. Se tomó el valor de CBR más crítico o bajo que fue de 6.4%.

Se calculó el CBR del proyecto mediante el método percentil, y se obtuvo un valor de 3.4%.

Como el valor de C.B.R del proyecto es muy bajo, se adopta un valor de CBR mejorado mediante estabilización del 7%.

Se realizó el correspondiente estudio de tránsito, se llevó a cabo el aforo vehicular tomando como punto de aforo "la Calle 4ª con Avenida 17ª del Barrio Cúcuta 75", puesto que en dicho sector en estudio se encuentra el mayor flujo de tránsito.

Los datos recolectados se tomaron por medio de conteos manuales realizados por los autores de este proyecto. Se definió, realizar conteos vehiculares durante tres días continuos, desde el jueves 18 hasta el sábado 20 de Julio del 2019, en horario de las 05:00 hasta las 22:00 horas, registrando ambos sentidos de circulación sobre el punto de aforo seleccionado.

El tránsito promedio diario obtenido con la información del aforo vehicular en el sector de la Calle 4ª con Avenida 17ª del Barrio Cúcuta 75, fue de 4939 veh/día para el año 2019, registrando la siguiente composición vehicular: 93,61% para Automóviles (Vehículos livianos),

6.13% para vehículos de servicios públicos, y 0.26% para camiones, de los cuales el 96.18% corresponde a vehículos C2, y el 3.82% a vehículos C3.

El número de ejes equivalentes obtenidos en el estudio de tránsito para un pavimento rígido con un periodo de diseño de 20 años (número de ejes equivalentes de 8,2 ton.) fue de 0,17842 X 10^6 , lo cual nos indica una designación de transito según INVIAS de T2.

El número de ejes equivalentes obtenidos en el estudio de tránsito para un pavimento flexible con un periodo de diseño de 15 años (número de ejes equivalentes de 8,2 ton.) fue de 0,11997 X 10⁶, lo cual corresponde a una designación de transito según INVIAS de T1.

Se llevó a cabo el correspondiente estudio topográfico, en el cual, según levantamiento topográfico efectuado, el área total en deterioro del pavimento rígido existente es de 3698,43 m2.

El área del tramo sin capa de rodadura es de 478,42 m2.

Se desarrollaron, y definieron las respectivas alternativas de diseño, obteniendo que la alternativa de diseño 1 es una estructura de pavimento flexible diseñada mediante el método AASHTO – 93. Es decir, si se selecciona la alternativa de diseño 1 se deberá instalar un pavimento flexible en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una mezcla densa en caliente mdc-19 de 6 cm, la capa de base granular de 11 cm, y sub-base granular de 14 cm. En los tramos deteriorados como se trató en el capítulo 10, se recomienda rehabilitar el pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y llevar a cabo la reparación hasta la capa sub base granular, por lo que se deberán adoptar los espesores obtenidos en el diseño de la alternativa de pavimento flexible por el método AASHTO - 93, el cual arrojó un espesor de mezcla densa en caliente mdc-19 de 6 cm, un espesor de base granular de 11 cm, y la sub-base granular de 14 cm. El costo total de la obra

obtenido con la alternativa de diseño 1 es de, seiscientos cuarenta y siete millones ciento seis mil cuatrocientos pesos (\$ 647.106.400,00)

La alternativa de diseño 2 es una estructura de pavimento flexible diseñada mediante el método INVIAS. Es decir, si se selecciona la alternativa de diseño 2 se deberá instalar un pavimento flexible en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una mezcla densa en caliente mdc-19 de 7,5 cm, la base granular de 20 cm, y sub-base granular de 35 cm. En los tramos deteriorados como se trató en el capítulo 10, se recomienda rehabilitar los tramos de vía de pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y realizar la reparación hasta la capa de sub-base granular; para el reemplazo de dichas capas se recomienda adoptar los espesores obtenidos en el diseño de la alternativa de pavimento flexible mediante el método INVIAS, es decir un espesor de mezcla densa en caliente de 7,5 cm, para la capa de base granular un espesor de 20 cm, y de sub base granular un espesor de 35 cm. El costo total de la obra obtenido con la alternativa de diseño 2 es de, seiscientos cuarenta y ocho millones seiscientos ocho mil cuatrocientos cuarenta y un pesos (\$ 648.608.441,00).

La alternativa de diseño 3 es una estructura de pavimento rígido diseñada mediante el método AASHTO - 93. Es decir, si se selecciona la alternativa de diseño 3 se deberá instalar un pavimento rígido en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una losa de concreto de 14 cm, y una base granular de 20 cm. En los tramos deteriorados como se trató en el capítulo 10, se recomienda rehabilitar los tramos de vía de pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y

llevar a cabo la reparación hasta la capa subyacente a la losa de concreto, en este caso la capa de base granular, por lo que se deberán adoptar los espesores obtenidos en el diseño de la alternativa de pavimento rígido por el método AASHTO – 93, el cual arrojó un espesor de losa de concreto de 14 cm, y para la capa de base granular se obtuvo un espesor de 20 cm. El costo total de la obra obtenido con la alternativa de diseño 3 es de, ochocientos treinta y seis millones doscientos cuarenta y un mil setecientos diez pesos (\$836.241.710,00).

La alternativa de diseño 4 es una estructura de pavimento rígido diseñada mediante el método INVIAS. Es decir, si se selecciona la alternativa de diseño 4 se deberá instalar un pavimento rígido en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una losa de concreto de 22 cm, y una base granular de 15 cm. En los tramos deteriorados como se trató en el capítulo 10, se recomienda rehabilitar los tramos de vía de pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y llevar a cabo la reparación hasta la capa subyacente a la losa de concreto, en este caso la capa de base granular, por lo que se deberán adoptar los espesores obtenidos en el diseño de la alternativa de pavimento rígido por el método INVIAS, el cual arrojó un espesor de losa de concreto de 22 cm, y para la capa de base granular se obtuvo un espesor de 15 cm. El costo total de la obra obtenido con la alternativa de diseño 4 es de, novecientos cincuenta y un millones setecientos noventa mil quinientos noventa y ocho pesos (\$951.790.598,00).

La alternativa más económica y viable para este tipo de obra es la alternativa de diseño 1 que consiste en una estructura de pavimento flexible diseñada mediante el método AASHTO – 93. Es decir, si se selecciona la alternativa de diseño 1 se deberá instalar un pavimento flexible en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en

el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una mezcla densa en caliente mdc-19 de 6 cm, la capa de base granular de 11 cm, y sub-base granular de 14 cm. En los tramos deteriorados como se trató en el capítulo 10, se recomienda rehabilitar el pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y llevar a cabo la reparación hasta la capa sub base granular, por lo que se deberán adoptar los espesores obtenidos en el diseño de la alternativa de pavimento flexible por el método AASHTO - 93, el cual arrojó un espesor de mezcla densa en caliente mdc-19 de 6 cm, un espesor de base granular de 11 cm, y la sub-base granular de 14 cm.

Se selecciona la Alternativa de diseño 1 que presenta como costo total de la obra \$647.106.400,00.

14. Recomendaciones

Se sugiere que si se ejecuta la obra completa se seleccione la alternativa de diseño 1, por ser la más económica y viable para este tipo de proyecto, y que consiste en una estructura de pavimento flexible diseñada mediante el método AASHTO – 93. Es decir, si se selecciona la alternativa de diseño 1 se deberá instalar un pavimento flexible en el tramo de vía que se encuentra sin capa de rodamiento, adoptando los espesores arrojados en el diseño de dicha alternativa; según el diseño la estructura vial está conformada por una mezcla densa en caliente mdc-19 de 6 cm, la capa de base granular de 11 cm, y sub-base granular de 14 cm. En los tramos deteriorados como se trató en el capítulo 10, se recomienda rehabilitar el pavimento rígido existente deteriorado con la técnica de reemplazo de la losa de concreto, y llevar a cabo la reparación hasta la capa sub base granular, por lo que se deberán adoptar los espesores obtenidos en el diseño de la alternativa de pavimento flexible por el método AASHTO - 93, el cual arrojó un espesor de mezcla densa en caliente mdc-19 de 6 cm, un espesor de base granular de 11 cm, y la sub-base granular de 14 cm. El costo total de la obra obtenido con la alternativa de diseño 1 es de, seiscientos cuarenta y siete millones ciento seis mil cuatrocientos pesos (\$ 647.106.400,00)

Si se ejecuta la obra se deben utilizar materiales de buena calidad que cumplan con los requerimientos técnicos de INVIAS para la construcción del proyecto ya que de ellos depende la vida útil del proyecto.

Es necesario para tener una mayor vida útil y un adecuado funcionamiento de la vía, procurar hacer un mantenimiento periódico de las obras de drenaje, para así evitar taponamientos que puedan ocasionar un colapso del sistema.

En caso que durante la construcción no se ha permitido el cierre de la vía, se debe laborar en media calzada a todo lo largo del proyecto.

Es recomendable que sobre los sectores a intervenir la infraestructura domiciliaria tanto de acueducto como alcantarillado sea la adecuada y no haya cumplido aún su vida útil, de lo contrario deberá construirse con anterioridad.

La sub base ha de ser un material granular clasificado, limpio, con tamaño máximo de 2". La base ha de ser granular triturada, de tamaño máximo 3/4".

Como el valor de C.B.R del proyecto es muy bajo, se requiere aplicar un método de estabilización del suelo de sub rasante, con el fin de lograr la consistencia y mejoramiento de la calidad de la sub rasante. En este caso, el suelo del proyecto deberá ser tratado para obtener un incremento de la capacidad portante, por lo menos hasta un 7%, con cualquier método de estabilización, por obligatoriedad, ya sea mediante aplicación de silicato de sodio como estabilizante del suelo, adición de cal y aditivos, o con uso de geotextil tejido como estabilizador.

15. Referencias bibliograficas

- Construprecios. (2019). Análisis de precios unitarios. Bogotá: Construprecios.
- Instituto Nacional de Vías. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volúmenes de tránsito. Bogotá: INVIAS.
- Universidad Católica de Colombia. (2001). Ingeniería de pavimentos para carreteras. Bogotá: UCATOLICA.
- Instituto Nacional de vías. (1998). Especificaciones técnicas para la construcción de carreteras. Bogotá: INVIAS.
- Universidad Nacional de Colombia. (2002). Pavement condition index (PCI) para pavimentos asfálticos y de concreto en carreteras. Manizales: UNAL.
- Instituto nacional de vías. (2006). Manual de inspección visual para pavimentos rígidos. Bogotá: INVIAS.
- Instituto Colombiano de productores de cemento. (2008). Manual de diseño de pavimentos de concreto para vías con bajos, medios y altos volúmenes de tránsito. Medellín: ICPC.

ANEXOS

Anexo A. Topografía

Carteras de coordenadas

CUADRO 1 DE 7

	LEVANTAMIENTO T	OPOGRAFICO BAR	RIO CÚCUTA 75	
	DPTO NORTE DE	SANTANDER- MPIO	DE CUCUTA	
ARTERA DE O	COORDENADAS		CUADRO	1 DE 7
PUNTO	C. NORTE	C. OESTE	COTA(msnm)	CODIGO
MOJON1	7,906308	72521797	265.000	DELT
MOJON2	7,905341	72521344	265.760	DELT
MOJON3	7,905197	72519780	265.420	DELT
1	7,906325	72521796	265.673	VIA
2	7,906314	72521795	265.294	VIA
3	7,906325	72521794	265.569	VIA
4	7,906314	72521793	265.680	PM
5	7,906303	72521792	265,562	VIA
6	7,906303	72521791	265.667	PM
7	7,906291	72521790	265.606	MR
8	7,906269	72521789	265.653	MUR
9	7,906280	72521788	265.480	MUR
10	7,906280	72521787	265.739	MUR
11	7,906258	72521786	265.739	MUR
12	7,906247	72521785	265.739	PM
13	7,906247	72521784	265.471	MUR
14	7,906250	72521783	265.471	MUR
15	7,906252	72521783	265.617	VIA
16	7,906232	72521782	265.603	PM
17		72521782		MUR
18	7,906237	72521781	265.850	MUR
	7,906232	72521780	265.636	
19	7,906220	72521779	265.637	MUR
20	7,906211	72521778	265.000	MUR
21	7,906220	72521777	265.695	VIA
22	7,906208		265.570	MUR
23	7,906208	72521774	265.568	MUR
24	7,906199	72521773	265.807	MUR
25	7,906194	72521772	265.755	VIA
26	7,906196	72521771	265.780	VIA
27	7,906186	72521770	265.791	VIA
28	7,906179	72521769	265.895	VIA
29	7,906173	72521768	265.765	MUR
30	7,906169	72521767	265.796	ARB
31	7,906162	72521766	265.920	ARB
32	7,906160	72521765	265.668	CE
33	7,906155	72521764	265.895	VIA
34	7,906149	72521763	265.568	VIA
35	7,906140	72521762	265.700	VIA
36	7,906140	72521761	265.125	ARB
37	7,906136	72521760	265.864	PZ
38	7,906122	72521759	265.805	CER
39	7,906125	72521758	265.179	VAL
40	7,906129	72521757	265.045	MUR
41	7,906111	72521756	265.045	MUR
42	7,906111	72521755	265.982	MUR
43	7,906100	72521754	265.196	MUR
44	7,906089	72521753	265.633	VIA
45	7,906090	72521752	265.933	ARB
46	7,906085	72521751	265.807	ARB
47	7,906083	72521750	265.083	ARB
48	7,906085	72521749	265.981	MUR
49	7,906078	72521748	265.969	PB
50	7,906076	72521747	265.638	VIA
51	7,906070	72521746	265.532	VIA
52	7,906070	72521745	265.429	VIA
53	7,906063	72521744	265.027	VIA

CUADRO 2 DE 7

	DE COORDENADAS		CUADRO	
PUNTO	C. NORTE	C. OESTE	COTA(msnm)	CODIGO
54	7,906067	72521741	265.035	VIA
55	7,906065	72521739	265.127	MUR
56	7,906054	72521737	265.152	MUR
D3	7,903049	72521735	265.944	DELT
57	7,903051	72521733	265.000	VAL
58	7,903050	72521731	265.274	MUR
59	7,906049	72521729	265.952	VIA
60	7,906048	72521727	265.071	MUR
61	7,906047	72521725	265.332	MUR
62	7,906046	72521723	265.402	MUR
63	7,906045	72521721	265.402	MUR
64	7,906044	72521719	265.999	PB
65	7,906043	72521717	265.075	VIA
66	7,906043	72521715	265.017	MUR
67	7,906042	72521713	265.232	MUR
		72521713		
68	7,906040	72521711	265.233	MUR
69	7,906039	72521709	265.965	MUR
70	7,906038		265.972	ARB
71	7,906037	72521705	265.441	VIA
72	7,906036	72521703	265.521	VIA
73	7,906035	72521701	265.519	MUR
74	7,906034	72521699	265.643	MUR
75	7,906033	72521697	265.074	PM
76	7,903032	72521695	265.271	MUR
D5	7,903031	72521693	265.493	DELT
77	7,906030	72521691	265.526	CER
78	7,906029	72521689	265.979	PM
79	7,906028	72521687	265.917	VIA
80	7,906027	72521685	265.496	VIA
81	7,906026	72521683	265.362	CER
82	7,906025	72521681	265.469	CER
83	7,906024	72521679	265.033	CER
84	7,906023	72521677	265.023	VIA
85	7,906022	72521675	265.968	CER
86	7,906022	72521673	265.598	VIA
87	7,906020	72521671	265.594	VIA
88	7,906019	72521669	265.599	CER
89	7,903018	72521667		CER
90		72521665	265.134	VIA
	7,903017	72521663	265.624	
91	7,906016	72521663	265.466	VIA
92	7,906015		265.972	VIA
93	7,906787	72521659	265.385	CER
94	7,906788	72521657	265.570	MUR
95	7,906789	72521655	265.554	VIA
96	7,906790	72521653	265.809	VIA
97	7,902791	72521783	265.909	PZ
98	7,906792	72521649	265.066	ARB
99	7,906793	72521648	265.266	CER
100	7,906794	72521647	265.695	MUR
101	7,906795	72521645	265.975	VIA
102	7,906796	72521643	265.111	CER
103	7,906797	72521641	265.430	CER
104	7,906798	72521640	265.981	MUR
105	7,902799	72521639	265.901	CER
106	7,902801	72521638	265.076	MUR
107	7,906802	72521637	265.988	ARB
107	7,906803	72521635	265.116	VIA
100	1,700003		203.110	A 1\(\inf{\alpha}\)

CUADRO 3 DE 7

CARTERA	DE COORDENADAS	CUADRO	3 DE 7	
PUNTO	C. NORTE	C. OESTE	COTA(msnm)	CODIGO
110	7,905805	72521342	265.065	MUR
111	7,905806	72521340	265.101	MUR
112	7,905807	72521338	265.151	MUR
113	7,905808	72521336	265.788	CER
114	7,905809	72521334	265.146	VIA
115	7,905810	72521332	265.705	VIA
116	7,905811	72521330	265.920	PB
117	7,902812	72521328	265.534	PZ
118	7.905813	72521326	265.482	VIA
119	7,905814	72521324	265.505	VIA
120	7,905815	72521322	265.456	CER
D3A	7,905816	72521320	265.510	DELT
121	7,905817	72521318	265.569	MUR
122	7,905818	72521316	265.546	MUR
123	7,905819	72521310	265.415	MUR
124	7,905820	72521312	265.830	MUR
125	7,905821	72521310	265.423	VIA
126	7,905822	72521308	265.870	VIA
127	7,905823	72521306	265.963	VIA
128	7,905824	72521304	265.406	MUR
129	7,905825	72521302	265.702	PB
130	7,905826	72521300	265.858	CER
131	7,905827	72521298	265.609	VIA
132	7,905828	72521296	265.481	VIA
133	7,905829	72521294	265.662	ARB
134	7,905830	72521292	265.166	MUR
D5A	7,905831	72521290	265.394	DELT
135	7,905832	72521288	265.139	MUR
136	7,902833	72521286	265.157	VIA
137	7,905834	72521284	265.361	VIA
138	7,905835	72521282	265.626	MUR
139	7,905836	72521280	265.823	HD
140	7,905837	72521278	265.627	MUR
141	7,905838	72521276	265.753	MUR
142	7,905839	72521274	265.389	MUR
143	7,905840	72521272	265.352	PAV
144	7,905841	72521270	265.378	PAV
145	7,905842	72521268	265.254	PAV
146	7,958430	72521266	265.102	MUR
147	7,905844	72521264	265.865	PM
148	7,905845	72521262	265.525	VIA
149	7,905846	72521260	265.853	VIA
150	7,905847	72521258	265.449	MUR
151	7,905848	72521256	265.516	VIA
152	7,905849	72521254	265.091	MUR
153	7,905850	72521252	265.541	VIA
154	7,905851	72521250	265.372	MUR
155	7,905852	72521248	265.719	CER
156	7,905853	72521246	265.327	PB
157	7,905854	72521244	265.101	VIA
158	7,905855	72521242	265.916	PM
159	7,905856	72521240	265.091	PB
160	7,905857	72521238	265.412	MUR
161	7,905858	72521236	265.966	CER
162	7,905859	72521234	265.046	VIA
163	7,905860	72521232	265.118	VIA
164	7,905861	72521230	265.592	MUR
165	7,905862	72521228	265.342	CER

CUADRO 4 DE 7

	E COORDENADAS		CUADRO	4 DE 7
PUNTO	C. NORTE	C. OESTE	COTA(msnm)	CODIGO
166	7,905862	72521226	265.344	VIA
167	7,905863	72521224	265.354	VIA
168	7,905864	72521222	265.797	PB
169	7,905865	72521220	265.091	VIA
170	7,905866	72521218	265.806	VIA
D6	7,905867	72521216	265.392	DELT
171	7,905868	72521214	265.275	MUR
172	7,905869	72521212	265.285	MUR
173	7,905870	72521210	265.011	MUR
174	7,905871	72521208	265.960	MUR
175	7,905872	72521206	265.971	VIA
176	7,905873	72521204	265.731	VIA
177	7,905874	72521202	265.605	MUR
178	7,905875	72521200	265.491	ARB
179	7,905876	72521198	265.773	VIA
180	7,905877	72521196	265.861	MUR
181	7,905878	72521194	265.817	ARB
182	7,905879	72521192	265.055	PB
183	7,905880	72521190	265.278	MUR
184	7,905881	72521188	265.963	MUR
185	7,905882	72521186	265.822	MUR
186	7,905883	72521184	265.073	MUR
187	7,905884	72521182	265.055	VIA
188	7,905885	72521180	265.174	VIA
189	7,905886	72521178	265.791	VIA
D6A	7,905887	72521176	265.701	DELT
D6B	7,905888	72521174	265.481	DELT
190	7,905889	72521171	265.319	MUR
191	7,905890	72521172	265.758	MUR
192	7,905894	72521176	265.757	VIA
193	7,905896	72521166	265.183	PB
194	7,905898	72521164	265.166	PB
195	7,905906	72521162	265147	VIA
196	7,905908	72521162	265.425	MUR
197	7,905908	72521160	265.969	MUR
198	7,905910	72521156	265.407	VIA
199	7,905912	72521150	265.484	VIA
200	7,905936	72521154	265.443	CER
200	7,905944	72521152		MUR
201	7,905944	72521130	265.181 265.239	PB
202	7,905948	72521146	265.239	CER
203	7,905954	72521146	265.597	CER
204	7,905965	72521144	265.931	VIA
	7,905965			VIA
206	7,905969	72521140 72521138	265.112 265.354	CER
			265.354	
208	7,905978	72521136		CER
209	7,905982	72521134	265.863	VIA
210	7,905982	72521132	265.122	CER
211	7,905996	72521130	265.778	PZ
212	7,905010	72521128	265.038	VIA
213	7,905018	72521126	265.010	MUR
214	7,905024	72521124	265.305	CER
215	7,905027	72521122	265.120	VIA
216	7,905031	72521120	265.110	VIA
217	7,905037	72521118	265.021	MUR
218	7,905043	72521116	265.929	MUR
219	7,905048	72521114	265.077	PB
220	7,905055	72521112	265.010	MUR

CUADRO 5 DE 7

CARTERA D	CUADRO	5 DE 7		
PUNTO	C. NORTE	C. OESTE	COTA(msnm)	CODIGO
221	7,905059	72519778	265.900	VIA
222	7,905063	72519776	265.930	VIA
223	7,905067	72519774	265.830	PZ
224	7,905072	72519772	265.137	VIA
225	7,905072	72519770	265.506	VIA
226	7,905081	72519768	265.507	MUR
227	7,905088	72519766	265.709	MUR
228	7,905092	72519764	265.700	MUR
229	7,905092	72519762	265.555	VIA
230	7,905112	72519760	265.142	VIA
231	7,905112	72519758	265.052	MUR
232	7,905122	72519756	265.228	MUR
233	7,905127	72519754	265.169	VIA
234	7,905127	72519752	265.940	PB
235	7,905139	72519750	265.948	VIA
236	7,905142	72519748	265.104	CER
237	7,905147	72519746	265.856	VIA
238	7,905147	72519744	265.802	MUR
239	7,905154	72519744	265.813	VIA
240	7,905158	72519742	265.647	CER
240	7,905158	72519740	265.397	MUR
242	7,905166	72519736	265.471	VIA
243	7,905169	72519734	265.775	VIA
244	7,905171	72519734	265.627	PZ
245	7,905171	72519730	265.530	VIA
246	7,905179	72519728	265.077	MUR
247	7,905179	72519726	265.501	PB
248	7,905186	72519724	265.511	VIA
249	7,905188	72519722	265.896	CER
250	7,905192	72519720	26.444	CER
251	7,905192	72519720	265.448	VIA
252	7,905214	72519716	265.591	CER
253	7,905214	72519714	265.592	CER
254	7,905218	72519712	265.360	CER
255	7,905227	72519710	265.734	CER
256	7,905237	72519718	265.346	CER
257	7,905238	72519706	265.349	PB
258	7,905244	72519704	265.409	PZ
259	7,905244	72519702	265.333	VIA
260	7,905252	72519700	265.383	VIA
261	7,905255	72519700	265.035	CER
262	7,905259	72519696	265.022	VIA
263	7,905264	72519694	265.017	VIA
264	7,905269	72519692	265.018	CER
265	7,905275	72519690	265.324	MUR
266	7,905279	72519688	265.456	PB
267	7,905283	72519686	265.386	PB
268	7,905286	72519684	265.668	MUR
269	7,905890	72519682	265.252	VIA
270	7,905291	72519680	265.403	VIA
271	7,905295	72519678	265.901	CER
272	7,905298	72519676	265.851	VIA
273	7,905238	72519674	265.045	VIA
274	7,905317	72519672	265.046	PB
275	7,905325	72519670	265.046	CER
276	7,905328	72519668	265.782	MUR
277	7,905328	72519666	265.681	VIA
278	7,905334	72519664	265.681	VIA
2,0	1,705550	,201,00.	203.001	1 121

CUADRO 6 DE 7

CARTERA D	E COORDENADAS		CUADRO 6 DE 7			
PUNTO	C. NORTE	C. OESTE	COTA(msnm)	CODIGO		
279	7,905345	72519662	265.682	CER		
280	7,905353	72519660	265.764	VAL		
281	7,905359	72519658	265.382	MUR		
282	7,905365	72519656	265.921	VIA		
283	7,905371	72519654	265.779	VIA		
284	7,905376	72519652	265.088	MUR		
285	7,905379	72519650	265.479	VIA		
286	7,905383	72519648	265.145	MUR		
287	7,905388	72519646	265.828	VIA		
288	7,905391	72519644	265.816	VIA		
289	7,905394	72519642	265.744	MUR		
290	7,905399	72519640	265.918	CER		
291	7,905422	72519638	265.504	VIA		
292	7,905429	72519636	265.296	PB		
293	7,905438	72519634	265.441	MUR		
294	7,905442	72519632	265.721	MUR		
295	7,905428	72519630	265.364	VIA		
296	7,905455	72519628	265.426	MUR		
297	7,905463	72519626	265.757	VIA		
298	7,905467	72519624	265.751	MUR		
298	7,905477	72519624	265.021	MUR		
300	7,905473	72519620	265.000	PB		
		72519626		+		
301 302	7,905479	72519617	265.963	VIA		
	7,905485	72519617	265.026	VIA		
303	7,905489	72519614	265.089	VIA		
D6C	7,905495	72519612	265.841	DELT		
304	7,905513	72519610	265.832	VIA		
305	7,905524	72519606	265.887	VIA		
306	7,905533		265.799	MUR		
307	7,905541	72519604	265.829	MUR		
308	7,905558	72519602	265.142	PB		
309	7,905566	72519600	265.458	PB		
310	7,905578	72519598	265.291	VIA		
311	7,905584	72519596	265.245	VIA		
312	7,905599	72519594 72519592	265.860	CER		
313	7,905619		265.406	MUR		
314	7,905625	72519590	265.858	VIA		
315	7,905637	72519588	265.908	VIA		
316	7,905644	72519586	265.259	PB		
317	7,905655	72519584	265.260	CER		
318	7,905663	72519582	265.344	PB		
319	7,905663	72519580	265.344	CER		
320	7,905674	72519578	265.144	VIA		
321	7,905685	72519576	265.145	MUR		
322	7,905697	72519574	265.054	VIA		
323	7,905708	72519572	265.023	CER		
324	7,905715	72519570	265.065	VIA		
325	7,905722	72519568	265.074	MUR		
326	7,905735	72519566	265.458	VIA		
327	7,905747	72519564	265.457	CER		
328	7,905753	72519562	265.563	VIA		
329	7,905768	72519560	265.562	MUR		
330	7,905777	72519558	265.643	VIA		
331	7,905784	72519556	265.643	VIA		
332	7,905792	72519554	265.628	CER		
333	7,905806	72519552	265.628	CER		
334	7,905808	72519550	265.346	VIA		
335	7,905810	72519548	265.348	VIA		

CUADRO 7 DE 7

CARTERA	DE COORDENADAS		CUADRO	7 DE 7
PUNTO	C. NORTE	C. OESTE	COTA(msnm)	CODIGO
336	7,905810	72519546	265.349	VIA
337	7,905803	72519544	265.351	CER
D10	7,905793	72519542	265.001	DELT
338	7,905789	72519540	265.643	MUR
339	7,905785	72519538	265.488	VIA
340	7,905781	72519536	265.523	MUR
341	7,905776	72519534	265.570	VIA
342	7,905772	72519532	265.921	CER
343	7,905767	72519530	265.579	VIA
344	7,905763	72519520	265.618	VIA
345	7,905760	72519514	265.977	MUR
346	7,905759	72519512	265.755	VIA

Carteras de oficina

CUADRO 1 DE 7

LEV	ANTAM	IENTO T	OPOGRAFICO	BARRIO CÚCUT	TA 75 DPTO N DE	S - MPIO. DE CU	CUTA
		(CARTERA DE	CAMPO		CUADRO 1	DE 7
DE PUNTO	A PUNTO	ALTURA REFLEC TOR (m)	Azimuth	ANGULO HORIZONTAL	DISTANCIA INCLINADA (m)	ANGULO ZENITH	CODIGO
D1	D2	1,58	307°06'12,1256'	90°00'01,0000"	37,748	91°46'32,0000"	
D1	1	2,51		78°53'59,0000"	68,607	91°06'31,0000"	VIA
D1	2	1,5		84°40'30,0000"	74,653	92°05'06,0000"	VIA
D1	3	1,5		83°38'41,0000"	70,186	91°59'37,0000"	VIA
D1 D1	5	1,5		84°48'43,0000" 80°36'48,0000"	71,506 72,457	91°52'04,0000" 91°52'22,0000"	PM VIA
D1	6	1,58 1,58		85°12'52,0000"	72,437	91°47'50,0000"	PM
D1	7	1,58		86°04'29,0000"	71,403	91°51'57,0000"	MR
D1	8	2,51		77°49'23,0000"	65,393	91°10'51,0000"	MUR
D1	9	1,5		87°03'39,0000"	57,07	91°32'11,0000"	MUR
D1	10	2,51		78°32'39,0000"	55,493	91°18'10,0000"	MUR
D1	11	2,51		77°30'42,0000"	55,502	91°18'08,0000"	MUR
D1	12	2,51		79°34'37,0000"	55,498	91°18'09,0000"	PM
D1	13	2,2		78°04'02,0000"	44,668	91°04'35,0000"	MUR
D1	14	2,2		75°37'54,0000"	44,719	91°04'33,0000"	MUR
D1	15	1,58		81°22'21,0000"	44,231	91°42'03,0000" 91°10'08,0000"	VIA
D1 D1	16 17	2,2 1,5		80°49'25,0000" 91°41'41,0000"	34,649 39,147	91°41'52,0000"	PM MUR
D1	18	1,58		74°53'34,0000"	25,45	90°39'43,0000"	MUR
D1	19	1,58		72°38'32,0000"	25,465	90°39'37,0000"	MUR
D1	20	1,5		96°30'16,0000"	39,845	91°27'07,0000"	MUR
D1	21	1,5		95°49'57,0000"	38,844	91°56'22,0000"	VIA
D1	22	1,58		74°36'42,0000"	15,283	91°20'57,0000"	MUR
D1	23	1,58		70°12'30,0000"	15,315	91°21'19,0000"	MUR
D1	24	1,58		53°06'17,0000"	6,185	91°08'33,0000"	MUR
D1	25	1,58		56°10'32,0000"	5,101	91°57'38,0000"	VIA
D1	26	1,58		41°04'33,0000"	5,559	91°32'41,0000"	VIA
D1 D1	27	1,58		91°46'13,0000" 94°23'42,0000"	38,335	91°42'08,0000"	VIA
DI DI	28 29	1,58 1,58		97°01'10,0000"	32,613 32,57	91°49'08,0000" 92°03'02,0000"	VIA MUR
D1	30	1,58		96°31'11,0000"	31,675	92°03'08,0000"	ARB
D1	31	1,58		41°31'45,0000"	6,671	90°05'20,0000"	ARB
D1	32	1,58		6°09'17,0000"	22,693	90°39'46,0000"	CE
D1	33	1,58		337°49'16,0000"	5,227	90°23'05,0000"	VIA
D1	34	1,58		1°43'36,0000"	22,246	90°55'56,0000"	VIA
D1	35	1,58		349°00'03,0000"	20,808	90°37'56,0000"	VIA
D1	36	1,58		330°11'16,0000"	8,033	88°36'45,0000"	ARB
D1	37	1,58		87°12'03,0000"	35,631	91°42'52,0000"	PZ
D1	38	1,58		341°20'10,0000"	18,793	90°22'48,0000"	CER
D1	39	1,58		324°09'38,0000" 102°02'41,0000"	7,28	88°02'28,0000"	VAL
D1 D1	40	1,58 1,58		102 02 41,0000 105°30'44,0000"	24,753 24,801	89°44'01,0000" 89°44'00,0000"	MUR MUR
D1	42	1,36		111°37'02,0000"	17,975	90°43'39,0000"	MUR
D1	43	1,58		116°26'54,0000"	18,503	89°10'38,0000"	MUR
D1	44	1,58		106°41'05,0000"	17,581	90°58'10,0000"	VIA
D1	45	1,58		343°44'19,0000"	18,644	89°59'28,0000"	ARB
D1	46	1,58		347°16'41,0000"	24,496	90°17'18,0000"	ARB
D1	47	1,58		342°36'37,0000"	10,187	89°08'24,0000"	ARB
D1	48	1,58		346°58'47,0000"	29,482	89°54'06,0000"	MUR
D1	49	1,58		349°06'59,0000"	29,514	89°55'31,0000"	PB
D1	50	1,58		351°37'08,0000"	29,678	90°33'47,0000"	VIA
D1	51	1,58		1°03'33,0000"	29,304	90°46'45,0000"	VIA
D1 D1	52	1.59		11°33'06,0000" 127°57'01,0000"	25,823 10,34	90°10'50,0000" 89°27'51,0000"	VIA VIA
DI DI	53 54	1,58 1,58	 	144°46'32,0000"	10,34	89°24'09,0000"	VIA
D1	55	1,58		142°51'54,0000"	11,301	88°59'57,0000"	MUR
D1	56	1,58		131°49'15,0000"	11,491	88°53'37,0000"	MUR
D1	D3	1,58		185°34'42,0000"	33,618	89°58'32,0000"	DELT
D1	57	1,58		119°43'40,0000"	7,617	89°28'26,0000"	VAL

CUADRO 2 DE 7

LEV	LEVANTAMIENTO TOPOGRAFICO BARRIO CÚCUTA 75 DPTO N DE CARTERA DE CAMPO						S - MPIO. DE CUCUTA CUADRO 2 DE 7		
DE PUNTO	A PUNTO	ALTURA REFLEC TOR (m)	Azimuth	ANGULO HORIZONTAL	DISTANCIA INCLINADA (m)	ANGULO ZENITH	CODIGO		
D1	58	2,5		11°04'25,0000"	33,833	89°33'14,0000"	MUR		
D1	59	1,58		170°57'53,0000"	19,123	89°56'03,0000"	VIA		
D1	60	1,58		167°19'21,0000"	19,686	89°35'27,0000"	MUR		
D1	61	1,58		167°39'28,0000"	21,198	91°36'56,0000"	MUR		
D1	62	1,58		174°33'55,0000"	26,246	91°09'09,0000"	MUR		
D1	63	1,58		174°35'14,0000"	26,247	91°09'11,0000"	MUR		
D1	64	1,58		178°05'24,0000"	26,418	89°51'04,0000"	PB		
D1	65	1,58		179°09'22,0000"	26,389	89°41'10,0000"	VIA		
D1	66	1,58		188°12'45,0000"	9,699	89°29'00,0000"	MUR		
D1	67	2,6		11°07'00,0000"	41,34	89°33'16,0000"	MUR		
D1	68	2,6		6°57'58,0000"	41,45	89°33'14,0000"	MUR		
D1	69	1,58		203°33'34,0000"	2,197	89°05'43,0000"	MUR		
D1	70	1,58		205°14'27,0000"	1,475	88°21'02,0000"	ARB		
D1	71	1,58		3°46'59,0000"	41,553	90°40'26,0000"	VIA		
D1	72	1,58		356°46'03,0000"	42,702	90°32'54,0000"	VIA		
D1	73	1		355°08'40,0000"	43,548	91°18'14,0000"	MUR		
D1	74	1 70		357°11'43,0000"	49,317	91°00'28,0000"	MUR		
D1	75	1,58		263°32'47,0000"	3,234	87°26'56,0000"	PM		
D1	76 D5	1,58		263°16'20,0000"	8,968	87°49'06,0000"	MUR		
D1 D1	D5 77	1,58		273°04'53,0000" 358°02'28,0000"	35,954	87°30'32,0000" 90°59'36,0000"	DELT		
	78			,	56,774 57,59		CER		
D1		1,58		359°31'34,0000"		89°57'06,0000"	PM VIA		
D1	79	1,58		1°00'29,0000" 5°40'37,0000"	57,22 56,36	90°00'47,0000" 90°26'28,0000"			
D1 D1	80 81	1,58 1,58		2°05'59,0000"	64,722	90°30'10,0000"	VIA CER		
D1	82	1,58		0°58'05,0000"	64,727	90°24'29,0000"	CER		
D1	83	1,58		292°13'39.0000"	17,906	86°28'11,0000"	CER		
D1	84	1,58		287°53'46,0000"	17,465	86°24'40.0000"	OV		
D1	85	1,36		4°05'41,0000"	75,94	90°24'33,0000"	CER		
D1	86	1,58		9°05'41,0000"	60,857	90°18'45,0000"	VIA		
D1	87	1,58		9°14'29,0000"	65,227	90°17'44,0000"	VIA		
D1	88	1,58		9°37'36,0000"	65,239	90°17'26,0000"	CER		
D1	89	1		3°56'23,0000"	74,734	90°17'18,0000"	CER		
D1	90	1,58		4°58'14,0000"	76,999	90°13'42,0000"	VIA		
D1	91	1,58		9°05'13,0000"	77,884	90°20'30,0000"	VIA		
D1	92	1,58		272°27'32,0000"	16,863	86°27'31,0000"	VIA		
D1	93	1,58		269°44'04,0000"	19,685	85°45'39,0000"	CER		
D1	94	1,58		271°26'45,0000"	34,777	87°17'50,0000"	MUR		
D1	95	1,58		272°44'22,0000"	34,757	87°19'19,0000"	VIA		
D1	96	1,58		281°49'33,0000"	33,708	86°48'15,0000"	VIA		
D1	97	1,58		36°06'00,0000"	2,69	90°27'14,0000"	PZ		
D1	98	1,58		284°19'26,0000"	28,822	85°45'01,0000"	ARB		
D3	D1	1,58	222°40'53,1256'	5°34'42,0000"	33,642	89°45'11,0000"	DELT		
D3	99	1,58		354°34'42,0000"	14,521	88°24'51,0000"	CER		
D3	100	2		43°15'57,0000"	7,644	88°07'04,0000"	MUR		
D3	101	1,58		359°15'01,0000"	13,487	89°31'44,0000"	VIA		
D3	102	1,58		314°30'38,0000"	6,614	87°51'45,0000"	CER		
D3	103	1,58		310°12'37,0000"	7,579	85°43'10,0000"	CER		
D3	104	1,58		159°32'10,0000"	2,65	87°29'18,0000"	MUR		
D3	105	1,58		184°09'55,0000"	2,543	89°11'08,0000"	CER		
D3	106	1,58		268°41'21,0000"	9,517	88°43'43,0000"	MUR		
D3	107	1,58		204°48'44,0000"	2,061	86°33'00,0000"	ARB		
D3	108	1,58		257°42'03,0000"	7,605	88°06'13,0000"	VIA		
D3	109	1,58		224°56'35,0000"	2,467	86°26'28,0000"	VIA		
D3	110	1,58		243°32'13,0000"	16,944	89°19'23,0000"	MUR		
D3	111	1,58		199°08'23,0000"	7,076	88°04'54,0000"	MUR		
D3	112	1,58		202°44'57,0000"	12,296	88°39'54,0000"	MUR		
D3	113	1		238°33'25,0000"	22,832	91°38'53,0000"	CER		
D3	114	1,58		215°06'58,0000"	12,8	88°44'14,0000"	VIA		

CUADRO 3 DE 7

LEV	LEVANTAMIENTO TOPOGRAFICO BARRIO CÚCUTA 75 DPTO N DE S - MPIO. DE CUCUTA CARTERA DE CAMPO CUADRO 3 DE 7									
			CARTERA DE (CAMPO	ı	CUADRO 3	DE 7			
DE PUNTO	A PUNTO	ALTURA REFLEC TOR (m)	Azimuth	ANGULO HORIZONTAL	DISTANCIA INCLINADA (m)	ANGULO ZENITH	CODIGO			
D3	115	1,58		233°03'45,0000"	22,472	90°24'19,0000"	VIA			
D3	116	1,58		216°04'55,0000"	18,523	89°49'41,0000"	PB			
D3	117	1,58		227°15'00,0000"	25,285	90°44'53,0000"	PZ			
D3	118	1,58		217°25'13,0000"	20,347	91°04'39,0000"	VIA			
D3	119	1,58		222°04'15,0000"	25,244	90°48'58,0000"	VIA			
D3	120	1,58		220°17'48,0000"	25,307	90°55'31,0000"	CER			
D3	D3A	1,58		224°59'18,0000"	25,311	90°48'10,0000"	DELT			
D5	D1	1,58	310°11'04,1256'	260°36'48,0000"	35,958	92°15'05,0000"	DELT			
D5	121	1,58		299°27'40,0000"	1,605	84°37'01,0000"	MUR			
D5	122	1,58		340°43'35,0000"	1,583	85°23'00,0000"	MUR			
D5	123	1,58		9°03'57,0000"	4,462	90°02'12,0000" 97°00'47,0000"	MUR			
D5 D5	124 125	1,58		353°47'51,0000" 5°54'12,0000"	4,817 10,614	95°22'42,0000"	MUR VIA			
D5	126	1,58 1,58		27°01'30,0000"	9,826	93°11'44,0000"	VIA			
D5	127	1,58		46°11'26,0000"	11,38	92°17'40,0000"	VIA			
D5	128	1,58		57°53'51,0000"	13,447	90°03'14,0000"	MUR			
D5	129	1,58		42°02'10,0000"	22,642	91°48'49,0000"	PB			
D5	130	1,58		45°05'02,0000"	22,72	91°24'46,0000"	CER			
D5	131	1,58		39°41'00,0000"	22,876	92°01'35,0000"	VIA			
D5	132	1,58		26°47'37,0000"	22,777	92°21'32,0000"	VIA			
D5	133	1,58		22°34'55,0000"	22,846	94°24'31,0000"	ARB			
D5	134	1		20°13'05,0000"	25,517	94°07'07,0000"	MUR			
D5	D5A	1,58		117°55'28,0000"	54,732	86°52'59,0000"	DELT			
D5	135	0,5		22°06'51,0000"	36,484	93°42'27,0000"	MUR			
D5	136	1		25°05'42,0000"	38,609	92°44'01,0000"	VIA			
D5	137	1,58		34°30'45,0000"	41,931	91°26'40,0000"	VIA			
D5	138	1,58		36°41'47,0000"	40,852	91°06'42,0000"	MUR			
D5	139	0,5		36°11'57,0000"	40,21	92°23'15,0000"	HD			
D5	140	1,58		37°57'19,0000"	34,798	91°18'10,0000"	MUR			
D5	141	1,58		40°14'32,0000"	34,968	91°05'25,0000"	MUR			
D5	142	1,58		40°01'04,0000"	42,507	91°23'16,0000"	MUR			
D5 D5	143 144	1,58 1,58		34°37'20,0000" 40°01'35,0000"	41,962 47,689	91°27'23,0000" 91°15'01,0000"	PAV PAV			
D5	144	1,58		34°59'20,0000"	47,38	91°24'31,0000"	PAV			
D5	D1	1,58	310°11'04,1256'		35,961	92°15'16,0000"	DELT			
D5	146	1,58	510 11 04,1230	279°35'54,0000"	8,318	85°16'36,0000"	MUR			
D5	148	1,58		276°26'19,0000"	5,849	88°56'45,0000"	VIA			
D5	149	1,58		294°21'50,0000"	7,239	86°33'00,0000"	VIA			
D5	150	1,58		289°20'12,0000"	16,75	86°28'06,0000"	MUR			
D5	151	1,58		294°59'12,0000"	16,947	86°17'01,0000"	VIA			
D5	152	1,58		27°22'29,0000"	7,93	85°07'37,0000"	MUR			
D5	153	1,58		311°22'01,0000"	17,831	86°23'12,0000"	VIA			
D5	154	1,58		340°25'16,0000"	10,334	84°41'57,0000"	MUR			
D5	155	1,58		318°09'19,0000"	19,312	86°08'02,0000"	CER			
D5	156	1,58		334°36'15,0000"	9,013	84°12'24,0000"	PB			
D5	157	1,58		332°06'29,0000"	8,524	85°23'49,0000"	VIA			
D5	158	1,58		292°51'13,0000"	27,808	86°54'39,0000"	PM			
D5	159	1,58		295°47'44,0000"	32,563	87°03'12,0000"	PB			
D5	160	1,58		313°37'14,0000"	29,347	86°06'10,0000"	MUR CER			
D5 D5	161 162	1,58		294°40'59,0000" 308°19'38,0000"	33,152 29,025	87°19'19,0000" 86°46'56,0000"	VIA			
D5	163	1,58 1,58		297°40'52,0000"	32,934	87°02'23,0000"	VIA			
D5	164	1,58		310°36'42,0000"	38,137	86°43'50,0000"	MUR			
D5	165	1,58		299°24'54,0000"	43,496	87°27'48,0000"	CER			
D5	166	1,58		308°40'40,0000"	37,934	87°05'19,0000"	VIA			
D5	167	1,58		300°55'31,0000"	43,235	87°25'57,0000"	VIA			
D5	168	1,58		303°52'17,0000"	52,397	87°23'51,0000"	PB			
D5	169	1,58		310°28'57,0000"	51,279	87°00'39,0000"	VIA			

CUADRO 4 DE 7

DE A ALTURA ALTURA Azimuth FORK ANGULO DISTANCIA ANGULO CODIGO D5 170 1.58 304°4221,0000° 53,314 87°25′54,0000° VIA D5 147 1 284°89/1,0000° 7,164 91°03′2,0000° VIA D6 D1 1.58 18*43′29,1256 201°371′7,0000° 7,137 87°56′37,0000° DELT D6 171 1.58 12°43′26,0000° 5,839 89°99′30′7,000° MUR D6 173 1.58 12°43′26,0000° 5,839 89°59′30′7,000° MUR D6 173 1.58 16°41′48,0000° 7,504 89°30′7,000° MUR D6 175 1.58 16°41′48,0000° 12,658 91°20′34,000° VIA D6 175 1.58 13°21′37,0000° 16,53 91°23′34,0000° VIA D6 175 1.58 13°37′3000° 16,53 9°2°34′36,0000° ARB D6 179 1.58 13°3	LEVANTAMIENTO TOPOGRAFICO BARRIO CÚCUTA 75 DPTO N DE								
Dec			CARTERA DE (CAMPO	T	CUADRO 4 DE 7			
DS			REFLEC	Azimuth				CODIGO	
Decoration Dec	D5	170	1,58		304°42'21,0000"	53,314	87°25'54,0000"	VIA	
Decoration Dec	D5	147	1		284°59'41,0000"	7,164	91°03'20,0000"	PM	
Decoration Dec	D6	D1	1,58	118°43'29,1256'	261°37'17,0000"	75,137	87°56'37,0000"	DELT	
Decoration Dec	D6	171	1,58		23°16'41,0000"	5,839	89°59'47,0000"	MUR	
D6	D6	172	1,58		12°43'26,0000"	5,084	89°53'07,0000"	MUR	
Decoration Dec	D6	173	1,58		119°45'04,0000"	7,504	92°00'35,0000"	MUR	
Decoration Dec	D6	174	1,58		164°14'58,0000"	13,498	91°20'08,0000"	MUR	
D6	D6	175	1,58		153°50'17,0000"	12,658	91°22'34,0000"	VIA	
D6	D6	176	1,58		132°13'37,0000"	16,439	91°53'43,0000"	VIA	
D6	D6	177	1,58			16,55	92°19'01,0000"	MUR	
D6									
D6			1,58			,			
D6									
D6					,				
D6								_	
D6	_					The second secon			
D6							/		
D6						,			
D6						,	/		
D6					,		,		
D6 D6A 1,58 139°26′51,0000° 41,357 91°01′58,0000° DELT D6 D6B 1,58 317°38′37,0000° 8,486 88°36′16,0000° DELT D6B D6 1,58 317°38′48,0000° 8,483 88°36′16,0000° DELT D6B 190 1,58 317°14′43,0000° 6,202 89°52′06,0000° MUR D6B 191 1,58 25°09′28,0000° 10,742 92°55′08,0000° MUR D6B 192 1,58 22°50′58,0000° 10,595 92°57′59,0000° VIA D6B 192 1,58 338°38′11,0000° 6,725 91°02′21,0000° PB D6B 194 1,58 341°14′17,0000° 7,291 91°05′28,0000° PB D6B 195 1,58 349°45′15,0000° 6,944 91°18′15,0000° PB D6B 195 1,58 337°12′36,0000° 9,092 91°43′59,0000° MUR D6B 197 1,58 12°31′58,0000° 9,092 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> ,</td> <td></td>							,		
D6B D6B 1,58 317°38'37,0000" 8,486 88°36'16,0000" DELT D6B D6 1,58 354°44'49,1256' 137°38'48,0000" 8,483 88°39'13,0000" DELT D6B 190 1,58 317°14'43,0000" 6,202 89°52'06,0000" MUR D6B 191 1,58 25°09'28,0000" 10,742 92°55'08,0000" MUR D6B 192 1,58 22°50'58,0000" 10,595 92°57'59,0000" VIA D6B 193 1,58 338°38'11,0000" 6,725 91°02'21,0000" PB D6B 194 1,58 341°14'17,0000" 7,291 91°05'28,0000" PB D6B 195 1,58 349°45'15,0000" 6,944 91°18'15,0000" VIA D6B 196 1,58 349°45'15,0000" 6,944 91°18'15,0000" MUR D6B 197 1,58 337°12'36,0000" 9,151 92°06'11,0000" MUR D6B 198 1,58 12°31'58,0000" 29,092 91°43'59,0000" VIA D6B 199 1,58 12°43'59,0000" 27,733 91°46'20,0000" VIA D6B 200 1 338°03'17,0000" 27,728 92°58'54,0000" VIA D6B 201 1,58 13°23'36,0000" 37,456 91°43'13,0000" MUR D6B 202 0,5 3°10'16,0000" 37,456 91°43'13,0000" MUR D6B 203 1,58 13°23'36,0000" 37,456 91°43'13,0000" MUR D6B 204 0,5 0°17'36,0000" 28,044 93°39'20,0000" CER D6B 205 1,58 11°28'03,0000" 40,028 91°36'40,0000" CER D6B 206 1,58 3°59'29,0000" 37,016 91°28'24,0000" CER D6B 207 1,58 2°02'11,0000" 40,243 91°37'27,0000" VIA D6B 208 2 14°22'10,0000" 43,206 92°01'33,0000" CER D6B 209 1,58 3°59'29,0000" 41,977 92°00'44,0000" CER D6B 201 0 3°47'37,0000" 49,553 93°11'48,0000" VIA D6B 211 1,58 7°08'17,0000" 49,553 93°11'48,0000" VIA D6B 212 1,58 10°47'11,0000" 57,636 92°49'53,0000" VIA D6B 214 1,58 4°03'55,0000" 66,706 92°49'53,0000" VIA D6B 215 1,58 10°47'11,0000" 57,636 92°21'34,0000" VIA D6B 216 1,58 5°15'45,0000" 68,02 92°31'4,0000" VIA D6B 217 1,58 5°15'45,0000" 76,386 92°25'21,0000" VIA D6B 219 1,58 5°15'45,0000" 76,386 92°25'21,0000" VIA D6B 210						·			
D6B D6 1,58 354°44'49,1256' 137°38'48,0000" 8,483 89°39'13,0000" DELT D6B 190 1,58 317°14'43,0000" 6,202 89°52'06,0000" MUR D6B 191 1,58 25°09'28,0000" 10,742 92°55'08,0000" VIA D6B 192 1,58 22°50'58,0000" 10,595 92°57'59,0000" VIA D6B 193 1,58 338°38'11,0000" 6,725 91°02'21,0000" PB D6B 194 1,58 341°14'17,0000" 7,291 91°05'28,0000" PB D6B 195 1,58 341°45'15,0000" 6,944 91°81'51,0000" VIA D6B 196 1,58 14°27'43,0000" 29,092 91°43'59,0000" MUR D6B 197 1,58 337°12'36,0000" 9,151 92°06'11,0000" MUR D6B 197 1,58 3370'16'36,0000" 27,728 92°58'54,0000" VIA D6B 200 1 358'03'17							,		
D6B				25 49 4 41 40 125 61		,			
D6B				354*44*49,1256					
D6B 192 1,58 22°50'58,0000" 10,595 92°57'59,0000" VIA D6B 193 1,58 338°38'11,0000" 6,725 91°02'21,0000" PB D6B 194 1,58 341°14'17,0000" 7,291 91°05'28,0000" PB D6B 195 1,58 349°45'15,0000" 6,944 91°18'15,0000" VIA D6B 196 1,58 14°27'43,0000" 29,092 91°43'59,0000" MUR D6B 197 1,58 337°12'36,0000" 29,037 91°46'20,0000" VIA D6B 198 1,58 12°31'58,0000" 29,037 91°46'20,0000" VIA D6B 199 1,58 12°31'58,0000" 29,037 91°41'25,0000" VIA D6B 199 1,58 12°31'80,000" 27,728 92°58'54,0000" VIA D6B 200 1 358°03'17,0000" 27,728 92°58'54,0000" CER D6B 201 1,58 13°23'16,0000" 37,456					,	-, -			
D6B 193 1,58 338°38'11,0000" 6,725 91°02'21,0000" PB D6B 194 1,58 341°14'17,0000" 7,291 91°05'28,0000" PB D6B 195 1,58 349°45'15,0000" 6,944 91°8'15,0000" VIA D6B 196 1,58 14°27'43,0000" 29,092 91°43'59,0000" MUR D6B 197 1,58 337°12'36,0000" 29,037 91°46'20,0000" VIA D6B 198 1,58 12°31'58,0000" 29,037 91°46'20,0000" VIA D6B 199 1,58 12°31'58,0000" 29,037 91°46'20,0000" VIA D6B 199 1,58 12°31'58,0000" 27,728 92°58'54,0000" CER D6B 200 1 358°03'17,0000" 27,728 92°58'54,0000" CER D6B 201 1,58 13°03'10,000" 37,456 91°43'13,0000" MUR D6B 202 0,5 0°17'36,0000" 38,676							,		
D6B 194 1,58 341°14′17,0000° 7,291 91°05′28,0000° PB D6B 195 1,58 349°45′15,0000° 6,944 91°18′15,0000° VIA D6B 196 1,58 14°27′43,0000° 29,092 91°43′59,0000° MUR D6B 197 1,58 337°12′36,0000° 29,037 91°46′20,0000° MUR D6B 198 1,58 12°31′58,0000° 29,037 91°46′20,0000° VIA D6B 199 1,58 1°46′35,0000° 27,834 91°41′25,0000° VIA D6B 200 1 358°03′17,0000° 27,728 92°58′54,0000° CER D6B 201 1,58 13°23′36,0000° 37,456 91°43′13,0000° MUR D6B 202 0,5 3°10′16,0000° 38,676 93°10′51,0000° PB D6B 203 1,58 13°03′10,0000° 40,028 91°36′40,0000° CER D6B 204 0,5 0°17′36,000° 28,044							,		
D6B 195 1,58 349°45′15,0000" 6,944 91°18′15,0000" VIA D6B 196 1,58 14°27′43,0000" 29,092 91°43′59,0000" MUR D6B 197 1,58 337°12′36,0000" 9,151 92°06′11,0000" MUR D6B 198 1,58 12°31′58,0000" 29,037 91°46′20,0000" VIA D6B 199 1,58 1°46′35,0000" 27,834 91°41′25,0000" VIA D6B 200 1 358°03′17,0000" 27,728 92°58′54,0000" CER D6B 201 1,58 13°23′36,0000" 37,456 91°43′13,0000" MUR D6B 202 0,5 3°10′16,0000" 38,676 93°10′51,0000" PB D6B 203 1,58 13°03′10,0000" 40,028 91°36′40,0000" CER D6B 204 0,5 0°17′36,0000" 28,044 93°39′20,0000" VIA D6B 205 1,58 11°28′33,0000" 40,243			-			,			
D6B 196 1,58 14°27'43,0000" 29,092 91°43'59,0000" MUR D6B 197 1,58 337°12'36,0000" 9,151 92°06'11,0000" MUR D6B 198 1,58 12°31'58,0000" 29,037 91°46'20,0000" VIA D6B 199 1,58 1°46'35,0000" 27,834 91°41'25,0000" VIA D6B 200 1 358°03'17,0000" 27,728 92°58'54,0000" CER D6B 201 1,58 13°23'36,0000" 37,456 91°43'13,0000" MUR D6B 202 0,5 3°10'16,0000" 38,676 93°10'51,0000" PB D6B 203 1,58 13°03'10,0000" 40,028 91°36'40,0000" CER D6B 204 0,5 0°17'36,0000" 28,044 93°39'20,0000" CER D6B 205 1,58 11°28'03,0000" 40,243 91°57'27,0000" VIA D6B 206 1,58 3°59'29,0000" 39,252									
D6B 197 1,58 337°12'36,0000" 9,151 92°06'11,0000" MUR D6B 198 1,58 12°31'58,0000" 29,037 91°46'20,0000" VIA D6B 199 1,58 1°46'35,0000" 27,834 91°41'25,0000" VIA D6B 200 1 358°03'17,0000" 27,728 92°58'54,0000" CER D6B 201 1,58 13°23'36,0000" 37,456 91°43'13,0000" MUR D6B 202 0,5 3°10'16,0000" 38,676 93°10'51,0000" PB D6B 203 1,58 13°03'10,0000" 40,028 91°36'40,0000" CER D6B 204 0,5 0°17'36,0000" 40,028 91°35'72,0000" CER D6B 205 1,58 11°28'03,0000" 40,243 91°57'27,0000" VIA D6B 206 1,58 3°59'29,0000" 39,252 91°44'34,0000" VIA D6B 207 1,58 2°02'11,0000" 37,016						,			
D6B 198 1,58 12°31'58,0000" 29,037 91°46'20,0000" VIA D6B 199 1,58 1°46'35,0000" 27,834 91°41'25,0000" VIA D6B 200 1 358°03'17,0000" 27,728 92°58'54,0000" CER D6B 201 1,58 13°23'36,0000" 37,456 91°43'13,0000" MUR D6B 202 0,5 3°10'16,0000" 38,676 93°10'51,0000" MUR D6B 203 1,58 13°03'10,0000" 40,028 91°36'40,0000" CER D6B 204 0,5 0°17'36,0000" 28,044 93°39'20,0000" CER D6B 205 1,58 11°28'03,0000" 40,243 91°57'27,0000" VIA D6B 206 1,58 3°59'29,0000" 39,252 91°44'34,0000" CER D6B 206 1,58 2°02'11,0000" 37,016 91°28'24,0000" CER D6B 207 1,58 4°00'57,0000" 41,977					,		,		
D6B 199 1,58 1°46'35,0000" 27,834 91°41'25,0000" VIA D6B 200 1 358°03'17,0000" 27,728 92°58'54,0000" CER D6B 201 1,58 13°23'36,0000" 37,456 91°43'13,0000" MUR D6B 202 0,5 3°10'16,0000" 38,676 93°10'51,0000" PB D6B 203 1,58 13°03'10,0000" 40,028 91°36'40,0000" CER D6B 204 0,5 0°17'36,0000" 28,044 93°39'20,0000" CER D6B 205 1,58 11°28'03,0000" 40,243 91°57'27,0000" VIA D6B 206 1,58 3°59'29,0000" 39,252 91°44'34,0000" CER D6B 206 1,58 2°02'11,0000" 37,016 91°28'24,0000" CER D6B 208 2 14°22'20,0000" 41,977 92°00'44,0000" CER D6B 209 1,58 4°00'57,0000" 49,553 <									
D6B 200 1 358°03'17,0000" 27,728 92°58'54,0000" CER D6B 201 1,58 13°23'36,0000" 37,456 91°43'13,0000" MUR D6B 202 0,5 3°10'16,0000" 38,676 93°10'51,0000" PB D6B 203 1,58 13°03'10,0000" 40,028 91°36'40,0000" CER D6B 204 0,5 0°17'36,0000" 28,044 93°39'20,0000" CER D6B 205 1,58 11°28'03,0000" 40,243 91°57'27,0000" VIA D6B 206 1,58 3°59'29,0000" 39,252 91°44'34,0000" VIA D6B 206 1,58 2°02'11,0000" 37,016 91°28'24,0000" CER D6B 208 2 14°22'20,0000" 41,977 92°00'44,0000" CER D6B 209 1,58 4°00'57,0000" 45,253 91°49'37,0000" VIA D6B 210 0 3°47'37,0000" 49,553									
D6B 201 1,58 13°23'36,0000" 37,456 91°43'13,0000" MUR D6B 202 0,5 3°10'16,0000" 38,676 93°10'51,0000" PB D6B 203 1,58 13°03'10,0000" 40,028 91°36'40,0000" CER D6B 204 0,5 0°17'36,0000" 28,044 93°39'20,0000" CER D6B 205 1,58 11°28'03,0000" 40,243 91°57'27,0000" VIA D6B 206 1,58 3°59'29,0000" 39,252 91°44'34,0000" VIA D6B 207 1,58 2°02'11,0000" 37,016 91°28'24,0000" CER D6B 208 2 14°22'20,0000" 41,977 92°00'44,0000" CER D6B 208 2 14°22'20,0000" 45,253 91°49'37,0000" VIA D6B 210 0 3°47'37,0000" 49,553 93°11'48,0000" CER D6B 211 1,58 7°08'17,0000" 43,206 9									
D6B 202 0,5 3°10'16,0000" 38,676 93°10'51,0000" PB D6B 203 1,58 13°03'10,0000" 40,028 91°36'40,0000" CER D6B 204 0,5 0°17'36,0000" 28,044 93°39'20,0000" CER D6B 205 1,58 11°28'03,0000" 40,243 91°57'27,0000" VIA D6B 206 1,58 3°59'29,0000" 39,252 91°44'34,0000" VIA D6B 206 1,58 2°02'11,0000" 37,016 91°28'24,0000" CER D6B 208 2 14°22'20,0000" 41,977 92°00'44,0000" CER D6B 209 1,58 4°00'57,0000" 45,253 91°49'37,0000" VIA D6B 210 0 3°47'37,0000" 43,253 93°11'48,0000" CER D6B 211 1,58 7°08'17,0000" 43,206 92°01'33,0000" VIA D6B 212 1,58 10°47'11,0000" 51,023 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
D6B 203 1,58 13°03'10,0000" 40,028 91°36'40,0000" CER D6B 204 0,5 0°17'36,0000" 28,044 93°39'20,0000" CER D6B 205 1,58 11°28'03,0000" 40,243 91°57'27,0000" VIA D6B 206 1,58 3°59'29,0000" 39,252 91°44'34,0000" VIA D6B 207 1,58 2°02'11,0000" 37,016 91°28'24,0000" CER D6B 208 2 14°22'20,0000" 41,977 92°00'44,0000" CER D6B 209 1,58 4°00'57,0000" 45,253 91°49'37,0000" VIA D6B 210 0 3°47'37,0000" 49,553 93°11'48,0000" CER D6B 211 1,58 7°08'17,0000" 43,206 92°01'33,0000" PZ D6B 212 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 212 1,58 10°45'11,0000" 66,706 <					,				
D6B 204 0,5 0°17'36,0000" 28,044 93°39'20,0000" CER D6B 205 1,58 11°28'03,0000" 40,243 91°57'27,0000" VIA D6B 206 1,58 3°59'29,0000" 39,252 91°44'34,0000" VIA D6B 207 1,58 2°02'11,0000" 37,016 91°28'24,0000" CER D6B 208 2 14°22'20,0000" 41,977 92°00'44,0000" CER D6B 209 1,58 4°00'57,0000" 45,253 91°49'37,0000" VIA D6B 210 0 3°47'37,0000" 49,553 93°11'48,0000" CER D6B 211 1,58 7°08'17,0000" 43,206 92°01'33,0000" PZ D6B 212 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 212 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 213 1,58 10°59'59,0000" 66,706 <					,		,		
D6B 205 1,58 11°28'03,0000" 40,243 91°57'27,0000" VIA D6B 206 1,58 3°59'29,0000" 39,252 91°44'34,0000" VIA D6B 207 1,58 2°02'11,0000" 37,016 91°28'24,0000" CER D6B 208 2 14°22'20,0000" 41,977 92°00'44,0000" CER D6B 209 1,58 4°00'57,0000" 45,253 91°49'37,0000" VIA D6B 210 0 3°47'37,0000" 49,553 93°11'48,0000" CER D6B 210 0 3°47'37,0000" 49,553 93°11'48,0000" PZ D6B 211 1,58 7°08'17,0000" 43,206 92°01'33,0000" PZ D6B 212 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 213 1,58 10°59'59,0000" 66,706 92°49'53,0000" MUR D6B 214 1,58 4°31'55,0000" 68,02 92						The second secon	,		
D6B 206 1,58 3°59'29,0000" 39,252 91°44'34,0000" VIA D6B 207 1,58 2°02'11,0000" 37,016 91°28'24,0000" CER D6B 208 2 14°22'20,0000" 41,977 92°00'44,0000" CER D6B 209 1,58 4°00'57,0000" 45,253 91°49'37,0000" VIA D6B 210 0 3°47'37,0000" 49,553 93°11'48,0000" CER D6B 211 1,58 7°08'17,0000" 43,206 92°01'33,0000" PZ D6B 212 1,58 10°47'11,0000" 43,206 92°32'49,0000" VIA D6B 213 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 213 1,58 10°59'59,0000" 66,706 92°49'53,0000" MUR D6B 214 1,58 4°31'55,0000" 68,02 92°31'43,0000" CER D6B 215 1,58 5°15'45,0000" 67,805 <t< td=""><td></td><td>205</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		205							
D6B 208 2 14°22'20,0000" 41,977 92°00'44,0000" CER D6B 209 1,58 4°00'57,0000" 45,253 91°49'37,0000" VIA D6B 210 0 3°47'37,0000" 49,553 93°11'48,0000" CER D6B 211 1,58 7°08'17,0000" 43,206 92°01'33,0000" PZ D6B 212 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 213 1,58 10°59'59,0000" 66,706 92°49'53,0000" MUR D6B 214 1,58 4°31'55,0000" 66,802 92°31'43,0000" CER D6B 215 1,58 9°44'50,0000" 66,858 92°43'52,0000" VIA D6B 216 1,58 5°15'45,0000" 67,805 92°42'04,0000" VIA D6B 216 1,58 10°41'21,0000" 72,814 92°35'08,0000" MUR D6B 218 1,58 4°03'56,0000" 76,386 <					3°59'29,0000"				
D6B 209 1,58 4°00'57,0000" 45,253 91°49'37,0000" VIA D6B 210 0 3°47'37,0000" 49,553 93°11'48,0000" CER D6B 211 1,58 7°08'17,0000" 43,206 92°01'33,0000" PZ D6B 212 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 213 1,58 10°59'59,0000" 66,706 92°49'53,0000" MUR D6B 214 1,58 4°31'55,0000" 68,02 92°31'43,0000" CER D6B 215 1,58 9°44'50,0000" 66,858 92°43'52,0000" VIA D6B 216 1,58 5°15'45,0000" 67,805 92°42'04,0000" VIA D6B 217 1,58 10°41'21,0000" 72,814 92°35'08,0000" MUR D6B 218 1,58 4°03'56,0000" 76,386 92°25'21,0000" PB D6B 219 1,58 5°02'29,0000" 76,386 <	D6B	207	1,58		2°02'11,0000"	37,016	91°28'24,0000"	CER	
D6B 210 0 3°47'37,0000" 49,553 93°11'48,0000" CER D6B 211 1,58 7°08'17,0000" 43,206 92°01'33,0000" PZ D6B 212 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 213 1,58 10°59'59,0000" 66,706 92°49'53,0000" MUR D6B 214 1,58 4°31'55,0000" 68,02 92°31'43,0000" CER D6B 215 1,58 9°44'50,0000" 66,858 92°43'52,0000" VIA D6B 216 1,58 5°15'45,0000" 67,805 92°42'04,0000" VIA D6B 217 1,58 10°41'21,0000" 72,814 92°35'08,0000" MUR D6B 218 1,58 4°03'56,0000" 76,083 92°32'38,0000" MUR D6B 219 1,58 5°02'29,0000" 76,386 92°25'21,0000" PB D6B 220 1,58 10°09'04,0000" 78,799	D6B	208	2		14°22'20,0000"	41,977	92°00'44,0000"	CER	
D6B 211 1,58 7°08'17,0000" 43,206 92°01'33,0000" PZ D6B 212 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 213 1,58 10°59'59,0000" 66,706 92°49'53,0000" MUR D6B 214 1,58 4°31'55,0000" 68,02 92°31'43,0000" CER D6B 215 1,58 9°44'50,0000" 66,858 92°43'52,0000" VIA D6B 216 1,58 5°15'45,0000" 67,805 92°42'04,0000" VIA D6B 217 1,58 10°41'21,0000" 72,814 92°35'08,0000" MUR D6B 218 1,58 4°03'56,0000" 76,083 92°32'38,0000" MUR D6B 219 1,58 5°02'29,0000" 76,386 92°25'21,0000" PB D6B 220 1,58 10°09'04,0000" 78,799 92°23'49,0000" MUR D6B 221 1,58 5°18'21,0000" 76,379	D6B	209	1,58		4°00'57,0000"	45,253	91°49'37,0000"	VIA	
D6B 211 1,58 7°08'17,0000" 43,206 92°01'33,0000" PZ D6B 212 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 213 1,58 10°59'59,0000" 66,706 92°49'53,0000" MUR D6B 214 1,58 4°31'55,0000" 68,02 92°31'43,0000" CER D6B 215 1,58 9°44'50,0000" 66,858 92°43'52,0000" VIA D6B 216 1,58 5°15'45,0000" 67,805 92°42'04,0000" VIA D6B 217 1,58 10°41'21,0000" 72,814 92°35'08,0000" MUR D6B 218 1,58 4°03'56,0000" 76,083 92°32'38,0000" MUR D6B 219 1,58 5°02'29,0000" 76,386 92°25'21,0000" PB D6B 220 1,58 10°09'04,0000" 78,799 92°23'49,0000" MUR D6B 221 1,58 5°18'21,0000" 76,379	D6B	210			3°47'37,0000"	49,553	93°11'48,0000"	CER	
D6B 212 1,58 10°47'11,0000" 51,023 92°32'49,0000" VIA D6B 213 1,58 10°59'59,0000" 66,706 92°49'53,0000" MUR D6B 214 1,58 4°31'55,0000" 68,02 92°31'43,0000" CER D6B 215 1,58 9°44'50,0000" 66,858 92°43'52,0000" VIA D6B 216 1,58 5°15'45,0000" 67,805 92°42'04,0000" VIA D6B 217 1,58 10°41'21,0000" 72,814 92°35'08,0000" MUR D6B 218 1,58 4°03'56,0000" 76,083 92°32'38,0000" MUR D6B 219 1,58 5°02'29,0000" 76,386 92°25'21,0000" PB D6B 220 1,58 10°09'04,0000" 78,799 92°23'49,0000" MUR D6B 221 1,58 5°18'21,0000" 76,379 92°33'19,0000" VIA D6B 222 1,58 9°45'38,0000" 77,426			1,58						
D6B 214 1,58 4°31'55,0000" 68,02 92°31'43,0000" CER D6B 215 1,58 9°44'50,0000" 66,858 92°43'52,0000" VIA D6B 216 1,58 5°15'45,0000" 67,805 92°42'04,0000" VIA D6B 217 1,58 10°41'21,0000" 72,814 92°35'08,0000" MUR D6B 218 1,58 4°03'56,0000" 76,083 92°32'38,0000" MUR D6B 219 1,58 5°02'29,0000" 76,386 92°25'21,0000" PB D6B 220 1,58 10°09'04,0000" 78,799 92°23'49,0000" MUR D6B 221 1,58 5°18'21,0000" 76,379 92°33'19,0000" VIA D6B 222 1,58 9°45'38,0000" 77,426 92°29'56,0000" VIA					10°47'11,0000"			VIA	
D6B 214 1,58 4°31'55,0000" 68,02 92°31'43,0000" CER D6B 215 1,58 9°44'50,0000" 66,858 92°43'52,0000" VIA D6B 216 1,58 5°15'45,0000" 67,805 92°42'04,0000" VIA D6B 217 1,58 10°41'21,0000" 72,814 92°35'08,0000" MUR D6B 218 1,58 4°03'56,0000" 76,083 92°32'38,0000" MUR D6B 219 1,58 5°02'29,0000" 76,386 92°25'21,0000" PB D6B 220 1,58 10°09'04,0000" 78,799 92°23'49,0000" MUR D6B 221 1,58 5°18'21,0000" 76,379 92°33'19,0000" VIA D6B 222 1,58 9°45'38,0000" 77,426 92°29'56,0000" VIA	D6B	213	1,58		10°59'59,0000"	66,706	92°49'53,0000"	MUR	
D6B 216 1,58 5°15'45,0000" 67,805 92°42'04,0000" VIA D6B 217 1,58 10°41'21,0000" 72,814 92°35'08,0000" MUR D6B 218 1,58 4°03'56,0000" 76,083 92°32'38,0000" MUR D6B 219 1,58 5°02'29,0000" 76,386 92°25'21,0000" PB D6B 220 1,58 10°09'04,0000" 78,799 92°23'49,0000" MUR D6B 221 1,58 5°18'21,0000" 76,379 92°33'19,0000" VIA D6B 222 1,58 9°45'38,0000" 77,426 92°29'56,0000" VIA	D6B	214	1,58		4°31'55,0000"		92°31'43,0000"	CER	
D6B 217 1,58 10°41'21,0000" 72,814 92°35'08,0000" MUR D6B 218 1,58 4°03'56,0000" 76,083 92°32'38,0000" MUR D6B 219 1,58 5°02'29,0000" 76,386 92°25'21,0000" PB D6B 220 1,58 10°09'04,0000" 78,799 92°23'49,0000" MUR D6B 221 1,58 5°18'21,0000" 76,379 92°33'19,0000" VIA D6B 222 1,58 9°45'38,0000" 77,426 92°29'56,0000" VIA	D6B	215	1,58		9°44'50,0000"	66,858	92°43'52,0000"	VIA	
D6B 218 1,58 4°03′56,0000" 76,083 92°32′38,0000" MUR D6B 219 1,58 5°02′29,0000" 76,386 92°25′21,0000" PB D6B 220 1,58 10°09′04,0000" 78,799 92°23′49,0000" MUR D6B 221 1,58 5°18′21,0000" 76,379 92°33′19,0000" VIA D6B 222 1,58 9°45′38,0000" 77,426 92°29′56,0000" VIA	D6B	216	1,58		5°15'45,0000"	67,805	92°42'04,0000"	VIA	
D6B 219 1,58 5°02′29,0000" 76,386 92°25′21,0000" PB D6B 220 1,58 10°09′04,0000" 78,799 92°23′49,0000" MUR D6B 221 1,58 5°18′21,0000" 76,379 92°33′19,0000" VIA D6B 222 1,58 9°45′38,0000" 77,426 92°29′56,0000" VIA	D6B	217	1,58		10°41'21,0000"	72,814	92°35'08,0000"	MUR	
D6B 220 1,58 10°09'04,0000" 78,799 92°23'49,0000" MUR D6B 221 1,58 5°18'21,0000" 76,379 92°33'19,0000" VIA D6B 222 1,58 9°45'38,0000" 77,426 92°29'56,0000" VIA	D6B		1,58			76,083		MUR	
D6B 221 1,58 5°18'21,0000" 76,379 92°33'19,0000" VIA D6B 222 1,58 9°45'38,0000" 77,426 92°29'56,0000" VIA	D6B	219	1,58		5°02'29,0000"	76,386		PB	
D6B 222 1,58 9°45'38,0000" 77,426 92°29'56,0000" VIA							,		
	D6B	221	1,58		5°18'21,0000"	76,379		VIA	
D6B 223 1,58	D6B	222	1,58						
	D6B	223	1,58		7°16'41,0000"	79,567	92°30'14,0000"	PZ	

CUADRO 5 DE 7

LEV	ANTAMI	S - MPIO. DE CUCUTA CUADRO 5 DE 7					
DE PUNTO	A PUNTO	ALTURA REFLEC TOR (m)	Azimuth	ANGULO HORIZONTAL	DISTANCIA INCLINADA (m)	ANGULO ZENITH	CODIGO
D6B	224	1,58		8°30'36,0000"	95,798	92°29'38,0000"	VIA
D6B	225	1,58		4°47'09,0000"	86,486	92°31'05,0000"	VIA
D6B	226	1,58		4°27'16,0000"	86,5	92°31'02,0000"	MUR
D6B	227	1,58		8°50'15,0000"	97,266	92°42'31,0000"	MUR
D6B	228	1,58		8°50'49,0000"	97,264	92°42'51,0000"	MUR
D6B	229	1,58		5°29'00,0000"	86,515	92°29'06,0000"	VIA
D6B	230	1,58		5°33'21,0000"	95,862	92°29'23,0000"	VIA
D6B	231	1,58		4°40'22,0000"	92,536	92°38'05,0000"	MUR
D6B	232	1,58		51°00'44,0000"	13,326	90°19'56,0000"	MUR
D6B	233	1,58		55°57'34,0000"	12,855	90°36'22,0000"	VIA
D6B	234	1,58		79°38'12,0000"	13,638	91°32'06,0000"	PB
D6B	235	1,58		77°09'22,0000"	13,724	91°29'23,0000"	VIA
D6B	236	1,58		65°08'34,0000"	29,388	92°20'32,0000"	CER
D6B	237	1,58		68°12'09,0000"	28,966	92°52'05,0000"	VIA
D6B D6B	238	1,58		79°34'20,0000"	30,627	92°48'46,0000" 92°47'17,0000"	MUR VIA
D6B D6B	240	1,58 1,58		76°03'43,0000" 63°16'53,0000"	30,677	92°39'08,0000"	CER
D6B	241	1,58		78°51'03,0000"	35,844 35,595	93°04'25,0000"	MUR
D6B	242	1,58		75°45'56,0000"	35,627	92°57'07.0000"	VIA
D6B	243	1,58		68°35'36,0000"	46,171	93°08'31,0000"	VIA
D6B	244	1,58		72°03'40,0000"	45,604	93°22'01.0000"	PZ
D6B	245	1,58		75°20'11.0000"	45,29	93°30'46,0000"	VIA
D6B	246	1,58		66°46'22,0000"	55,967	93°18'24,0000"	MUR
D6B	247	1,58		75°48'25,0000"	48,366	93°19'27,0000"	PB
D6B	248	1,58		68°49'22,0000"	60,946	93°34'11,0000"	VIA
D6B	249	1,58		76°29'16,0000"	53,293	93°40'06,0000"	CER
D6B	250	1,58		73°34'25,0000"	61,94	93°34'26,0000"	CER
D6B	251	1,58		72°53'06,0000"	61,549	93°35'35,0000"	VIA
D6B	252	1,58		67°29'16,0000"	61,169	93°28'52,0000"	CER
D6B	253	1,58		65°36'41,0000"	61,198	93°28'43,0000"	CER
D6B	254	1,58		73°24'45,0000"	64,496	93°30'25,0000"	CER
D6B	255	1,58		73°13'32,0000"	72,004	93°38'24,0000"	CER
D6B	256	1,58		71°07'19,0000"	78,579	93°37'07,0000"	CER
D6B	257	1,58		70°26'29,0000"	77,951	93°38'44,0000"	PB
D6B	258	1,58		68°21'22,0000"	76,666	93°39'44,0000"	PZ
D6B	259	1,58		69°58'57,0000"	77,83	93°39'46,0000"	VIA
D6B	260	1,58		66°48'13,0000"	75,86	93°43'14,0000"	VIA
D6B	261	1,58		67°27'24,0000"	88,112	93°25'45,0000"	CER
D6B	262	1,58		67°00'36,0000"	87,443	93°27'51,0000"	VIA
D6B D6B	263 264	1,58		63°45'24,0000"	87,677	93°27'29,0000" 93°27'03.0000"	VIA CER
D6A	D6	1,58 1,58	176°33'03,1256'	62°07'31,0000" 319°26'51,0000"	87,85 41,357	88°42'16,0000"	DELT
D6A D6A	265	1,58	170 33 03,1230	67°55'30,0000"	4,298	80°14'17,0000"	MUR
D6A D6A	266	1,58		38°14'10,0000"	6,067	81°50'55,0000"	PB
D6A	267	1,58		46°10'27,0000"	22,129	87°57'16,0000"	PB
D6A	268	1,58		58°16'44,0000"	11,108	84°27'34,0000"	MUR
D6A	269	1,58		48°36'47,0000"	21,832	88°16'42,0000"	VIA
D6A	270	0,5		56°23'21,0000"	20,942	90°44'42,0000"	VIA
D6A	271	1,58		52°15'55,0000"	35,205	89°30'10,0000"	CER
D6A	272	1,58		53°29'01,0000"	35,002	89°34'58,0000"	VIA
D6A	273	1,58		58°21'07,0000"	30,193	89°08'50,0000"	VIA
D6A	274	1,58		58°43'51,0000"	30,207	89°08'47,0000"	PB
D6A	275	1,58		60°26'03,0000"	30,255	89°08'51,0000"	CER
D6A	276	1,58		55°15'50,0000"	47,405	89°46'30,0000"	MUR
D6A	277	1,58		56°35'19,0000"	47,272	89°53'49,0000"	VIA
D6A	278	1,58		62°37'32,0000"	47,541	89°53'50,0000"	VIA
D6A	279	1,58		67°20'44,0000"	48,134	89°53'51,0000"	CER
D6A	280	1,58		214°43'42,0000"	4,233	87°43'22,0000"	VAL

CUADRO 6 DE 7

LEV	ANTAM		OPOGRAFICO CARTERA DE		TA 75 DPTO N DE	S - MPIO. DE CU	
		1	AKIEKA DE	CAMPO		CUADRO 6	DE /
DE	A	ALTURA REFLEC	Azimuth	ANGULO	DISTANCIA	ANGULO	CODIGO
PUNTO	PUNTO	TOR (m)		HORIZONTAL	INCLINADA (m)	ZENITH	
D6A	281	1,58		239°56'09,0000"	8,939	84°57'21,0000"	MUR
D6A	282	1,58		230°52'10,0000"	9,962	88°07'54,0000"	VIA
D6A	283	1,58		207°59'52,0000"	10,98	89°02'33,0000"	VIA
D6A	284	1,58		183°47'51,0000"	9,734	92°59'18,0000"	MUR
D6A	285	1,58		185°44'19,0000"	7,323	90°54'41,0000"	VIA
D6A	286	1,58		212°34'44,0000"	20,518	91°15'31,0000"	MUR
D6A	287	1,58		217°57'21,0000"	19,937	89°20'02,0000"	VIA
D6A	288	1,58		233°21'56,0000"	21,338	89°24'32,0000"	VIA
D6A	289	1,58		241°33'40,0000"	21,321	86°54'42,0000"	MUR
D6A	290	1,58		220°55'00,0000"	37,285	92°34'43,0000"	CER
D6A	291	2,58		224°07'04,0000"	39,013	91°36'14,0000"	VIA
D6A	292	2,58		232°21'03,0000"	40,339	91°50'46,0000"	PB
D6A	293	2,58		222°26'52,0000"	43,18	92°51'36,0000"	MUR
D6A	294	3,6		221°34'12,0000"	49,204	90°59'46,0000"	MUR
D6A	295	4,6		220°35'47,0000"	63,771	89°17'32,0000"	VIA
D6A	296	4,6		218°39'56,0000"	61,683	89°12'36,0000"	MUR
D6A	297	1,58		225°20'08,0000"	64,572	91°37'54,0000"	VIA
D6A	298	1,3		226°43'33,0000"	63,75	91°54'36,0000"	MUR
D6A	299	0,5		225°06'23,0000"	72,98	92°05'06,0000"	MUR
D6A	300	0,5		224°01'43,0000"	73,713	92°04'49,0000"	PB
D6A	301	1,58		223°41'40,0000"	74,478	91°15'24,0000"	VIA
D6A	302	1,58		222°40'17,0000"	78,833	91°08'29,0000"	VIA
D6A	303	0,1		224°53'15,0000"	79,807	92°08'41,0000"	VIA
D6A	D6C	1,58		144°01'11,0000"	182,27	93°04'07,0000"	DELT
D6A	304	1,58		217°15'26,0000"	77,32	89°05'03,0000"	VIA
D6A	305	1,58		218°40'12,0000"	70,882	88°57'24,0000"	VIA
D6A	306	1,58		216°54'52,0000"	69,821	89°00'45,0000"	MUR
D6A	307	1,58		158°41'56,0000"	25,87	98°22'19,0000"	MUR
D6A	308	1,58		153°31'57,0000"	24,837	97°59'35,0000"	PB
D6A	309	1,58		152°53'18,0000"	24,109	97°28'42,0000"	PB
D6A	310	1,58		150°44'37,0000"	24,609	97°43'07,0000"	VIA
D6A	311	1,58		140°43'01,0000"	25,088	97°40'29,0000"	VIA
D6A	312	1,58		139°55'36,0000" 134°17'59,0000"	62,655	96°10'17,0000"	CER
D6A	313	1,58		141°21'46,0000"	25,303	97°14'35,0000"	MUR VIA
D6A D6A	314 315	1,58 1,58		146°10'00,0000"	62,34 62,044	96°12'18,0000" 96°11'17,0000"	VIA
D6A D6A	316	1,58		147°20'31,0000"	56,254	96°11'17,0000"	PB
D6A D6A	317	1,58		148°52'44,0000"	56,278	96°27'53,0000"	CER
D6A	318	1,58		145°43'35,0000"	85,503	94°11'36,0000"	PB
D6A	319	1,58		147°44'29,0000"	85,555	94°11'28,0000"	CER
D6A	320	1,56		142°03'10,0000"	86,258	94°40'35,0000"	VIA
D6A	321	1		140°03'14,0000"	86,296	94°40'24,0000"	MUR
D6A	322	1,56		142°32'56,0000"	107,107	93°30'46,0000"	VIA
D6A	323	1,56		142°00'48,0000"	107,116	93°31'44,0000"	CER
D6A	324	0		144°51'24,0000"	106,939	94°21'01,0000"	VIA
D6A	325	0		145°55'42,0000"	107,019	94°20'31,0000"	MUR
D6A	326	1		143°00'36,0000"	128,583	93°26'29,0000"	VIA
D6A	327	1		142°20'28,0000"	128,599	93°26'29,0000"	CER
D6A	328	0		145°02'32,0000"	128,879	93°49'56,0000"	VIA
D6A	329	0		146°09'21,0000"	128,932	93°49'52,0000"	MUR
D6A	330	1,58		144°23'08,0000"	151,881	93°00'08,0000"	VIA
D6A	331	1,58		142°53'09,0000"	151,876	93°00'08,0000"	VIA
D6A	332	1,58		141°45'30,0000"	151,973	93°00'21,0000"	CER
D6A	333	1,58		145°16'12,0000"	151,959	93°00'22,0000"	CER
D6A	334	1,58		143°52'48,0000"	168,237	93°09'08,0000"	VIA
D6A	335	1,58		143°11'52,0000"	168,222	93°09'07,0000"	VIA
D6A	336	1,58		144°33'45,0000"	168,203	93°09'07,0000"	VIA
D6A	337	1,58		145°15'02,0000"	168,231	93°09'03,0000"	CER
D6A	D10	1,58		222°36'20,0000"	77,664	91°10'37,0000"	DELT
-							

CUADRO 6 DE 7

LEV	ANTAM	S - MPIO. DE CUCUTA					
			CARTERA DE	CAMPO		CUADRO 7	DE 7
DE PUNTO	A PUNTO	ALTURA REFLEC TOR (m)	Azimuth	ANGULO HORIZONTAL	DISTANCIA INCLINADA (m)	ANGULO ZENITH	CODIGO
D10	D6A	1,58	259°42'32,1256'	42°36'19,0000"	77,681	88°40'23,0000"	DELT
D10	338	2		269°47'21,0000"	4,871	75°46'21,0000"	MUR
D10	339	1,58		293°35'59,0000"	15,467	87°41'43,0000"	VIA
D10	340	1,58		289°30'09,0000"	15,952	87°38'19,0000"	MUR
D10	341	1,58		309°43'07,0000"	15,975	87°28'25,0000"	VIA
D10	342	1,58		316°34'36,0000"	15,601	86°07'13,0000"	CER
D10	343	1,58		305°38'39,0000"	29,446	86°39'50,0000"	VIA
D10 D10	344 345	1,58 1,58		296°57'31,0000" 292°48'50,0000"	28,996	86°32'08,0000" 87°42'56,0000"	VIA MUR
D10	346	1,58		295°26'29,0000"	27,878 32,161	86°37'57,0000"	VIA
D10	347	1,58		292°50'01,0000"	32,714	86°41'46.0000"	VIA
D10	348	1,58		292°57'31,0000"	37,345	86°54'13,0000"	VIA
D10	349	1,58		301°27'58,0000"	33,983	86°37'34,0000"	PZ
D10	350	1,58		306°11'18,0000"	35,36	86°24'09,0000"	VIA
D10	351	1,58		86°48'44,0000"	2,603	88°45'55,0000"	PZ
D10	352	1,58		97°09'49,0000"	26,503	92°05'00,0000"	MUR
D10	353	1,58		107°21'27,0000"	26,645	92°37'37,0000"	VIA
D10	354	1,58		119°58'07,0000"	26,516	92°01'30,0000"	VIA
D10	355	1,58		119°58'07,0000"	26,53	92°01'13,0000"	PAR
D10	356	1,58		104°35'35,0000"	33,15	92°34'12,0000"	PB
D10	357	1,58		108°50'21,0000"	51,932	92°02'28,0000"	MUR
D10 D10	358 359	1,58 1,58		111°09'25,0000" 119°10'59,0000"	51,893 51,412	91°56'43,0000" 91°48'54,0000"	VIA VIA
D10	D11	1,58		113°57'58,0000"	61,474	91°42'37,0000"	DELT
D10	D10	1,58	151°04'11,1256'	293°57'58,0000"	61,493	88°05'11,0000"	DELT
D11	360	1,58	151 0111,1250	189°47'38,0000"	8,035	90°48'49,0000"	MUR
D11	361	1,58		204°04'23,0000"	10,406	90°17'24,0000"	PB
D11	362	1,58		244°50'39,0000"	8,453	88°06'38,0000"	MUR
D11	363	1,58		249°27'27,0000"	7,55	87°59'01,0000"	VIA
D11	364	1,58		230°15'17,0000"	15,472	90°19'51,0000"	MUR
D11	365	1,58		234°41'30,0000"	15,52	90°19'40,0000"	MUR
D11	366	1,58		228°10'20,0000"	23,022	90°19'43,0000"	MUR
D11 D11	367 368	1,58 1,58		101°09'01,0000" 115°50'22,0000"	8,77 8,159	90°45'43,0000" 89°20'48,0000"	MUR VIA
D11	369	1,58		160°08'43,0000"	9,504	91°01'31,0000"	VIA
D11	370	1,58		165°31'46,0000"	11,852	90°08'51,0000"	MUR
D11	371	1,58		213°01'04,0000"	36,031	88°24'49,0000"	PB
D11	372	1,58		211°59'57,0000"	36,039	88°31'19,0000"	MUR
D11	373	1,58		222°18'51,0000"	41,55	88°33'11,0000"	CER
D11	374	1,58		152°43'43,0000"	22,861	90°44'28,0000"	MUR
D11	375	1,58		149°22'59,0000"	22,479	91°16'31,0000"	VIA
D11	376	1,58		220°23'21,0000"	48,024	88°25'07,0000"	CER
D11	377	1,58		211°41'22,0000"	42,53	88°32'25,0000"	MUR
D11 D11	378 379	1,58 1,58		138°49'57,0000" 133°57'40,0000"	23,098 23,55	91°24'28,0000" 91°21'17,0000"	PZ VIA
	200	4.50		400040100 000011	27.104	00020120 000011	orn
D11	380	1,58		130°13'30,0000" 120°58'50,0000"	25,196 15,309	90°38'28,0000" 91°18'24,0000"	PB
D11	382	1		211°19'37,0000"	67,484	88°56'46,0000"	PB
D11	383	1,58		217°35'45,0000"	68,838	88°21'13,0000"	CER
D11	384	1,58		138°08'10,0000"	46,246	93°48'57,0000"	MUR
D11	385	1,58		139°24'11,0000"	46,075	93°53'04,0000"	PB
D11	386	1,58		141°31'36,0000"	45,81	93°56'14,0000"	VIA
D11	387	1,58		147°48'49,0000"	46,022	93°57'06,0000"	VIA
D11	388	1,58		150°40'44,0000"	46,328	93°56'42,0000"	MUR
D11 D11	389 390	2,5 2,5		143°23'54,0000" 144°22'08,0000"	79,736 79,651	91°27'57,0000" 91°33'18,0000"	MUR PB
D11	391	1,58		144 22 08,0000 145°44'43,0000"	79,903	92°22'58,0000"	VIA
D11	392	0		148°39'25,0000"	81,251	93°18'09,0000"	VIA
D11	393	0		150°46'30,0000"	81,307	93°17'59,0000"	MUR

CUADRO 7 DE 7

LEVANTAMIENTO TOPOGRAFICO BARRIO CÚCUTA 75 DPTO N DE CARTERA DE CAMPO						S - MPIO. DE CUCUTA CUADRO 7 DE 7		
DE PUNTO	A PUNTO	ALTURA REFLEC TOR (m)	Azimuth	ANGULO HORIZONTAL	DISTANCIA INCLINADA (m)	ANGULO ZENITH	CODIGO	
D10	D6A		259°42'32,1256'	42°36'19,0000"	77,681	88°40'23,0000"	DELT	
D10	338	2		269°47'21,0000"	4,871	75°46'21,0000"	MUR	
D10	339	1.58		293°35'59,0000"	15,467	87°41'43,0000"	VIA	
D10	340	1,58		289°30'09,0000"	15,952	87°38'19,0000"	MUR	
D10	341	1,58		309°43'07,0000"	15,975	87°28'25,0000"	VIA	
D10	342	1,58		316°34'36,0000"	15,601	86°07'13,0000"	CER	
D10	343	1.58		305°38'39,0000"	29,446	86°39'50,0000"	VIA	
D10	344	1,58		296°57'31,0000"	28,996	86°32'08,0000"	VIA	
D10	345	1,58		292°48'50,0000"	27,878	87°42'56,0000"	MUR	
D10	346	1,58		295°26'29,0000"	32,161	86°37'57,0000"	VIA	
D10	347	1.58		292°50'01,0000"	32,714	86°41'46,0000"	VIA	
D10	348	1,58		292°57'31,0000"	37,345	86°54'13,0000"	VIA	
D10	349	1,58		301°27'58,0000"	33,983	86°37'34,0000"	PZ	
D10	350	1,58		306°11'18,0000"	35,36	86°24'09,0000"	VIA	
D10	351	1,58		86°48'44,0000"	2,603	88°45'55,0000"	PZ	
D10	352	1.58		97°09'49,0000"	26,503	92°05'00,0000"	MUR	
D10	353	1,58		107°21'27,0000"	26,645	92°37'37,0000"	VIA	
D10	354	1,58		119°58'07,0000"	26,516	92°01'30,0000"	VIA	
D10	355	1,58		119°58'07,0000"	26,53	92°01'13,0000"	PAR	
D10	356	1,58		104°35'35,0000"	33,15	92°34'12,0000"	PB	
D10	357	1,58		108°50'21,0000"	51,932	92°02'28,0000"	MUR	
D10	358	1.58		111°09'25,0000"	51,893	91°56'43,0000"	VIA	
D10	359	1,58		119°10'59,0000"	51,412	91°48'54,0000"	VIA	
D10	D11	1,58		113°57'58,0000"	61,474	91°42'37,0000"	DELT	
D11	D10	1,58	151°04'11,1256'	293°57'58,0000"	61,493	88°05'11,0000"	DELT	
D11	360	1.58		189°47'38,0000"	8.035	90°48'49,0000"	MUR	
D11	361	1.58		204°04'23.0000"	10.406	90°17'24.0000"	PB	
D11	362	1,58		244°50'39,0000"	8,453	88°06'38,0000"	MUR	
D11	363	1,58		249°27'27,0000"	7,55	87°59'01,0000"	VIA	
D11	364	1,58		230°15'17,0000"	15,472	90°19'51,0000"	MUR	
D11	365	1.58		234°41'30,0000"	15,52	90°19'40,0000"	MUR	
D11	366	1,58		228°10'20,0000"	23,022	90°19'43,0000"	MUR	
D11	367	1,58		101°09'01,0000"	8,77	90°45'43,0000"	MUR	
D11	368	1,58		115°50'22,0000"	8,159	89°20'48,0000"	VIA	
D11	369	1,58		_160°08'43,0000"	9,504	91°01'31,0000"	VIA	
D11	370	1.58		165°31'46,0000"	11,852	90°08'51,0000"	MUR	
D11	371	1,58		213°01'04,0000"	36,031	88°24'49,0000"	PB	
D11	372	1,58		211°59'57,0000"	36,039	88°31'19,0000"	MUR	
D11	373	1,58		222°18'51,0000"	41,55	88°33'11,0000"	CER	
D11	374	1,58		152°43'43,0000"	22,861	90°44'28,0000"	MUR	
D11	375	1.58		149°22'59,0000"	22,479	91°16'31,0000"	VIA	
D11	376	1,58		220°23'21,0000"	48,024	88°25'07,0000"	CER	
D11	377	1,58		211°41'22,0000"	42,53	88°32'25,0000"	MUR	
D11	378	1,58		138°49'57,0000"	23,098	91°24'28,0000"	PZ	
D11	379	1.58		133°57'40,0000"	23,55	91°21'17,0000"	VIA	
D11	380	1.58		130°13'30,0000"	25,196	90°38'28.0000"	CER	
D11	381	1		120°58'50,0000"	15,309	91°18'24,0000"	PB	
D11	382	1		211°19'37,0000"	67,484	88°56'46,0000"	PB	
D11	383	1,58		217°35'45,0000"	68,838	88°21'13,0000"	CER	
D11	384	1,58		138°08'10,0000"	46,246	93°48'57,0000"	MUR	
D11	385	1.58		139°24'11.0000"	46,075	93°53'04,0000"	PB	
D11	386	1,58		141°31'36,0000"	45,81	93°56'14,0000"	VIA	
D11	387	1.58		147°48'49,0000"	46.022	93°57'06,0000"	VIA	
D11	388	1,58		150°40'44,0000"	46,328	93°56'42.0000"	MUR	
D11	389	2,5		143°23'54,0000"	79.736	91°27'57,0000"	MUR	
D11	390	2,5		144°22'08,0000"	79,651	91°33'18,0000"	PB	
	391	1,58		145°44'43,0000"	79,903	92°22'58,0000"	VIA	
D11								
D11 D11	392	0		148°39'25,0000"	81,251	93°18'09,0000"	VIA	

Anexo B. Estudio de tránsito.

CUADRO 1 DE 9

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER AFORO VEHÍCULAR

CALLE 4a CON AVENIDA 17a, SECTOR BARRIO CÚCUTA 75 EN LA CIUDAD SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

 Fecha (D.M.A):
 Jueves 18 de Julio del 2019
 Hoja_1__de__3__

 Hora de inicio:
 5:00 _______ Hora Final:
 22:00 _______

Condición climática: Soleado
Movimiento: Movimiento 1 (N-S)

	AUTOS	BUSETA		CAMIONES	
HORA			C-2P	C-2G	C-3
5:00 - 6:00	102	5	0	0	0
6:00 - 7:00	107	9	0	0	0
7:00 - 8:00	271	18	0	0	0
8:00 - 9:00	215	15	1	0	0
9:00 - 10:00	97	7	1	0	0
10:00 - 11:00	101	9	1	0	0
11:00 - 12:00	221	15	0	0	0
12:00 - 13:00	228	16	0	0	0
13:00 - 14:00	218	14	0	0	0
14:00 - 15:00	88	8	1	0	0
15:00 - 16:00	83	5	1	0	0
16:00 - 17:00	96	7	1	0	0
17:00 - 18:00	258	16	1	0	0
18:00 - 19:00	246	14	0	0	0
19:00 - 20:00	87	7	0	1	0
20:00 - 21:00	81	4	1	0	0
21:00 - 22:00	60	6	0	0	0
SUMATORIA	2559	175	8	1	0
TOTAL	2559	175		9	·

CUADRO 2 DE 9

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER AFORO VEHÍCULAR

CALLE 4a CON AVENIDA 17a, SECTOR BARRIO CÚCUTA 75 EN LA CIUDAD SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

 Fecha (D.M.A):
 Jueves 18 de Julio del 2019
 Hoja_2__de__3_

 Hora de inicio:
 5:00 ______ Hora Final:
 22:00 ______

Condición climática: Soleado
Movimiento: Movimiento 2 (S-N)

	AUTOS	BUSETA		CAMIONES	
HORA					
			C-2P	C-2G	C-3
5:00 - 6:00	81	4	0	0	0
6:00 - 7:00	93	6	0	0	0
7:00 - 8:00	225	14	0	0	0
8:00 - 9:00	175	8	0	0	0
9:00 - 10:00	79	6	1	1	0
10:00 - 11:00	72	7	1	0	0
11:00 - 12:00	202	11	0	0	0
12:00 - 13:00	211	15	0	0	0
13:00 - 14:00	199	13	0	0	1
14:00 - 15:00	75	8	1	0	0
15:00 - 16:00	64	6	0	0	0
16:00 - 17:00	80	4	1	0	0
17:00 - 18:00	162	7	1	0	0
18:00 - 19:00	205	14	0	0	0
19:00 - 20:00	57	8	0	0	0
20:00 - 21:00	68	4	1	0	0
21:00 - 22:00	46	3	0	0	0
SUMATORIA	2094	138	6	1	1
TOTAL	2094	138		8	

CUADRO 3 DE 9

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER AFORO VEHÍCULAR

CALLE 4a CON AVENIDA 17a, SECTOR BARRIO CÚCUTA 75 EN LA CIUDAD SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

Fecha (D.M.A): <u>Jueves 18 de Julio del 2019</u>

Hora de inicio: 5:00 ______ Hora Final: 22:00 _____

Condición climática: Soleado

Movimiento: Ambos sentidos de circulación

	AUTOS	BUSETA		CAMIONES	
HORA					
			C-2P	C-2G	C-3
5:00 - 6:00	183	9	0	0	0
6:00 - 7:00	200	15	0	0	0
7:00 - 8:00	496	32	0	0	0
8:00 - 9:00	390	23	1	0	0
9:00 - 10:00	176	13	2	1	0
10:00 - 11:00	173	16	2	0	0
11:00 - 12:00	423	26	0	0	0
12:00 - 13:00	439	31	0	0	0
13:00 - 14:00	417	27	0	0	1
14:00 - 15:00	163	16	2	0	0
15:00 - 16:00	147	11	1	0	0
16:00 - 17:00	176	11	2	0	0
17:00 - 18:00	420	23	2	0	0
18:00 - 19:00	451	28	0	0	0
19:00 - 20:00	144	15	0	1	0
20:00 - 21:00	149	8	2	0	0
21:00 - 22:00	106	9	0	0	0
SUMATORIA	4653	313	14	2	1
TOTAL	4653	313		17	· · · · · · · · · · · · · · · · · · ·

CUADRO 4 DE 9

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER AFORO VEHÍCULAR

CALLE 4a CON AVENIDA 17a, SECTOR BARRIO CÚCUTA 75 EN LA CIUDAD SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

Fecha (D.M.A):	Viernes 19 de Julio del 20	<u>019</u>	Hoja_1de3
Horo do inicio	5:00	Joro Final, 22:00	

Condición climática: Soleado
Movimiento: Movimiento 1 (N-S)

		<u> </u>			
	AUTOS	BUSETA		CAMIONES	
HORA					
			C-2P	C-2G	C-3
5:00 - 6:00	96	3	0	0	0
6:00 - 7:00	102	6	0	0	0
7:00 - 8:00	297	17	0	0	0
8:00 - 9:00	276	15	1	0	0
9:00 - 10:00	84	9	0	0	1
10:00 - 11:00	112	5	0	0	0
11:00 - 12:00	266	14	1	0	0
12:00 - 13:00	227	16	0	0	0
13:00 - 14:00	197	12	0	0	0
14:00 - 15:00	85	8	1	0	0
15:00 - 16:00	73	9	0	1	0
16:00 - 17:00	79	5	1	0	0
17:00 - 18:00	266	16	1	0	0
18:00 - 19:00	254	18	1	0	0
19:00 - 20:00	91	6	0	0	0
20:00 - 21:00	84	3	0	0	0
21:00 - 22:00	71	5	0	0	0
SUMATORIA	2660	167	6	1	1
TOTAL	2660	167		8	•

_de_3__

CUADRO 5 DE 9

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER AFORO VEHÍCULAR

CALLE 4a CON AVENIDA 17a, SECTOR BARRIO CÚCUTA 75 EN LA CIUDAD SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

Fecha (D.M.A):	Viernes 19 de Julio del	2019	Ho	oja_2
Hora de inicio:	5:00	Hora Final:	22:00	

Condición climática: Soleado
Movimiento: Movimiento 2 (S-N)

AUTOS		BUSETA		CAMIONES	
HORA					
			C-2P	C-2G	C-3
5:00 - 6:00	86	2	0	0	0
6:00 - 7:00	81	5	0	0	0
7:00 - 8:00	224	14	1	0	0
8:00 - 9:00	175	6	1	0	0
9:00 - 10:00	65	5	0	0	0
10:00 - 11:00	76	9	0	0	0
11:00 - 12:00	217	10	0	0	0
12:00 - 13:00	217	16	0	0	0
13:00 - 14:00	210	14	0	0	0
14:00 - 15:00	70	7	0	0	0
15:00 - 16:00	89	4	1	0	0
16:00 - 17:00	87	5	0	0	0
17:00 - 18:00	179	8	0	0	0
18:00 - 19:00	185	16	0	0	0
19:00 - 20:00	41	9	1	0	0
20:00 - 21:00	52	3	0	0	0
21:00 - 22:00	36	3	1	0	0
SUMATORIA	2090	136	5	0	0
TOTAL	2090	136		5	

CUADRO 6 DE 9

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER AFORO VEHÍCULAR

CALLE 4a CON AVENIDA 17a, SECTOR BARRIO CÚCUTA 75 EN LA CIUDAD SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

Fecha (D.M.A):	Viernes 19 de Julio del	2019		Hoja_2de3
Hora de inicio:	5:00	Hora Final:	22:00	

Condición climática: Soleado

Movimiento: Ambos sentidos de circulación

AUTOS		BUSETA		CAMIONES	
HORA					
			C-2P	C-2G	C-3
5:00 - 6:00	182	5	0	0	0
6:00 - 7:00	183	11	0	0	0
7:00 - 8:00	521	31	1	0	0
8:00 - 9:00	451	21	2	0	0
9:00 - 10:00	149	14	0	0	1
10:00 - 11:00	188	14	0	0	0
11:00 - 12:00	483	24	1	0	0
12:00 - 13:00	444	32	0	0	0
13:00 - 14:00	407	26	0	0	0
14:00 - 15:00	155	15	1	0	0
15:00 - 16:00	162	13	1	1	0
16:00 - 17:00	166	10	1	0	0
17:00 - 18:00	445	24	1	0	0
18:00 - 19:00	439	34	1	0	0
19:00 - 20:00	132	15	1	0	0
20:00 - 21:00	136	6	0	0	0
21:00 - 22:00	107	8	1	0	0
SUMATORIA	4750	303	11	1	1
TOTAL	4750	303		13	

CUADRO 7 DE 9

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER AFORO VEHÍCULAR

CALLE 4a CON AVENIDA 17a, SECTOR BARRIO CÚCUTA 75 EN LA CIUDAD SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

 Fecha (D.M.A):
 Sábado 20 de Julio del 2019
 Hoja_1__de__3_

 Hora de inicio:
 5:00 ______ Hora Final:
 22:00 ______

Condición climática: Soleado
Movimiento: Movimiento 1 (N-S)

	AUTOS	BUSETA	JSETA CAMIONES		
HORA					
5.00 6.00			C-2P	C-2G	C-3
5:00 - 6:00	63	2	0	0	0
6:00 - 7:00	68	4	0	0	0
7:00 - 8:00	261	18	0	0	0
8:00 - 9:00	254	15	0	0	0
9:00 - 10:00	65	8	1	0	0
10:00 - 11:00	90	9	0	0	0
11:00 - 12:00	246	12	1	0	0
12:00 - 13:00	234	16	0	0	0
13:00 - 14:00	156	15	0	0	0
14:00 - 15:00	88	6	0	0	0
15:00 - 16:00	83	6	1	0	0
16:00 - 17:00	72	4	0	0	0
17:00 - 18:00	271	16	1	0	0
18:00 - 19:00	247	17	0	0	0
19:00 - 20:00	83	5	0	0	0
20:00 - 21:00	92	6	0	0	0
21:00 - 22:00	62	3	0	0	0
SUMATORIA	2435	162	4	0	0
TOTAL	2435	162		4	

CUADRO 8 DE 9

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER AFORO VEHÍCULAR

CALLE 4a CON AVENIDA 17a, SECTOR BARRIO CÚCUTA 75 EN LA CIUDAD SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

 Fecha (D.M.A):
 Sábado 20 de Julio del 2019
 Hoja_1__de__3_

 Hora de inicio:
 5:00 _______ Hora Final:
 22:00 ______

Condición climática: Soleado
Movimiento: Movimiento 2 (S-N)

AUTOS		BUSETA		CAMIONES	
HORA			C-2P	C-2G	C-3
5:00 - 6:00	74	2	0	0	0
6:00 - 7:00	67	3	0	0	0
7:00 - 8:00	214	11	0	0	0
8:00 - 9:00	143	5	0	0	0
9:00 - 10:00	53	4	0	0	0
10:00 - 11:00	66	11	0	1	0
11:00 - 12:00	218	13	0	0	0
12:00 - 13:00	226	15	0	0	0
13:00 - 14:00	198	15	1	0	0
14:00 - 15:00	63	6	0	0	0
15:00 - 16:00	76	3	0	0	0
16:00 - 17:00	79	4	0	0	0
17:00 - 18:00	177	6	0	0	0
18:00 - 19:00	188	14	1	0	0
19:00 - 20:00	51	9	0	0	0
20:00 - 21:00	57	4	0	0	0
21:00 - 22:00	42	3	0	0	0
SUMATORIA	1992	128	2	1	0
TOTAL 1992		128		3	

CUADRO 9 DE 9

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER AFORO VEHÍCULAR

CALLE 4a CON AVENIDA 17a, SECTOR BARRIO CÚCUTA 75 EN LA CIUDAD SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

 Fecha (D.M.A):
 Sábado 20 de Julio del 2019
 Hoja_1__de__3_

 Hora de inicio:
 5:00 _______ Hora Final:
 22:00 ______

Condición climática: Soleado

Movimiento: Ambos sentidos de circulación

	AUTOS			CAMIONES	
HORA					
			C-2P	C-2G	C-3
5:00 - 6:00	137	4	0	0	0
6:00 - 7:00	135	7	0	0	0
7:00 - 8:00	475	29	0	0	0
8:00 - 9:00	397	20	0	0	0
9:00 - 10:00	118	12	1	0	0
10:00 - 11:00	156	20	0	1	0
11:00 - 12:00	464	25	1	0	0
12:00 - 13:00	460	31	0	0	0
13:00 - 14:00	354	30	1	0	0
14:00 - 15:00	151	12	0	0	0
15:00 - 16:00	159	9	1	0	0
16:00 - 17:00	151	8	0	0	0
17:00 - 18:00	448	22	1	0	0
18:00 - 19:00	435	31	1	0	0
19:00 - 20:00	134	14	0	0	0
20:00 - 21:00	149	10	0	0	0
21:00 - 22:00	104	6	0	0	0
SUMATORIA	4427	290	6	1	0
TOTAL	4427	290		7	

Anexo C Estudio Geotécnico

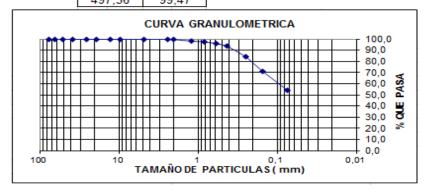
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

HUMEDAD NATURAL

PROFUNDIDAD :	0,00 - 1,00 metros	MUESTRA No. :	1
DESCRIPCIÓN:	LIMO DE BAJA PLA	STICIDAD COLOR NA	ARANJA

No.recipiente	27	6	9
Whumedo+Wrecipiente	181,59	181,52	184,93
Wseco+Wrecipiente	174,52	174,30	177,33
Wrecipiente	75,57	79,96	81,01
Humedad (%)	7,15	7,65	7,89
Humedad Promedio(%)			

OBSERVACIONES		


UNIVERSIDAD FRANCISO DE PAULA SANTANDER

LABORATORIO DE SUELO CIVILES

GRANOLUMETRIA - CLASIFICACIÓN

PROFUNDIDAD:	0,00 - 0	,50 metros	1		
DESCRIPCIÓN:	LIM	O DE BAJA PLASTICIDAD COLOR NARANJA			
PESO INICIAL:	500	PESO DESPU	IÉS DE LAVAR:	232,39	

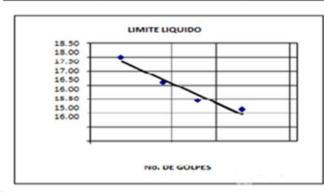
TAMIZ No.	PESO RETENIDO	% RETENIDO	% RETENIDO ACUMULADO	% QUE PASA		
3"	0,00	0,00	0,00	100,00		
2 1/2 "	0,00	0,00	0,00	100,00		
2 "	0,00	0,00	0,00	100,00		
1 1/2 "	0,00	0,00	0,00	100,00	CLAS	FICACIÓN
1"	0,00	0,00	0,00	100,00	AASHTO	A-4
3/4 "	0,00	0,00	0,00	100,00	I.G.	3
1/2 "	0,00	0,00	0,00	100,00	U.S.C.	ML
3/8 "	0,00	0,00	0,00	100,00	GRAVA	0,00
No. 4	0,00	0,00	0,00	100,00	AR≣NA	45,95
No. 8	0,00	0,00	0,00	100,00	FINOS	54,05
No.10	3,10	0,62	0,62	99,38		
No. 16	4,28	0,86	1,48	98,52	I.P.	3,98
No. 20	4,19	0,84	2,31	97,69		
No. 30	7,09	1,42	3,73	96,27		
No. 40	14,20	2,84	6,57	93,43		
No. 60	45,69	9,14	15,71	84,29		
No. 100	68,25	13,65	29,36	70,64		
No. 200	82,95	16,59	45,95	54,05		
FONDO	267,61	53,52	99,47	0,53		
	497.36	99.47				

D60(mm)	
D30(mm)	
D10(mm)	

Cu	
Сс	

REALIZADO POR :

LIMITES DE CONSISTENCIA O DE ATTERBERG

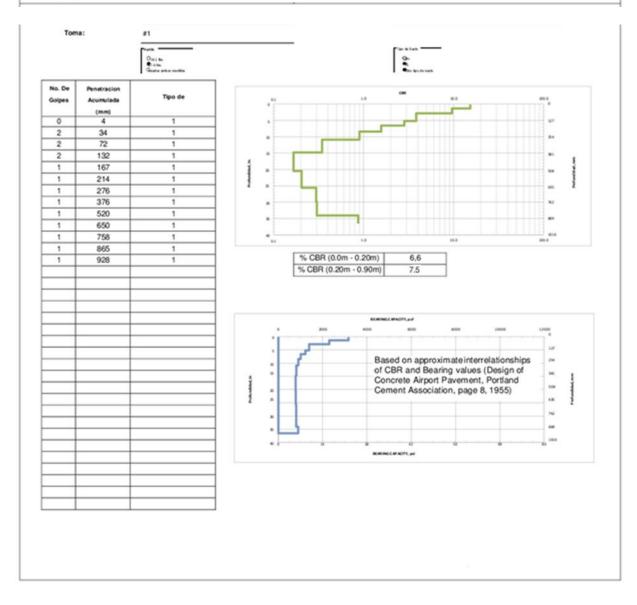

PROFUNDIDAD:	0.00 - 0.50 metros	MUESTRA No. :	1
DESCRIPCIÓN:	LIMO DE BAJA PLA	STICIDAD COLOR N	ARANJA

LIMITE LIQUIDO

NÚMERO DE GOLPES	3/	29	24	19
NUMERO DEL RECIPIENTE	1	23	7	31
PESO DEL RECIPIENTE (Gr.)	6.41	6.39	6.48	6,30
PESO HUMEDO (Gr.)	35,43	26,87	31,70	31,37
PESO SECO (Gr.)	31,40	23,98	28,02	27,55
HUMEDAD (%)	16,13	16,43	17,08	17,98

LIMITE PLASTICO

NUMERO DEL RECIPIENTE	21	1 2T	16	
PESO DEL RECIPIENTE (Gr.)	6,50	6,52	6,45	
PESO HÚMEDO (Gr.)	10.78	10.44	10.69	
PESO SECO (Gr.)	10,28	9,99	10,20	
HUMEDAD (%)	13,23	12,97	13,07	


LIMITE LIQUIDO (%)	17.06	
LIMITE PLASTICO (%)	13.09	
NDICE DE PLASTICIDAD	3.98	_

A-4
2
. 7
ML
0.00
45.95
54.05

	F A	17A	00	POP	
_	-/		1 1 1		

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER LABORATORIO DE SUELOS CIVILES CONO DINÁMICO PARA CBR DE CAMPO

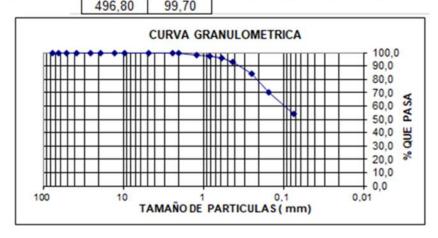
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

HUMEDAD NATURAL

PROFUNDIDAD :	0,00 - 1,00 metros	MUESTRA No. :	2
DESCRIPCIÓN:	LIMO DE BAJA PLA	STICIDAD COLOR NA	ARANJA

No.recipiente	16	5	9
Whumedo+Wrecipiente	181,15	180,98	185,05
Wseco+Wrecipiente	175,20	175,30	174,30
Wrecipiente	76,30	78,40	82,21
Humedad (%)	6,02	5,86	11,67
Humedad Promedio(%)	7,85		

OBSERVACIONES	3	


REALIZADO POR:	

GRANULOMETRIA - CLASIFICACIÓN

PROFUNDIDAD:	0,00 - 0,50 metros MUESTRA No. :			2	
DESCRIPCIÓN:	LIMO	MO DE BAJA PLASTICIDAD COLOR NARANJA			
PESO INICIAL:	497	PESO DESPUÉS DE LAVAR: 229,30			

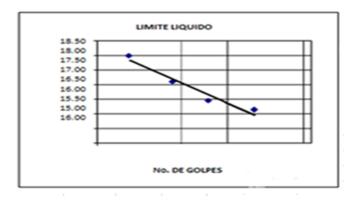
TAMIZ No.	PESO RETENIDO	% RETENIDO	% RETENIDO ACUMULADO	% QUE PASA		
3"	0,00	0,00	0,00	100,00	1	
2 1/2 "	0,00	0,00	0,00	100,00	1	
2 "	0,00	0,00	0,00	100,00	1	
1 1/2 "	0,00	0,00	0,00	100,00	CLASIF	ICACIÓN
1 "	0,00	0,00	0,00	100,00	AASHTO	A-4
3/4 "	0,00	0,00	0,00	100,00	I.G.	3
1/2 "	0,00	0,00	0,00	100,00	U.S.C.	ML
3/8 "	0,00	0,00	0,00	100,00	GRAVA	0,00
No. 4	0,00	0,00	C0100	100,00	ARENA	46,16
No. 8	0,00	0,00	0,00	100,00	FINOS	53,84
No.10	3,10	0,62	0,62	99,38		
No. 16	4,26	0,86	1,48	98,52	I.P.	3,71
No. 20	4,21	0,85	2,33	97,67		
No. 30	7,10	1,43	3,76	96,24	1	
No. 40	14,26	2,87	6,63	93,37]	
No. 60	45,60	9,18	15,81	84,19]	
No. 100	68,21	13,73	29,54	70,46]	
No. 200	82,56	16,62	46,16	53,84]	
FONDO	267,50	53,54	99,70	0,30]	
	100 00	00.70			7.0	

D60(mr	n)
D30(mr	n)
D10(mr	n)

Cu	
Сс	

REALIZADO POR :

LIMITES DE CONSISTENCIA O DE ATTERBERG


PROFUNDIDAD :	0,00 - 0,50 metros	MUESTRA No. :	2
DESCRIPCIÓN:	LIMO DE BAJA PLAS	STICIDAD COLOR N	ARANJA

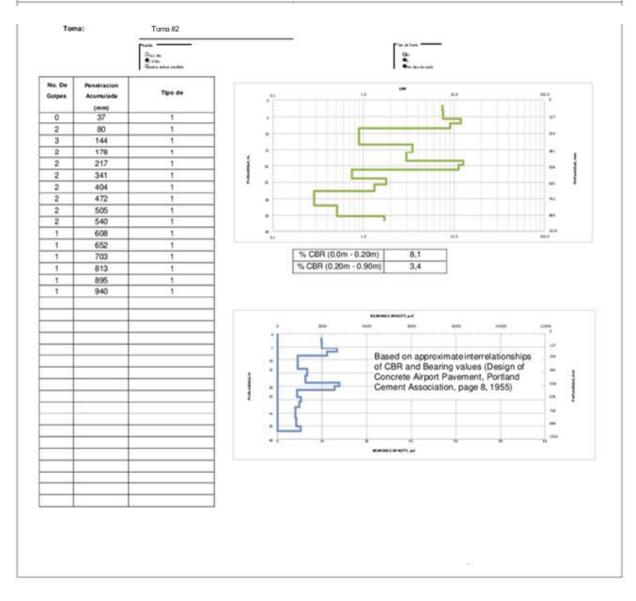
LIMITE LIQUIDO

NÚMERO DE GOLPES	39	30	25	20
NÚMERO DEL RECIPIENTE	2	25	6	37
PESO DEL RECIPIENTE (Gr.)	6,45	6,43	6,50	6,34
PESO HÚMEDO (Gr.)	35,44	26,88	31,76	31,40
PESO SECO (Gr.)	31,50	23,99	28,30	27,60
HUMEDAD (%)	15,73	16,46	15,87	17,87

LIMITE PLASTICO

NÚMERO DEL RECIPIENTE	23	29	17	
PESO DEL RECIPIENTE (Gr.)	6,55	6,54	6,50	
PESO HÚMEDO (Gr.)	10,80	10,45	10,72	
PESO SECO (Gr.)	10,30	10,01	10,23	
HUMEDAD (%)	13,33	12,68	13,14	

LIMITE LIQUIDO (%)	16,76
LIMITE PLASTICO (%)	13,05
INDICE DE PLASTICIDAD	3,71


CLASIFICACIÓN				
AASHTO A-4				
I.G. 3				
U.S.C. ML				

%GRAVA	0.00
%ARENA	46,16
%FINOS	53,84

REALIZADO POR :	

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER LABORATORIO DE SUELOS CIVILES CONO DINÁMICO PARA CBR DE CAMPO

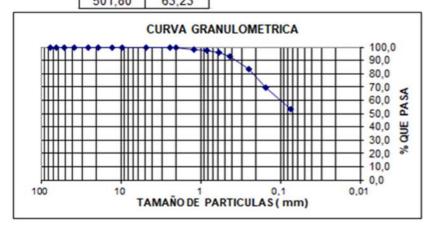
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

HUMEDAD NATURAL

PROFUNDIDAD:	0,00 - 1,00 metros	MUESTRA No. :	3	
DESCRIPCIÓN:	LIMO DE BAJA PLASTICIDAD COLOR NARANJA			

No.recipiente	21	8	11
Whumedo+Wrecipiente	180,95	180,98	185,23
Wseco+Wrecipiente	175,20	175,20	176,54
Wrecipiente	76,45	78,83	82,30
Humedad (%)	5,82	6,00	9,22
Humedad Promedio(%)		7,01	

OBSERVACIONES		


REALIZADO POR:	
INCALIZADO I OIN.	

GRANULOMETRIA - CLASIFICACIÓN

PROFUNDIDAD:	0,00 - 0	,50 metros	MUESTRA No. :	3
DESCRIPCIÓN:	LIMO DE BAJA PLASTICIDAD COLOR NARANJA			
			,	
PESO INICIAL:	502	PESO DESP	UES DE LAVAR:	234,30

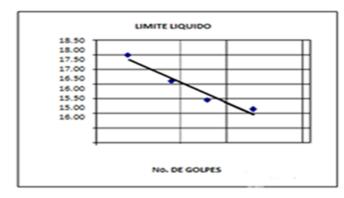
TAMIZ No.	PESO RETENIDO	% RETENIDO	% RETENIDO ACUMULADO	% QUE PASA		
3"	0,00	0,00	0,00	100,00	1	
2 1/2 "	0,00	0,00	0,00	100,00]	
2 "	0,00	0,00	0,00	100,00	1	
1 1/2 "	0,00	0,00	0,00	100,00	CLASIF	ICACION
1"	0,00	0,00	0,00	100,00	AASHTO	A-4
3/4 "	0,00	0,00	0,00	100,00	I.G.	3
1/2 "	0,00	0,00	_ 0,00 _	100,00	U.S.C.	CL-ML
3/8 "	0,00	0,00	0,00	100,00	GRAVA	0,00
No. 4	0,00	0,00	C0100	100,00	ARENA	46,69
No. 8	0,00	0,00	0,00	100,00	FINOS	53,31
No.10	3,51	0,70	0,70	99,30		
No. 16	4,75	0,95	1,65	98,35	I.P.	4,55
No. 20	4,54	0,90	2,55	97,45		
No. 30	7,74	1,54	4,09	95,91]	
No. 40	14,82	2,95	7,05	92,95]	
No. 60	46,97	9,36	16,41	83,59]	
No. 100	68,98	13,75	30,15	69,85]	
No. 200	82,99	16,54	46,69	53,31]	
FONDO	267,50	16,54	63,23	36,77]	
	501 80	63 23				

D60(mm)	
D30(mm)	
D10(mm)	

Cu	
Cc	

REALIZADO POR:

LIMITES DE CONSISTENCIA O DE ATTERBERG


PROFUNDIDAD :	0,00 - 0,50 metros	MUESTRA No. :	3
DESCRIPCIÓN:	LIMO DE BAJA PLAS	STICIDAD COLOR N	ARANJA

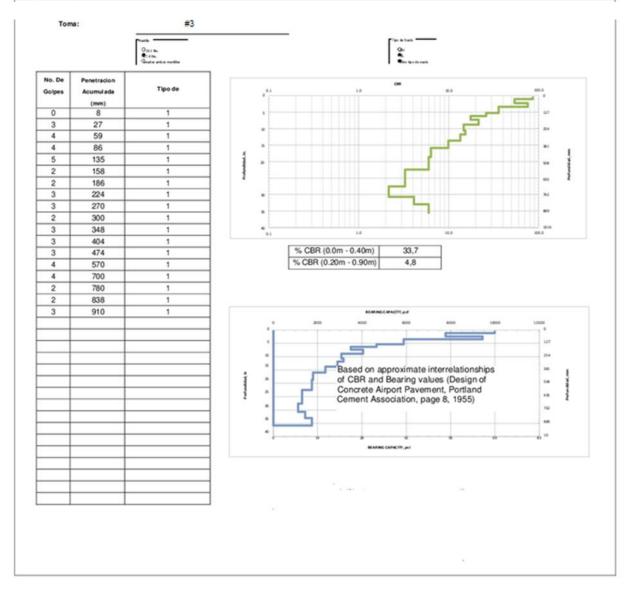
LIMITE LIQUIDO

NÚMERO DE GOLPES	40	31	26	20
NÚMERO DEL RECIPIENTE	3	23	5	38
PESO DEL RECIPIENTE (Gr.)	6,40	6,38	6,47	6,29
PESO HÚMEDO (Gr.)	35,42	26,86	31,69	31,36
PESO SECO (Gr.)	31,38	23,90	28,01	27,54
HUMEDAD (%)	16,17	16,89	17,08	17,98

LIMITE PLASTICO

	_			
NÚMERO DEL RECIPIENTE	35	22	15	
PESO DEL RECIPIENTE (Gr.)	6,40	6,51	6,44	
PESO HÚMEDO (Gr.)	10,77	10,42	10,67	
PESO SECO (Gr.)	10,27	9,98	10,19	
HUMEDAD (%)	12,92	12,68	12,80	

LIMITE LIQUIDO (%)	17,35
LIMITE PLASTICO (%)	12,80
INDICE DE PLASTICIDAD	4 55


CLASIFICACIÓN		
AASHTO	A-4	
I.G.	3	
U.S.C.	ML	

%GRAVA	0.00
%ARENA	46,69
%FINOS	53,31

REALIZADO POR :

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER LABORATORIO DE SUELOS CIVILES CONO DINÁMICO PARA CBR DE CAMPO

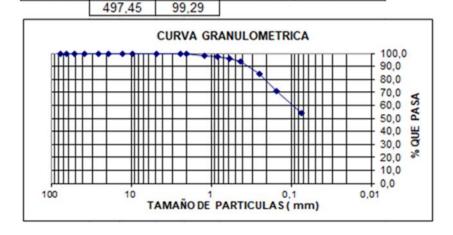
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

HUMEDAD NATURAL

PROFUNDIDAD:	0,00 - 1,00 metros	MUESTRA No. :	4
DESCRIPCIÓN:	LIMO DE BAJA P	LASTICIDAD COLOR N	ARANJA

No.recipiente	20	3	14
Whumedo+Wrecipiente	182,10	181,20	183,20
Wseco+Wrecipiente	175,80	175,20	174,97
Wrecipiente	76,31	78,52	82,70
Humedad (%)	6,33	6,21	8,92
Humedad Promedio(%)		7,15	•

OBSERVACIONES			


EALIZADO POR:	IZADO POR:	ALIZADO POR:

GRANULOMETRIA - CLASIFICACIÓN

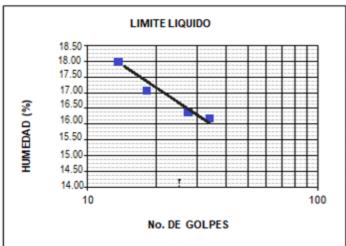
PROFUNDIDAD:	0,00 - 0	,50 metros	MUESTRA No. :	4
DESCRIPCIÓN:	LIMO	DE BAJA PLASTI	CIDAD COLOR NARA	NJA
DESO INICIAL:	E01	DESC DESC	IÉS DE LAVAD.	233 30

	DECO	%	% RETENIDO		1	
TAMIZ No.	PESO RETENIDO	RETENIDO	ACUMULADO	% QUE PASA		
3"	0,00	0,00	0.00	100,00	1	
2 1/2 "	0,00	0,00	0,00	100,00	1	
2 "	0,00	0,00	0,00	100,00	1	
1 1/2 "	0,00	0,00	0,00	100,00	CLASIF	FICACIÓN
1 "	0,00	0,00	0,00	100,00	AASHTO	A-4
3/4 "	0,00	0,00	0,00	100,00	I.G.	3
1/2 "	0,00	0,00	0,00	100,00	U.S.C.	CL-ML
3/8 "	0,00	0.00	0.00 =	100,00	GRAVA	0,00
No. 4	0,00	0.00	0,00	100,00	ARENA	45,87
No. 8	0,00	0,00	0,00	100,00	FINOS	54,13
No.10	3,11	0,62	0.62	99,38		
No. 16	4,29	0,86	1,48	98,52	I.P.	4,00
No. 20	4,20	0,84	2,32	97,68		
No. 30	7,10	1,42	3,73	96,27]	
No. 40	14,21	2,84	6,57	93,43]	
No. 60	45,70	9,12	15,69	84,31]	
No. 100	68,26	13,62	29,32	70,68]	
No. 200	82,96	16,56	45,87	54,13]	
FONDO	267,62	53,42	99,29	0,71		

D60(mm)	
D30(mm)	
D10(mm)	

Cu	
Cc	

REALIZADO POR :


LIMITES DE CONSISTENCIA O DE ATTERBERG

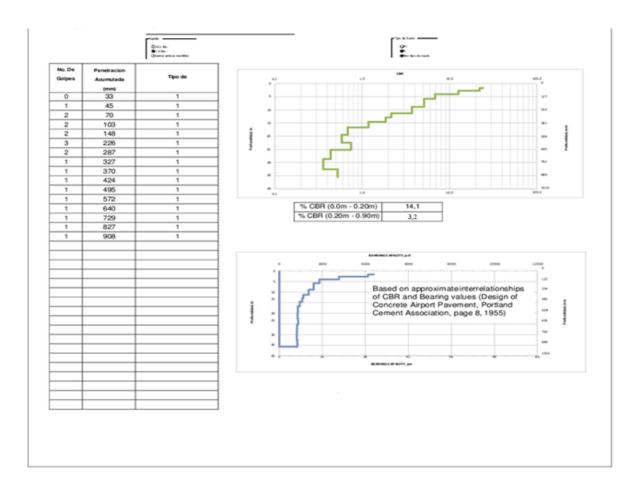
PROFUNDIDAD :	0,00 - 0,50 metros	MUESTRA No. :	4
DESCRIPCIÓN:	LIMO DE BAJA PLAS	STICIDAD COLOR N	ARANJA

LIMITE LIQUIDO

NÚMERO DE GOLPES	39	30	25	18
NÚMERO DEL RECIPIENTE	4	7	15	49
PESO DEL RECIPIENTE (Gr.)	6,42	6,41	6,49	6,31
PESO HÚMEDO (Gr.)	35,44	26,88	31,71	31,38
PESO SECO (Gr.)	31,41	23,99	28,03	27,56
HUMEDAD (%)	16,13	16,44	17,08	17,98

LIMITE PLASTICO			4	
2		12		
NÚMERO DEL RECIPIENTE	(L	644	ll13	
PESO DEL RECIPIENTE (Gr.)	6,51	6,53	6,46	
PESO HÚMEDO (Gr.)	10,79	10,45	10,70	
PESO SECO (Gr.)	10,29	10,00	10,21	
HUMEDAD (%)	13,23	12,97	13,07	

LIMITE LIQUIDO (%)	17,09
LIMITE PLASTICO (%)	13,09
INDICE DE PLASTICIDAD	4,00


CLASIFICACIÓN			
AASHTO A-4			
I.G.	3		
U.S.C.	CL-ML		

%GRAVA	0,00
%ARENA	45,87
%FINOS	54,13

REALIZADO POR :

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER LABORATORIO DE SUELOS CIVILES CONO DINÁMICO PARA CBR DE CAMPO

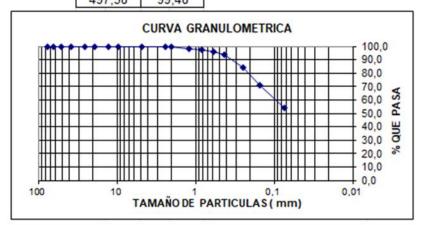
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

HUMEDAD NATURAL

PROFUNDIDAD:	0,00 - 1,00 metros	MUESTRA No. :	5		
DESCRIPCIÓN:	LIMO DE BAJA PLASTICIDAD COLOR NARANJA				

No.recipiente	26	2	19
Whumedo+Wrecipiente	183,23	182,16	184,36
Wseco+Wrecipiente	175,40	175,13	175,03
Wrecipiente	75,12	78,04	81,45
Humedad (%)	7,81	7,24	9,97
Humedad Promedio(%)	8,34		

OBSERVACIONES			


REALIZADO POR:	

GRANULOMETRIA - CLASIFICACIÓN

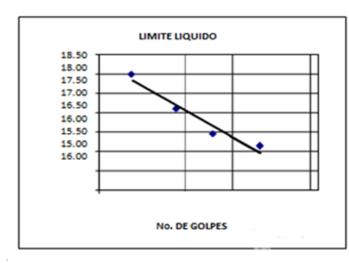
PROFUNDIDAD:	0,00 - 0,50 metros		MUESTRA No. :	5
DESCRIPCIÓN:	LIMO	DE BAJA PLASTIC	CIDAD COLOR NARAI	NJA
PESO INICIAL: 500 PESO DESPUÉS DE LAVAR: 232.39				232 39

TAMIZ No.	PESO RETENIDO	% RETENIDO	% RETENIDO ACUMULADO	% QUE PASA		
3"	0,00	0,00	0,00	100,00	1	
2 1/2 "	0,00	0,00	0,00	100,00	1	
2 "	0,00	0,00	0,00	100,00	1	
1 1/2 "	0,00	0,00	0,00	100,00	CLASIF	ICACIÓN
1"	0,00	0,00	0,00	100,00	AASHTO	A-4
3/4 "	0,00	0,00	0,00	100,00	I.G.	3
1/2 "	0,00	0,00	0,00	100,00	U.S.C.	ML
3/8 "	0,00	0,00	0,00 =	100,00	GRAVA	0,00
No. 4	0,00	0,00	0,00	100,00	ARENA	45,95
No. 8	0,00	0,00	0,00	100,00	FINOS	54,05
No.10	3,12	0,62	0,62	99,38		
No. 16	4,26	0,85	1,48	98,52	I.P.	3,74
No. 20	4,20	0,84	2,32	97,68		
No. 30	7,08	1,42	3,73	96,27]	
No. 40	14,20	2,84	6,57	93,43]	
No. 60	45,68	9,14	15,71	84,29]	
No. 100	68,26	13,65	29,36	70,64	1	
No. 200	82,96	16,59	45,95	54,05]	
FONDO	267,62	53,52	99,48	0,52]	
	497.38	99.48			-	

D60(mm)	
D30(mm)	
D10(mm)	

Cu	
Cc	

	V
REALIZADO POR:	


LIMITES DE CONSISTENCIA O DE ATTERBERG

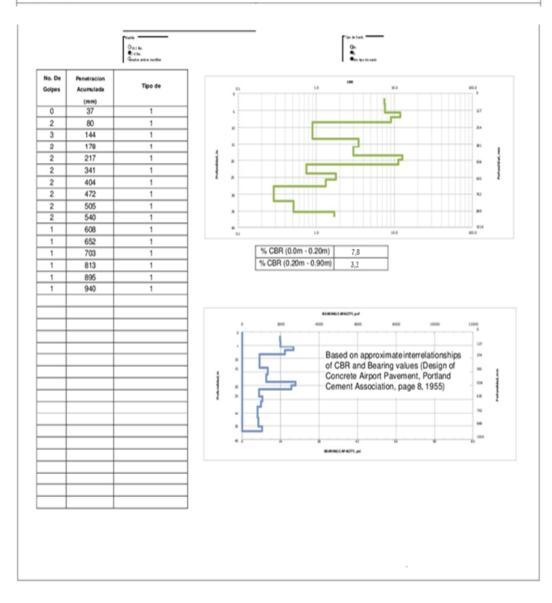
LIMITE LIQUIDO

NÚMERO DE GOLPES	39	29	25	19
NÚMERO DEL RECIPIENTE	55	34	57	23
PESO DEL RECIPIENTE (Gr.)	6,39	6,40	6,41	6,32
PESO HÚMEDO (Gr.)	35,32	26,60	31,50	31,38
PESO SECO (Gr.)	32,20	24,30	28,03	27,56
HUMEDAD (%)	12,09	12,85	16,05	17,98

LIMITE PLASTICO

NÚMERO DEL RECIPIENTE	50	63	6	
PESO DEL RECIPIENTE (Gr.)	6,50	6,53	6,38	
PESO HÚMEDO (Gr.)	10,70	10,44	10,69	
PESO SECO (Gr.)	10,28	10,02	10,23	
HUMEDAD (%)	11,11	12,03	11,95	

LIMITE LIQUIDO (%)	15,44	
LIMITE PLASTICO (%)	11,70	
INDICE DE PLASTICIDAD	3,74	


CLASIFICACIÓN		
AASHTO	A-4	
I.G.	3	
U.S.C.	ML	

%GRAVA	0,00
%ARENA %FINOS	45,95
%FINOS	54,05

REALIZADO POR :

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER LABORATORIO DE SUELOS CIVILES CONO DINÁMICO PARA CBR DE CAMPO

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

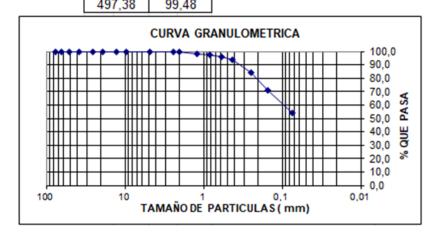
HUMEDAD NATURAL

DESCRIPCIÓN:	LIMO [E BAJA PLASTICIDAD	COLOR NARANJA	

No.recipiente	20	3	14
Whumedo+Wrecipiente	182,10	181,20	183,20
Wseco+Wrecipiente	175,80	175,20	174,97
Wrecipiente	76,31	78,52	82,70
Humedad (%)	6,33	6,21	8,92
Humedad Promedio(%)		7,15	

OBSERVACIONES			

REALIZADO POR:	



UNIVERSIDAD FRANCISCO DE PAULA SANTANDER LABORATORIO DE SUELOS CIVILES

GRANULOMETRIA - CLASIFICACIÓN

	-			
DESCRIPCIÓN:	LIMC	DE BAJA PLASTICIDAD COLOR NAI	ΡΔΝΙΔ	
DESCRIPCION.	LIIVIC	DE DAVA FLASTICIDAD COLOR NAI	VAINOA	
PESO INICIAL:	500	PESO DESPUÉS DE LAVAR	232.30	
I FESO INICIAL. I	300	FESO DESFUES DE LAVAR.	1 232.33 1	

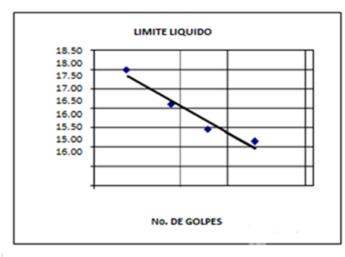
	PESO	%	% RETENIDO		1	
TAMIZ No.	RETENIDO	RETENIDO	ACUMULADO	% QUE PASA		
3"	0,00	0,00	0,00	100,00		
2 1/2 "	0,00	0,00	0,00	100,00		
2 "	0,00	0,00	0,00	100,00		
1 1/2 "	0,00	0,00	0,00	100,00	CLASIF	FICACIÓN
1"	0,00	0,00	0,00	100,00	AASHTO	A-4
3/4 "	0,00	0,00	0,00	100,00	I.G.	3
1/2 "	0,00	0,00	0,00	100,00	U.S.C.	ML
3/8 "	0,00	0,00	 0,00 ■	100,00	GRAVA	0,00
No. 4	0,00	0,00	0,00	100,00	ARENA	45,95
No. 8	0,00	0,00	0,00	400,00	FINOS	54,05
No.10	3,12	0,62	0,62	99,38		
No. 16	4,26	0,85	1,48	98,52	I.P.	3,74
No. 20	4,20	0,84	2,32	97,68		
No. 30	7,08	1,42	3,73	96,27		
No. 40	14,20	2,84	6,57	93,43		
No. 60	45,68	9,14	15,71	84,29		
No. 100	68,26	13,65	29,36	70,64		
No. 200	82,96	16,59	45,95	54,05		
FONDO	267,62	53,52	99,48	0,52		
	497 38	99.48			•	

D60(mm)	
D30(mm)	
D10(mm)	

Cu	
Сс	

REALIZADO POR :

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER LABORATORIO DE SUELOS CIVILES


LIMITES DE CONSISTENCIA O DE ATTERBERG

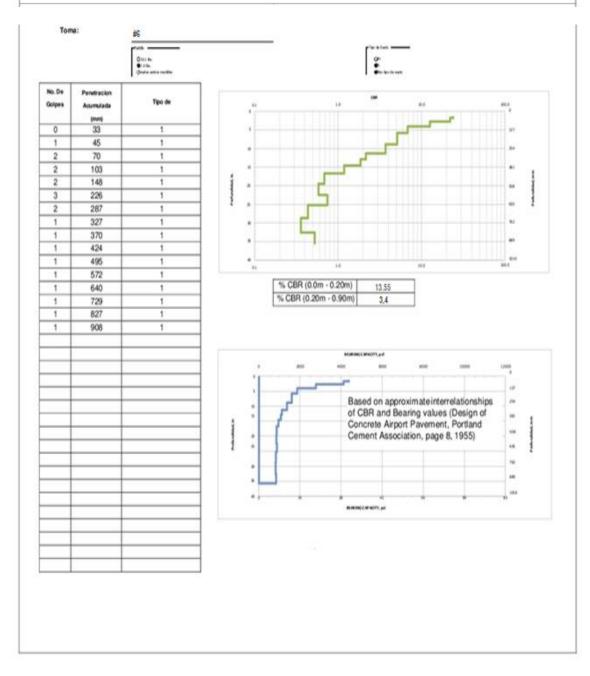
LIMITE LIQUIDO

NÚMERO DE GOLPES	39	29	25	19
NÚMERO DEL RECIPIENTE	55	34	57	23
PESO DEL RECIPIENTE (Gr.)	6,39	6,40	6,41	6,32
PESO HÚMEDO (Gr.)	35,32	26,60	31,50	31,38
PESO SECO (Gr.)	32,20	24,30	28,03	27,56
HUMEDAD (%)	12,09	12,85	16,05	17,98

LIMITE PLASTICO

NÚMERO DEL RECIPIENTE	50	63	6	
PESO DEL RECIPIENTE (Gr.)	6,50	6,53	6,38	
PESO HÚMEDO (Gr.)	10,70	10,44	10,69	
PESO SECO (Gr.)	10,28	10,02	10,23	
HUMEDAD (%)	11,11	12,03	11,95	

LIMITE LIQUIDO (%)	15,44
LIMITE PLASTICO (%)	11,70
INDICE DE PLASTICIDAD	3,74


CLASIFICACIÓN			
AASHTO A-4			
I.G.	3		
U.S.C.	ML		

%GRAVA	0,00
%ARENA	45,95
%FINOS	54,05

REALIZADO POR:

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER LABORATORIO DE SUELOS CIVILES CONO DINÁMICO PARA CBR DE CAMPO

Anexo D. Presupuestos de obra

CUADRO 1 DE 4

Alternativa de diseño 1

PRESUPUESTO DE OBRA ALTERNATIVA DE PAVIMENTO FLEXIBLE DISEÑADA MEDIANTE EL MÉTODO AASHTO - 93

Técnica de rehabilitación de tramos deteriorados compuestos por pavimento rígido existente: Se recomienda reemplazar la losa de concreto deteriorada, y llevar a cabo la reparación hasta la capa de sub base granular. El diseño mediante el método AASHTO-93 arrojó una estructura de pavimento flexible con los siguientes espesores: mezcla densa en caliente mdc-19 e = 0,08 m, base granular e = 0,12 m, y sub base granular e = 0,14 m.

Tramo sin capa de rodadura: la alternativa de diseño por el método AASHTO - 93 del pavimento flexible para el tramo sin capa de rodamiento quedó compuesto por: mezcla densa en caliente mdc-19 e = 0,08 m, base granular e = 0,12 m, y sub base granular e = 0,14 m.

TEM	CAPITULO	ND	CANTIDAD	VALOR UNITARIO	TOTAL
	PRELIMINARES				\$ 55.134.553,00
.1	Localización y replanteo	mL	1.140,30	\$ 4.600,00	\$ 5.245.380,00
.2	Señalización de seguridad en doble línea incluye señales verticales y provisionales	mL	2.280,60	\$ 10.610,00	\$ 24.197.166,00
.3	Valla informativa temporal	Und	1,00	\$ 355.681,00	\$ 355.681,00
.4	Comisión topográfica permanente	mL	1.140,30	\$ 22.219,00	\$ 25.336.326,00
	DEMOLICIONES				\$ 141.015.024,00
.1	Corte de pavimento en concreto	L	35 8,66	\$ 8.662,00	\$ 3.106.713,00
.2	Demolición manual de losas de concreto	2	36 98,43	\$ 14.942,00	\$ 55.261.941,00
.3	Excavación mecánica sin clasificar (Incluye retiro)	3	1.2 41,55	\$ 25.971,62	\$ 32.245.065,00
.4	Excavación manual sin clasificar	3	17 8,58	\$ 41.497,00	\$ 7.410.534,00
.5	Retiro de sobrantes de demoliciones	3	23 26,97	\$ 18.475,00	\$ 42.990.771,00
	REHABILITACIÓN DE PAV. RÍGIDO EXISTENTE				\$ 267.077.666,00
3.1	Sub-Base granular e= 0,14 m	3	7,78	\$ 73.105,00	\$ 37.852.307,00
3.2	Base granular e= 0,12 m	3	3,81 44	\$ 86.814,65	\$ 38.529.210,00
3.3	Riego de imprimación con emulsión asfáltico	2	36 98,43	\$ 3.411,00	\$ 12.615.345,00
3.4	Riego de liga con emulsión asfáltica CRR -1	2	36 98,43	\$ 3.650,00	\$ 13.499.270,00
3.5	Mezcla densa en caliente MDC-19 para bacheo e = 0.08 m	3	5,87 ²⁹	\$ 556.263,00	\$ 164.581.534,00
	PAVIMENTACIÓN				\$ 34.546.911,00
.1	Sub-Base granular e= 0,14 m	3	66, 98	\$73.105,00	\$ 4.896.573,00
4.2	Base granular e= 0,12 m	3	57, 41	\$ 86.814,65	\$ 4.984.029,00

4.3	Riego de imprimación con emulsión asfáltico	2	8,42 47	\$ 3.411,00	\$ 1.631.891,00
4.4	Riego de liga con emulsión asfáltica CRR -1	2	8,42 47	\$ 3.650,00	\$ 1.746.233,00
.5	Mezcla densa en caliente MDC-19 para bacheo e = 0.08 m	3	38, 27	\$ 556.263,30	\$ 21.288.185,00
	TOTAL COSTO DIRECTO				497.774.154,00
	ADMINISTRATIVO	3%			114.488.055,00
	IMPREVISTO	%			9.955.483,00
	UTILIDAD	%			24.888.708,00
	COSTOS INDIIRECTOS	0%			149.332.246,00
	COSTO TOTAL OBRA				647.106.400,00

CUADRO 2 DE 4

Alternativa de diseño 2

PRESUPUESTO DE OBRA ALTERNATIVA DE PAVIMENTO FLEXIBLE DISEÑADA MEDIANTE EL MÉTODO INVIAS

Técnica de rehabilitación de tramos deteriorados compuestos por pavimento rígido existente: Se recomienda reemplazar la losa de concreto deteriorada, y llevar a cabo la reparación hasta la capa sub base granular. El diseño mediante el método INVIAS arrojó una estructura de pavimento flexible con los siguientes espesores: mezcla densa en caliente mdc-19 e = 0,075 m, base granular e = 0,20 m, y sub base granular e = 0,35 m.

Tramo sin capa de rodadura: la alternativa de diseño por el método INVIAS del pavimento flexible para el tramo sin capa de rodamiento quedó compuesto por: mezcla densa en caliente mdc-19 e = 0,075 m, base granular e = 0,20 m, y sub-base granular e = 0,35 m.

TEM	CAPITULO	ND	U	C ANTIDAD	VALOR UNITARIO	TOTAL
	PRELIMINARES					\$ 55.134.553,00
.1	Localización y replanteo	L	m	1.1 40,30	\$ 4.600,00	\$ 5.245.380,00
.2	Señalización de seguridad en doble línea incluye señales verticales y provisionales	L	m	2.2 80,60	\$ 10.610,00	\$ 24.197.166,00
.3	Valla informativa temporal	nd	U	1,0	\$ 355.681,00	\$ 355.681,00
.4	Comisión topográfica permanente	L	m	1.1 40,30	\$ 22.219,00	\$ 25.336.326,00
	DEMOLICIONES					\$ 126.042.515,00
.1	Corte de pavimento en concreto	L	M	35 8,66	\$ 8.662,00	\$ 3.071.718,00
.2	Demolición manual de losas de concreto	2	M	36 98,43	\$ 14.942,00	\$ 52.052.848,00
.3	Excavación mecánica sin clasificar (Incluye retiro)	3	M	2.2 82,27	\$ 25.971,62	\$ 41.865.992,00
.4	Excavación manual sin clasificar	3	M	32 8,26	\$ 41.497,00	\$ 11.074.304,00
.5	Retiro de sobrantes de demoliciones	3	M	40 23,51	\$ 18.475,00	\$ 17.977.653,00
	REHABILITACIÓN DE PAV. RÍGIDO EXISTENTE					\$ 19.701.008,00
.1	Sub-Base granular e= 0,35 m	3	M	12 94,45	\$ 73.105,00	\$ 5.494.572,00
.2	Base granular e= 0,20 m	3	M	73 9,69	\$ 86.814,65	\$ 3.728.689,00
3.3	Riego de imprimación con emulsión asfáltico	2	M	36 98,43	\$ 3.411,00	\$ 732.512,00
3.4	Riego de liga con emulsión asfáltica CRR -1	2	M	36 98,43	\$ 3.650,00	\$ 783.838,00
3.5	Mezcla densa en caliente MDC-19 para bacheo e = 0,075 m	3	M	7,38 27	\$ 556.263,00	\$ 8.961.397,00
	PAVIMENTACIÓN					\$ 298.051.494,00
.1	Sub-Base granular e= 0,35 m	3	M	7,45	\$73.105,00	\$ 12.241.432,00

4.2	Base granular e= 0,20 m	3	M	95, 68	\$ 86.814,65	\$ 8.306.426,00
4.3	Riego de imprimación con emulsión asfáltico	2	M	8,42 47	\$ 573.821,00	\$ 274.527.443,00
4.4	Riego de liga con emulsión asfáltica CRR -1	2	M	8,42 47	\$ 5.793,00	\$ 2.771.487,00
4.5	Mezcla densa en caliente MDC-19 para bacheo e = 0,075 m	3	M	35, 88	\$ 5.705,30	\$ 204.706,00
	TOTAL COSTO DIRECTO					498.929.570,00
	ADMINISTRATIVO	3%	2			114.753.801,00
	IMPREVISTO	%	2			9.978.591,00
	UTILIDAD	%	5			24.946.479,00
	COSTOS INDIIRECTOS	0%	3			149.678.871,00
	COSTO TOTAL OBRA					648.608.441,00

CUADRO 3 DE 4

Alternativa de diseño 3

PRESUPUESTO DE OBRA ALTERNATIVA DE PAVIMENTO RÍGIDO DISEÑADA MEDIANTE EL MÉTODO AASHTO-93

Técnica de rehabilitación de tramos deteriorados compuestos por pavimento rígido existente: Se recomienda reemplazar la losa de concreto deteriorada, y llevar a cabo la reparación hasta la capa subyacente a la losa de concreto, en este caso capa de base granular. El diseño mediante el método AASHTO-93 arrojó una estructura de pavimento rígido con los siguientes espesores: losa de concreto e = 0,14 m, y base granular e = 0,20 m.

Tramo sin capa de rodadura: la alternativa de diseño por el método AASHTO - 93 del pavimento rígido para el tramo sin capa de rodamiento quedó compuesto por: capa de base granular de e = 0,20 m, y losa de concreto e = 0,14 m.

trumo	sin capa de rodannento quedo compuesto		U C	VALOR	0,11111.
TEM	CAPITULO	ND	ANTIDAD	UNITARIO	TOTAL
	PRELIMINARES				\$ 55.134.553,00
.1	Localización y replanteo	L	n 1.1 40,30	\$ 4.600,00	\$ 5.245.380,00
.2	Señalización de seguridad en doble línea incluye señales verticales y provisionales	L	m 2.2	\$ 10.610,00	\$ 24.197.166,00
.3	Valla informativa temporal	nd	U 1,0	\$ 355.681,00	\$ 355.681,00
.4	Comisión topográfica permanente	L I	n 1.1 40,30	\$ 22.219,00	\$ 25.336.326,00
	DEMOLICIONES				\$ 142.668.352,00
.1	Corte de pavimento en concreto	L I	M 35 8,66	\$ 8.662,00	\$ 3.106.713,00
.2	Demolición manual de losas de concreto	2	M 3.6 98,43	\$ 14.942,00	\$ 55.261.941,00
.3	Excavación mecánica sin clasificar (Incluye retiro)	3	M 1.2 41,55	\$ 25.971,62	\$ 32.245.065,00
.4	Excavación manual sin clasificar	3	M 17 8,58	\$ 41.497,00	\$ 7.410.534,00
.5	Retiro de sobrantes de demoliciones	3	M 24 16,46	\$ 18.475,00	\$ 44.644.099,00
	REHABILITACIÓN DE PAV. RÍGIDO EXISTENTE				\$ 402.600.183,00
.1	Conformación de la calzada existente	2	M 3.6 98,43	\$ 1.067,00	\$ 3.946.225,00
3.2	Base granular e= 0,20 m	3	M 73 9,69	\$ 86.814,65	\$ 64.215.929,00
3.3	Pavimento rígido e= 0,14 m	3	M 51 7,78	\$ 573.821,00	\$ 297.113.037,00
3.4	Malla electrosoldada M - 188 Φ6 mm c/.15 m en ambos sentidos incluye alambre	2	M 3.6 98,43	\$ 5.793,00	\$ 21.425.005,00
3.5	Juntas de dilatación	L	M 27 86,88	\$ 5.705,30	\$ 15.899.987,00
	PAVIMENTACIÓN				\$ 51.580.294,00
.1	Conformación de la calzada existente	2	M 47 8,42	\$ 1.067,00	\$ 510.474,00

5.2	Base granular e= 0,20 m	3	M	95, 68	\$ 86.814,65	\$ 8.306.426,00
5.3	Pavimento rígido e= 0,14 m	3	M	66, 98	\$ 573.821,00	\$ 38.434.531,00
5.4	Malla electrosoldada M - 188 Φ6 mm c/.15 m en ambos sentidos incluye alambre	2	M	8,42 47	\$ 5.793,00	\$ 2.771.487,00
5.5	Juntas de dilatación	L	M	27 2,97	\$ 5.705,30	\$ 1.557.376,00
	TOTAL COSTO DIRECTO					651.983.382,00
	ADMINISTRATIVO	3%	2			149.956.178,00
	IMPREVISTO	%	2			13.039.668,00
	UTILIDAD	%	5			32.599.169,00
	COSTOS INDIIRECTOS	0%	3			195.595.015,00
	COSTO TOTAL OBRA					847.578.397,00

CUADRO 4 DE 4

Alternativa de diseño 4

PRESUPUESTO DE OBRA ALTERNATIVA DE PAVIMENTO RÍGIDO DISEÑADA MEDIANTE EL MÉTODO INVIAS

Técnica de rehabilitación de tramos deteriorados compuestos por pavimento rígido existente: Se recomienda reemplazar la losa de concreto deteriorada, y llevar a cabo la reparación hasta la capa subyacente a la losa de concreto, en este caso capa de base granular. El diseño mediante el método INVIAS arrojó una estructura de pavimento rígido con los siguientes espesores: losa de concreto e = 0.24 m, y base granular e = 0.15 m.

Tramo sin capa de rodadura: la alternativa de diseño por el método INVIAS del pavimento rígido para el tramo sin capa de rodamiento quedó compuesto por: capa de base granular de e = 0.15 m, y losa de concreto e = 0.24 m.

TEM	CAPITULO	ND	C ANTIDAD	VALOR UNITARIO	TOTAL
	PRELIMINARES				\$ 55.134.553,00
.1	Localización y replanteo	L	1.1 40,30	\$ 4.600,00	\$ 5.245.380,00
.2	Señalización de seguridad en doble línea incluye señales verticales y provisionales	L	80,60 2.2	\$ 10.610,00	\$ 24.197.166,00
.3	Valla informativa temporal	nd	0 1,0	\$ 355.681,00	\$ 355.681,00
.4	Comisión topográfica permanente	L	1.1 40,30	\$ 22.219,00	\$ 25.336.326,00
	DEMOLICIONES				\$ 153.709.248,00
.1	Corte de pavimento en concreto	L	35 8,66	\$ 8.662,00	\$ 3.106.713,00
.2	Demolición manual de losas de concreto	2	36 98,43	\$ 14.942,00	\$ 55.261.941,00
.3	Excavación mecánica sin clasificar (Incluye retiro)	3	1.4 24,14	\$ 25.971,62	\$ 36.987.223,00
.4	Excavación manual sin clasificar	3	4,84 20	\$ 41.497,00	\$ 8.500.246,00
.5	Retiro de sobrantes de demoliciones	3	26 98,41	\$ 18.475,00	\$ 49.853.125,00
	REHABILITACIÓN DE PAV. RÍGIDO EXISTENTE				\$ 565.152.311,00
.1	Conformación de la calzada existente	2	3.6 98,43	\$ 1.067,00	\$ 3.946.225,00
3.2	Base granular e= 0,15 m	3	55 4,77	\$ 86.814,65	\$ 45.364.995,00
3.3	Pavimento rígido e= 0,24 m	3	7,62 88	\$ 573.821,00	\$ 479.760.262,00
3.4	Malla electrosoldada M - 188 Ф6 mm c/.15 m en ambos sentidos incluye alambre	2	3.6 98,43	\$ 5.793,00	\$ 20.180.842,00
3.5	Juntas de dilatación	L	27 86,88	\$ 5.705,30	\$ 15.899.987,00
	PAVIMENTACIÓN				\$ 76.955.283,00
.1	Conformación de la calzada existente	2	8,42 47	\$ 1.067,00	\$ 510.474,00

4.2	Base granular e= 0,15 m	3	71, 76	\$ 86.814,65	\$ 6.229.819,00
4.3	Pavimento rígido e= 0,24 m	3	4,82	\$ 573.821,00	\$ 65.886.127,00
4.4	Malla electrosoldada M - 188 Ф6 mm c/.15 m en ambos sentidos incluye alambre	2	8,42 47	\$ 5.793,00	\$ 2.771.487,00
4.5	Juntas de dilatación	L	27 2,97	\$ 5.705,30	\$ 1.557.376,00
	TOTAL COSTO DIRECTO				850.951.395,00
	ADMINISTRATIVO	3%			195.718.821,00
	IMPREVISTO	%			17.019.028,00
	UTILIDAD	%			42.547.570,00
	COSTOS INDIIRECTOS	0%	_		255.285.419,00
	COSTO TOTAL OBRA				1.106.236.814,00

Anexo E. Análisis de Precios Unitarios

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER APUS

		F ECHA	ITEM:	1.1
ANALISI	S DE PRECIOS UNITARIOS	E nero de 2020	UNIDAD:	ML
CAPITULO:		PRELIMINA	RES	
PROYECTO:	ESTUDIOS TÉCNICOS PARA LA F PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL M CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, 4ª, AV. 18ª ENTRE CALLES 3 Y 4ª, AV. 19 ENTR 19ª ENTRE CALLES 3 Y 4ª, Y LA AV. 20 ENTRE DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO N	MÉTODO DE LA . , AV. 17ª ENTRE E CALLES 3 Y 4 CALLES 3 Y 4ª, I	AASHTO E INVIAS, PARA LAS CALLES 3 Y 4ª, AV. 18 ENTRE ª, CALLE 3 ENTRE AVENIDAS EN EL BARRIO CÚCUTA 75 DI	S VÍAS DE LA E CALLES 3 Y S 20 Y 21, AV.
ACTIVIDAD:	LOCA	LIZACIÓN Y RI	EPLANTEO	

EQUIPO							
Descripción		U nidad	Ta rifa/Hora	Rendimien to		Valor-Unit.	
Equipo de		d			•		
topografia		M	104.495,00	150,00	696,63		
I							
-		-	-			-	
-		_	_				
-		_	-			_	
-		-	-			-	
-		-	-			-	
-		-	-			-	
-		-	-			-	
Herramienta	5						
menor (% S./M.O.)	%	%			108,19		
1						Sub-Total	804,83

						Sub-Total	004,03
MATERIALES EN OBRA							
	D	U	Pr				
Descripción	etalle	nidad	ecio-Unit.	Cantidad		Valor-Unit.	
Puntillas							
1x400 grs		kg	6.208,25	0,0300	186,25		
Vara comun 4							
m		und	10.703,88	0,0500	535,19		
Tabla							
pegachento 2x20x300		und	13.379,85	0,0500	668,99		
-		-	-			-	
-		-	-			-	
						_	
-		-	-			-	
_		_	_			_	
=		-	-			_	

-			-	-			-	
-			-	-			-	
-			-	-				
-			-	-			-	
-			-	-			-	
	Desperdicio	%	-	-	1.390,434 0		-	
	TRANSPORTE						Sub-Total	1.390,43
S		V						
	Material	ol-peso ó Cant.	D istancia	M³- Km	Tarifa		Valor-Unit.	
-								
-								
-								
-								
	MANO DE						Sub-Total	-
OBRA	MANO DE				ı	ı		
	Trabajador	J ornal	P restacion es	Jo rnal Total	Rendimien to		Valor-Unit.	
	TOPOGRAFO	82.812,00	01,00% 2	166.452,12	150,0000	1.109,68		
	CADENERO 2	41.406,00	01,00% 2	83.226,06	150,0000	554,84		
AYUDAN		55.208,00	01,00%	110.968,08	150,0000	739,79		
-		-		-			-	
-		-		-			-	
							Sub-Total	2.404,31
							Total Costo Directo	4.599,57
						ا aproxin	Precio unitario total nado al peso	4.600,00
								,

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER APUS

		F ECHA	ITEM:	1.2				
ANALISI	S DE PRECIOS UNITARIOS	E nero de 2020	UNIDAD:	ML				
CAPITULO:	PRELIMINARES							
PROYECTO:	ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18ª ENTRE CALLES 3 Y 4ª, AV. 19ª ENTRE CALLES 3 Y 4ª, Y LA AV. 20 ENTRE CALLES 3 Y 4ª, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER							
ACTIVIDAD:	SEÑALIZACION DE SEGURIDAD EN DOBLE LINEA. INCLUYE SEÑALES VERTICALES PROVICIONALES							

EQUIPO		Т		T	T		T
Descripción		U nidad	Tari fa/Hora	Rendimien to		Valor-Unit.	
		-	-			-	
		-	-			-	
		-	-			-	
		-	-			-	
		-	-			-	
Herramienta	5	<u>-</u>	-			-	
menor (% S./M.O.)	%	%			93,58		
						Sub-Total	93,58
MATERIALES EN ORRA							•

D Pre nidad Cantidad etalle cio-Unit. Valor-Unit. Descripción Cinta de señalizacion (peligro) Señalizador 98,39 2,100 206,62 ml 49.194,60 0,1600 7.871,14 tráfico - Colombina und

I								
-			-	-			-	
							-	
							-	
					8	40	-	
	Desperdicio		%	0,05	.077,7533	89	٠٥,	
	•					 .		
	TRANSPORTE					Sub-Tota	31	8.481, 64
S								
		V		843				
	Material	ol-peso ó Cant.	D istancia	M³- Km	Tarifa	Valor-Uni	it.	
	material		10 001110101			70.0.		
-								
_								
-								
-								
						O. I. T. I.		
	MANO DE					Sub-Tota	31	-
OBRA								
		J	P restacion	Jorn	Rendimien			
	Trabajador	ornal	es	al Total	to	Valor-Uni	it.	
			2					
	OFICIAL	48.307,00	01,00% 2	97.097,07	75,0000	1.294,63		
	AYUDANTE	27.604,00	01,00%	55.484,04	75,0000	739,79		
-		-		-			-	
-		-		-			-	
						Sul Total	0-	2.034,41
						ivai		4.00+,41
						Total Cos	sto	
						Direc		10.609,64
						Pred unitario to	cio tal	
						aproximado al pe	SO	10.610,00
					Fecha:	Enei	o de	e 2020

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER APUS

		F ECHA	ITEM:	1.3				
ANALISIS	S DE PRECIOS UNITARIOS	nero de 2020	UNIDAD:	UND				
CAPITULO:	PRELIMINARES							
PROYECTO:	ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4º DESDE LA AV. 17º HASTA LA AV. 20, AV. 17º ENTRE CALLES 3 Y 4º, AV. 18 ENTRE CALLES 3 Y 4º, AV. 18º ENTRE CALLES 3 Y 4º, AV. 19º ENTRE CALLES 3 Y 4º, AV. 20 ENTRE CALLES 3 Y 4º, CALLE 3 ENTRE AVENIDAS 20 Y 21, AV. 19º ENTRE CALLES 3 Y 4º, Y LA AV. 20 ENTRE CALLES 3 Y 4º, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER							
ACTIVIDAD:	VALLA INFORMATIVA TEMPORA	AL						

EQUIPO		1		T	T		T
Descripción		U nidad	Tari fa/Hora	Rendimien to		Valor-Unit.	
-		-	-			-	
		-	-			-	
		-	-			-	
		-	-			-	
		-	-			-	
	_	-	-			-	
Herramienta menor (% S./M.O.)	5 %	%			508,60		
						Sub-Total	508,60
MATERIALES							,

EN OBRA						
	D	U	Pre			
Descripción	etalle	nidad	cio-Unit.	Cantidad	Valor-Unit.	
Valla						
informative temporal		und	345.000,00	1,000	345.000,00	
-		-	-		-	
-		-	-		-	
-		-	-		-	
-		-	-		-	
_		_	_		_	
-		-	-		-	

-			-	-			-
							-
							.
	Desperdicio		%				
						Sub-Total	345.000, 00
s	TRANSPORTE					Sub-Total	
		V ol-peso ó	D	M³-			
	Material	Cant.	istancia	Km	Tarifa	Valor-Unit.	
-							
-							
-							
-						Sub-Total	
OBRA	MANO DE					Sub-Total	
		J	P restacion	Jor	Rendimien		
	Trabajador	ornal	es 2	nal Total	to	Valor-Unit.	
	OFICIAL	48.307,00	01,00% 2	97.097,07	15,0000	6.473,14	
	AYUDANTE	27.604,00	01,00%	55.484,04	15,0000	3.698,94	
-		-		-			-
-		-		-		Sub-	
						Total	10.172,07
						Total Costo Directo	355.680,67
						Preci	o
						unitario tota aproximado al pes	ıl
					Fecha:	Enero	de 2020

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER APUS

		F ECHA	ITEM:	1.4			
ANALISI	S DE PRECIOS UNITARIOS	E nero de 2020	UNIDAD:	ML			
CAPITULO:	PRELIMINARES						
PROYECTO:	ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18ª ENTRE CALLES 3 Y 4ª, AV. 19ª ENTRE CALLES 3 Y 4ª, AV. 20 ENTRE CALLES 3 Y 4ª, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER						
ACTIVIDAD:	COMISION TOPOGRAFICA F	PERMANENTE					

EQUIPO		T		1		1
Descripción		U nidad	Ta rifa/Hora	Rendimien to	Valor-Unit.	
Equipo de		d				
topografia		M	104.495,00	19,81	5.274,59	
-		-	-		-	
-		-	-		-	
-		-	-		-	
-		-	-		-	
-		-	-		-	
- Herramienta	1	-	-		-	
menor (% S./M.O.)	0%	%			1.540,37	
					Sub-Total	6.814.96

					oub rour	0.011,00
MATERIALES EN OBRA						
	D	U	Pr			
Descripción	etalle	nidad	ecio-Unit.	Cantidad	Valor-Unit.	
-		-	-	-	-	
-		-	-	-	-	
-		-	-	-	-	
-		-	-		-	
-		-	-		-	
-		-	-		-	
-		-	-		-	
-		-	-		-	

ĺ							
-			-	-		-	
-			-	-		-	
-			-	-		-	
_			-	-		-	
	Desperdicio	%	-	-		-	
						Sub-Total	
s	TRANSPORTE						
		V ol-peso ó	D	M ³			
	Material	Cant.	istancia	-Km	Tarifa	Valor-Unit.	
_							
-							
-							
-							
						Sub-Total	-
OBRA	MANO DE						_
OBINA			P				
	Trabajador	J ornal	restacion es	Jo rnal Total	Rendimien to	Valor-Unit.	
	TOPOGRAFO	82.812,00	01,00%	166.452,12	19,8110	8.402,00	
	CADENERO	41.406,00	01,00%	83.226,06	19,8110	4.201,00	
	AYUDANTES	27.604,00	01,00% 2	55.484,04	19,8110	2.800,67	
-		-		-		-	
_		-		-		-	
						Sub-Total	15.403,68
							-,-
						Total Costo Directo	22.218,64
						Precio unitario total	
						aproximado al peso	22.219,00
					Fecha:	Enero de	2020
			l		i ecila.	Liferou	2020

PROYECTO:	ESTUDIOS T DE PAVIMENTO, EN F LAS VÍAS DE LA CALL Y 4ª, AV. 18 ENTRE C. Y 4ª, CALLE 3 ENTRE CALLES 3 Y 4ª, EN E DEPARTAMENTO NO	LE 4ª DESDE L ALLES 3 Y 4ª, A AVENIDAS 20 \ EL BARRIO CÚ!	IDO POR EL M A AV. 17ª HAS V. 18ª ENTRE (21, AV. 19ª EN CUTA 75 DE L	ETODO DE LA STA LA AV. 20, CALLES 3 Y 4ª NTRE CALLES 3	AASHTO E INV AV. 17ª ENTRE , AV. 19 ENTRE 3 Y 4ª, Y LA AV	/IAS, PARA CALLES 3 CALLES 3
CAPITULO:	DEMOLICIO	NES				
ITEM:	2.1					
ACTIVIDAD:	CORTE DE F	PAVIMENTO EN	CONCRETO			
					U NIDAD	M L
I. EQUIPO						
Des	cripción	Ti po	T arifa/Hora	R endimiento	V alor-Unit.	
Cortadora de pav	imento		8 2.300.00	2 4,00	3 .429,17	
compresor de			2.500,00	2	2	
80HP on martillo			9.032,00	4,00	.876,33	
HERRAMIENTA MENOR (10% M. DE O.)					2 14,21	
					Sub-Total	6 .519,71
II. MATERIALE	ES EN OBRA				<u> </u>	
Des	cripción	U nidad	P recio-Unit.	C antidad	V alor-Unit.	
Des	опроюн	maaa	TCOIC CINE.	untidud	aior onic.	
			1			0
III. TRANSPOF	OTES				Sub-Total	,00
III. IKANSPUR	7129					

Material	Vol-peso ó Cant.	Di stancia	M 3-Km	T arifa	V alor-Unit.	
Waterial	Gant.	Stancia	3-KIII	ailia	aior-onit.	
			l	1	Sub-Total	,00
IV. MANO DE C	OBRA					
Trabajador	Jo rnal	Pr estaciones	J ornal Total	R endimiento	V alor-Unit.	
OBREROS (2)	60.000,00	18 5%	1 11.000,00	9 5,00	.168,42	
OFICIAL (1)	50.000,00	18 5%	9 2.500,00	9 5,00	9 73,68	
OF TOTAL (1)	30.000,00	370	2.500,00	3,00	70,00	
					Sub-Total	.142,11
				Total C	osto Directo	.662,00
V. COSTOS IN	DIRECTOS					.002,00
				Р	V	
Descripción				orcentaje 2	alor Total	
ADMINISTRACION	I			3%	.992,26	
	-			2	1	
IMPREVISTOS				%	73,24	
UTILIDAD				5 %	4 33,10	
					Sub-Total	.598,60
					Jan 19441	.000,00

1 1.261,00 Precio unitario total aproximado al peso

PR OYECTO:	ESTUDIOS TÉC PAVIMENTO, EN FLEXIBL CALLE 4ª DESDE LA AV. Y 4ª, AV. 18ª ENTRE CALL AV. 19ª ENTRE CALLES 3 CIUDAD DE SAN JOSÉ DE	17ª HASTA LA A\ LES 3 Y 4ª, AV. 19 3 Y 4ª, Y LA AV. 2	EL MÉTODO DE V. 20, AV. 17ª EN 9 ENTRE CALLES 20 ENTRE CALLE	LA AASHTO E IN TRE CALLES 3 Y S 3 Y 4 ^a , CALLE 3 ES 3 Y 4 ^a , EN EL	VIAS, PARA LAS 4ª, AV. 18 ENTRE 3 ENTRE AVENID. BARRIO CÚCUT.	VÍAS DE LA E CALLES 3 AS 20 Y 21,
CA PITULO:	DEMOLICIONES	1				
ITE M:	2.2					
AC TIVIDAD:	DEMOLICION MA	ANUAL DE LOSA	S DE CONCRET	0		
					UN IDAD	M 2
I. EG	QUIPO					
	Descripción	Tipo	Tari fa/Hora	Ren dimiento	Val or-Unit.	
CO	mpresor de 80HP con martillo		69. 032,00	20,0 0	3.4 51,60	
HE	ERRAMIENTA MENOR (10%MO)				72 7,66	
	L				Sub-Total	4. 179,26
II. M	ATERIALES EN OBRA	4				
	Descripción	Unid ad	Pre cio-Unit.	Can tidad	Val or-Unit.	
					Sub-Total	0, 00
III. T	RANSPORTES					
Mat erial	Vol-peso ó Cant.	Dist ancia	M3- Km	Tari fa	Val or-Unit.	

					Sub-Total	0, 00
IV. MANO D	E OBRA					
	Jor	Pres	Jor	Ren	Val	
Trabajador	nal	taciones	nal Total	dimiento	or-Unit.	
	\$	185	340	31,7	7.2	
OBRERO (5)	184.045,00	%	.483,00	8	76,59	
						10
					Sub-Total	.713,74

					14
			Total (Costo Directo	.893,00
V. C	OSTOS	INDIRECTOS			
Des			Por	Val	
cripción			centaje	or Total	
				2.6	
ADMI	NISTRAC	ON	23%	34,85	
				22	
IMPR	EVISTOS		2%	9,12	
				57	
UTILI	DAD		5%	2,79	
					3.
				Sub-Total	436,75

Precio unitario total aproximado al peso .330,00

сто:	PROYE	PAVIMENTO, EN F LA CALLE 4ª DES CALLES 3 Y 4ª, A AVENIDAS 20 Y 2	OS TÉCNICOS PAF FLEXIBLE Y RÍGIDO SDE LA AV. 17ª HA AV. 18ª ENTRE CA 1, AV. 19ª ENTRE C A CIUDAD DE SAN	POR EL MÉTODO ASTA LA AV. 20, LLES 3 Y 4ª, AV ALLES 3 Y 4ª, Y L	O DE LA AASHTO AV. 17ª ENTRE C . 19 ENTRE CAL A AV. 20 ENTRE (E INVIAS, PARA CALLES 3 Y 4ª, A LES 3 Y 4ª, CAL CALLES 3 Y 4ª, E	LAS VÍAS DE NV. 18 ENTRE LLE 3 ENTRE N EL BARRIO
ULO:	CAPIT	DEMOLI	CIONES				
OLO.	ITEM:	2.3					
DAD:	ACTIVI	EXCAVA	CION MECANICA	SIN CLASIFICAR	(INCLUYE RETIR	0)	
		<u> </u>				UNI DAD	M3
	I. EQUI	PO					
				Tari	Ren	Val	
	D	escripción	Tipo	fa/Hora	dimiento	or-Unit.	
	retrocar	nador		112. 000,00	13,6 0	8.2 35,29	
		IIENTA MENOR		000,00	U	136	
(10%M						,03	
						Sub-Total	8.3 71.32
	II MAT	ERIALES EN OI	RRA			Oub-Total	71,02
	11. 1017-1	LINIALLO LITO	Unid	Pre	Cant	Val	
	D	escripción	ad	cio-Unit.	idad	or-Unit.	
		•					
						Sub-Total	0,0 0
	III TDA	NSPORTES				Sub-Total	<u> </u>
	III. IKA	1110F UN 1 E0					

33. 763,00

Precio unitario total aproximado al peso

1	Val or-Unit.	Tarif a	M3- Km	Dista ncia	Vol- peso ó Cant.	Materi al
	16.	1.16		noia –	pood o dant.	volquet
)	240,00	0,00	14,0	15	1,250	a 6 m3
_						
l 24	Sub-Total					
					O DE OBRA	IV. MAN
I	Val	Ren	Jor	Pres		Trabaj
	or-Unit.	dimiento	nal Total	taciones	Jornal	ador
	1.3	170, 00	231.	185 %	425 000 00	OBRER
2	60,29	00	250,00	70	125.000,00	O (5)
1	Sub-Total					
	_					
_	O4- Di4-	T-1-1				
9	Costo Directo	lotai				14 0007
. 1	Val	D		<u> </u>	OS INDIRECTO	V. COS I
	or Total	Porc entaje		ripción	Dosc	
a	5.9	entaje		прскоп	Desc	
	73,47	23%			RACION	ADMINIST
_	519					
	,43	2%			TOS	IMPREVIS
_	1.2					
3	98,58	5%				UTILIDAD
	Sub Tatal					
1	Sub-Total					

PR OYECTO:	ESTUDIOS TÉC PAVIMENTO, EN FLEXIBI CALLE 4ª DESDE LA AV. Y 4ª, AV. 18ª ENTRE CAL AV. 19ª ENTRE CALLES CIUDAD DE SAN JOSÉ D	. 17ª HASTA LA A .LES 3 Y 4ª, AV. 1 3 Y 4ª, Y LA AV. 2	EL MÉTODO DE V. 20, AV. 17ª EN 9 ENTRE CALLES 20 ENTRE CALLES	LA AASHTO E IN TRE CALLES 3 Y S 3 Y 4ª, CALLE : ES 3 Y 4ª, EN EL	IVIAS, PARA LAS ′ 4ª, AV. 18 ENTR 3 ENTRE AVENII . BARRIO CÚCU	VÍAS DE LA E CALLES 3 DAS 20 Y 21,
CA PITULO:	DEMOLICIONES	S				
ITE M:	2.4					
AC TIVIDAD:	EXCAVACION N	MANUAL SIN CLA	SIFICAR			
					UN IDAD	M 3
I. EC	UIPO					
	Descripción	Tipo	Tari fa/Hora	Ren dimiento	Val or-Unit.	
	·	_				
	RRAMIENTA MENOR (10%MO)				3.7 72,43	
					Sub-Total	3. 772,43
II. M	ATERIALES EN OBRA	A				
	Descripción	Unid ad	Pre cio-Unit.	Can tidad	Val or-Unit.	
					Sub-Total	0, 00
III. T	RANSPORTES					
Mat erial	Vol-peso ó Cant.	Dist ancia	M3- Km	Tari fa	Val or-Unit.	

						0,
					Sub-Total	00
IV. MANO D	E OBRA					
	Jor	Pres	Jor	Ren	Val	
Trabajador	nal	taciones	nal Total	dimiento	or-Unit.	
	\$	185	231		37.	
OBRERO (5)	125.000,00	%	.250,00	6,13	724,31	
						37
					Sub-Total	.724,31

		41
	Total Costo Directo	.497,00
V. COSTOS INDIRECTOS		
Des	Por Val	
cripción	centaje or Total	
	9.5	
ADMINISTRACION	23% 44,31	
	82	
IMPREVISTOS	2% 9,94	
	2.0	
UTILIDAD	5% 74,85	
		12
	Sub-Total	.449,10

Precio unitario total aproximado al peso .946,00

PRO YECTO:	ESTUDIOS TÉ PAVIMENTO, EN FLEXIE LA CALLE 4ª DESDE LA 3 Y 4ª, AV. 18ª ENTRE CA AV. 19ª ENTRE CALLES CIUDAD DE SAN JOSÉ D	AV. 17ª HASTA LA ALLES 3 Y 4ª, AV. 1 3 Y 4ª, Y LA AV. 2	R EL MÉTODO D AV. 20, AV. 17ª E 19 ENTRE CALLE 20 ENTRE CALLE	E LA AASHTO E ENTRE CALLES 3 ES 3 Y 4ª, CALLE 3 ES 3 Y 4ª, EN EL	INVIAS, PARA LA 3 Y 4ª, AV. 18 ENTI 3 ENTRE AVENID BARRIO CÚCUT.	AS VÍAS DE RE CALLES AS 20 Y 21,
CAPI TULO:	DEMOLICIONE	S				
ITEM :	2.5					
ACTI VIDAD:	RETIRO DE SO	BRANTES DE DE	MOLICIONES			
VIDAD.					UN IDAD	M 3
I. EQI	UIPO					
			Tar	Ren	Val	
	Descripción	Tipo	ifa/Hora	dimiento	or-Unit.	
HEI	RRAMIENTA MENOR				62	
(10%MO)				5,00	
						62
					Sub-Total	5,00
II. MA	TERIALES EN OBRA	4				
		Uni	Pre	Can	Val	
	Descripción	dad	cio-Unit.	tidad	or-Unit.	
	<u> </u>					
					Sub-Total	0, 00
III TE	RANSPORTES				Sub-Total	00
III. IT	MINUFUNIED					

rial		Vol-peso ó Cant.	Dist ancia	M3- Km	Tari fa	Val or-Unit.	
volq ueta 6 m3		1,250	8,00	10, 0	1.1 60,00	11. 600,00	
							11
	14410 01	5.0004				Sub-Total	.600,00
IV. M	ANO DI	E OBRA					
Trob	aiadar	Jor	Pres taciones	Jor nal Total	Ren dimiento	Val or-Unit.	
ITAD	ajador	nal \$	185	231	37,	6.2	
OBRE	ERO (5)	125.000,00	%	.250,00	00	50,00	
	` '						
						Sub-Total	6.
						Sub-Total	250,00
						Sub-Total	
					Total (18
V. CO	OSTOS	INDIRECTOS			Total (Costo Directo	
	OSTOS	INDIRECTOS			Total (Costo Directo	18
V. CO Desc ripción	OSTOS	INDIRECTOS					18
Desc	OSTOS	INDIRECTOS			Por centaje	Costo Directo	18
Desc ripción	DSTOS NISTRACI				Por	Val or Total 4.2 49,25	18
Desc ripción ADMIN	NISTRACI				Por centaje	Val or Total 4.2 49,25 36	18
Desc ripción ADMIN					Por centaje	Val or Total 4.2 49,25 36 9,50	18
Desc ripción ADMIN IMPRE	NISTRACI				Por centaje 23%	Val or Total 4.2 49,25 36 9,50 92	18
Desc ripción ADMIN	NISTRACI				Por centaje	Val or Total 4.2 49,25 36 9,50	18
Desc ripción ADMIN IMPRE	NISTRACI				Por centaje 23%	Val or Total 4.2 49,25 36 9,50 92	18 .475,00
Desc ripción ADMIN IMPRE	NISTRACI				Por centaje 23%	Val or Total 4.2 49,25 36 9,50 92 3,75	18 .475,00 5. 542,50
Desc ripción ADMIN IMPRE	NISTRACI				Por centaje 23%	Val or Total 4.2 49,25 36 9,50 92 3,75 Sub-Total	18 .475,00

	ESTUDI	OS TÉCNICOS PA	RA LA FORMULA	ACIÓN DEL DISE	ÑO DE LA ESTR	UCTURA DE	
PROYECTO:	PAVIMENTO, EN VÍAS DE LA CALL 18 ENTRE CALLE 3 ENTRE AVENID EN EL BARRIO CÚ	FLEXIBLE Y RÍGI E 4ª DESDE LA A S 3 Y 4ª, AV. 18ª I AS 20 Y 21, AV. 19	DO POR EL MÉ NV. 17ª HASTA L ENTRE CALLES 9ª ENTRE CALLE	TODO DE LA AA A AV. 20, AV. 17º 3 Y 4ª, AV. 19 EN ES 3 Y 4ª, Y LA AV	SHTO E INVIAS PENTRE CALLES NTRE CALLES 3 V. 20 ENTRE CA	, PARA LAS S 3 Y 4 ^a , AV. Y 4 ^a , CALLE LLES 3 Y 4 ^a ,	
	DE SANTANDER						
CAPITULO:		LITACION DE PA	V. RIGIDO EXIST	ENTE			
ITEM:	3.1						
ACTIVIDAD:	SUB - B	ASE GRANULAR	e = 0,14 m		UN	M	
					IDAD	3	
I. EQUIPO							
Desc	ripción	Tipo	Tar ifa/Hora	Ren dimiento	Va lor-Unit.		
Carrotanque d	e agua(1000		52.	20,	2.		
Galones)			000,00	00	600,00		
Vibrocompata 153 HP, peso 10 Ton.	dor, potencia		10 5.000,00	20, 00	5. 250,00		
	a potencia 215 ,27 m, peso 18		17 2.000,00	20, 00	8. 600,00		
HERRAMIENTA (10%MO)	A MENOR				1. 903,29		
					,		
					Sub-Total	1 8.353,29	
II. MATERIA	LES EN OBRA						
	ripción	Uni dad	Pre cio-Unit.	Can tidad	Va lor-Unit.		
Material desub maximo de 2 1/2"	base taamaño	m3	25. 000	1,3 00	.500,00		
maximo de 2 1/2		1110	000	24,	1.		
Agua		Lt	50	000	200,00		
					Sub-Total	3 3.700,00	
III. TRANSP		<u>, </u>					
Material Material	Vol. Peso ó Cant.	Dist ancia	M3- Km	Tari fa	Va lor-Unit.		
Material	i coo o cant.	anoia	13111	Iu	ioi-oiiic.		

mater	Acarreo rial sub base	0,87	2,0	1,7	1.1 60,00	2. 018,40	
mator	iai oub bacc	3,31	2,0	.,.	00,00	010,10	
							2.
						Sub-Total	018,40
	IV. MANO D	E OBRA					
			Pre	Jor	Ren	Va	
	Trabajador	Jornal	staciones	nal Total	dimiento	lor-Unit.	
	OBREROS	\$	185	92.	9,7	9.	
(2)		50.000,00	%	500,00	2	516,46	
	PALETEROS	\$	185	92.	9,7	9.	
(2)		50.000,00	%	500,00	2	516,46	
							1
						Sub-Total	9.032,92
							7

			7
	Total (Costo Directo	3.105,00
V. COSTOS INDIRECTOS			
	Por	Va	
Descripción	centaje	lor Total	
	23	16	
ADMINISTRACION	%	.814,15	
		1.	
IMPREVISTOS	2%	462,10	
		3.	
UTILIDAD	5%	655,25	
			2
		Sub-Total	1.931,50

Precio unitario total aproximado al peso 5.037,00

	<u></u>						
		OS TÉCNICOS PA					
PROYECTO	DE LA CALLE 4ª	PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18ª ENTRE CALLES 3 Y 4ª, AV. 19 ENTRE CALLES 3 Y 4ª, CALLE 3					
:	ENTRE CALLES 3 ENTRE AVENIDAS EL BARRIO CÚCU	S 20 Y 21, AV. 19 ^a	S 3 Y 4 ^a , EN				
	SANTANDER	TA 75 DE LA CIOL	DAD DE SAN 300	DE DE COCOTA, I	DEI AINTAMENTO	TNORTEDE	
CAPITULO:	REHABII	REHABILITACIÓN DE PAV. RÍGIDO EXISTENTE					
ITEM:	3.2						
ACTIVIDAD:	BASE GI	RANULAR e= 0,1	1 m				
					UN IDAD	M3	
I. EQUIPO							
Des	cripción	Tipo	Tar ifa/Hora	Ren dimiento	Va lor-Unit.		
Carrotanque Galones)	de agua(1000		52. 000,00	15, 00	3. 466,67		
Vibrocompata 153 HP, peso 10 Ton.	ador, potencia		105 .000,00	15, 00	7. 000,00		
	ra potencia 215		172	15,	11		
HP, ancho de cuchilla ton.	4,27 m, peso 18		.000,00	00	.466,67		
HERRAMIENT	TA MENOR				1.		
(10%MO)					927,08		
					Sub-Total	23. 860,42	
II. MATERI	ALES EN OBRA	•			Sub-Total	000,42	
		Uni	Pre	Can	Va		
	cripción firmado (SUELO	dad	cio-Unit.	tidad	lor-Unit. 41		
SELECCIONADO)	nrmado (SUELO	М³	050,00	1,3 00	.665,00		
,			- ,				
					Sub-Total	41. 665,00	
III. TRANS		5 1	***		,, T		
Material	Vol- peso ó Cant.	Dist ancia	M3- Km	Tari fa	Va lor-Unit.		

materia	ACARREO	0,87	2,0	1,7	1.1 60,00	2. 018,40	
materia	ii base	0,87	2,0	1,7	60,00	018,40	
				L			2.0
						Sub-Total	18,40
	IV. MANO I	DE OBRA					
			Pre	Jor	Ren	Va	
	Trabajador	Jornal	staciones	nal Total	dimiento	lor-Unit.	
	OBREROS	\$	185	92.	9,6	9.	
(2)		50.000,00	%	500,00	0	635,42	
	PALETERO	\$	185	92.	9,6	9.	
S (2)		50.000,00	%	500,00	0	635,42	
							19.
						Sub-Total	270,83
							86.
					Total	Costo Directo	814,65
	V COSTOS	SINDIRECTOS					•
	1. 555.5				Por	Va	
		Descri	nción		centaje	lor Total	
		200011			23	19	
	ADMINISTRA	CION			%	.967,37	
	=				,,	1.	
	IMPREVISTO	3			2%	736,29	
						,	

UTILIDAD

Precio unitario total aproximado al peso 2.859,00

5%

4. 340,73

Sub-Total

26. 044,40

сто:	PROYE	ESTUDIOS PAVIMENTO, EN FLI LA CALLE 4ª DESD CALLES 3 Y 4ª, AV AVENIDAS 20 Y 21, A CÚCUTA 75 DE LA C	E LA AV. 17ª HA: . 18ª ENTRE CAL AV. 19ª ENTRE CA	POR EL MÉTODO STA LA AV. 20, A LES 3 Y 4ª, AV. LLES 3 Y 4ª, Y LA	D DE LA AASHTO I AV. 17ª ENTRE CA 19 ENTRE CALL A AV. 20 ENTRE C	E INVIAS, PARA I ALLES 3 Y 4ª, A\ ES 3 Y 4ª, CALI ALLES 3 Y 4ª, EN	LAS VÍAS DE /. 18 ENTRE LE 3 ENTRE I EL BARRIO	
LO:	CAPITU	REHABILIT	TACIÓN DE PAV. F	RÍGIDO EXISTEN	TE			
	ITEM:	3.3	3.3					
DAD:	ACTIVI	RIEGO DE	IMPRIMACION C	ON EMULSION A	SFALTICA			
						UNI DAD	M 2	
	I. EQUI	PO						
		Descripción	Tipo	Tari fa/Hora	Ren dimiento	Val or-Unit.		
	Carrotan o, 1000 GAL CIDAD	que Irrigador de ONES DE		66.0 00,00	49,0 0	1.3 46,94		
MO)	HERRAM	IENTA MENOR (2%				15, 06		
						Sub-Total	1. 362,00	
	II. MAT	ERIALES EN OBF						
	г	Descripción	Unid ad	Pre cio-Unit.	Cant idad	Val or-Unit.		
		CRL-0(INCLUYE	au LT	1.52	0,85	1.2		
TRANS	SPORTE)		LI	5,00	0	96,25		

Sub-Total							
			ISPORTES				
Tarif	М3-	Dista	Vol-	Materia			
a	Km	ncia	peso ó Cant.	1			
			O DE OBRA	IV. MANO			
Ren	Jor	Pres		Trabaja			
dimiento	nal Total	taciones	Jornal	dor			
245,	92.5	185	\$	OBRER			
65	00,00	%	50.000,00	O (2)			
245,	92.5	185	\$	PALETE			
65	00,00	%	50.000,00	ROS (2)			
T-4-1.0							
Total C		<u> </u>	OS INDIRECTOS	V COST			
Porc			OO IIIDIIILO I OC	V. 0001			
entaje		ipción	Descr				
23%			RACION	ADMINISTE			
2%			ros	IMPREVIST			
5%				UTILIDAD			
itario total aproxir	Precio un						
%	2 ⁴	26	2° 5°	5°			

PROYE CTO:	ESTUDIOS PAVIMENTO, EN FL LA CALLE 4ª DESI CALLES 3 Y 4ª, AV AVENIDAS 20 Y 21, CÚCUTA 75 DE LA	DE LA AV. 17ª HA: /. 18ª ENTRE CAL AV. 19ª ENTRE CA	POR EL MÉTODO STA LA AV. 20, A LES 3 Y 4ª, AV. LLES 3 Y 4ª, Y LA	DE LA AASHTO E AV. 17ª ENTRE CA 19 ENTRE CALL A AV. 20 ENTRE C	E INVIAS, PARA L/ ALLES 3 Y 4ª, AV. ES 3 Y 4ª, CALLI ALLES 3 Y 4ª, EN	AS VÍAS DE 18 ENTRE 3 ENTRE EL BARRIO
CAPIT ULO:	REHABILI	TACIÓN DE PAV. F	RÍGIDO EXISTENT	ΓE		
ITEM:	3.4					
ACTIVI DAD:	RIEGO DE	LIGA CON EMULS	SION ASFALTICA	CRR -1		
	1				UNI DAD	M 2
I. EQU	<u>IPO</u>					
	Descripción	Tipo	Tari fa/Hora	Ren dimiento	Val or-Unit.	
Carrota asfalto, 1000 GAL CAPACIDAD	nque Irrigador de .ONES DE		66.0 00,00	49,0 0	1.3 46,94	
HERRAM (2% MO)	MIENTA MENOR				15, 42	
			l		Sub-Total	1. 362,36
II. MAT	ERIALES EN OB			- 1		
	Descripción	Unid ad	Pre cio-Unit.	Cant idad	Val or-Unit.	
Emulsió TRANSPORTE	n CRL-1-INCLUYE	LT	1.78 5,00	0,85 0	1.5 17,25	
					Sub-Total	1. 517,25
	ANSPORTES		***	<u> </u>		
Materi al	Vol- peso ó Cant.	Dista ncia	M3- Km	Tarif a	Val or-Unit.	

0,	0.1.7.1.1						
00	Sub-Total				DE OBRA	IV. MANO	
	Val	Ren	Jor	Pres	Jorn	Trabajad	
	or-Unit.	dimiento	nal Total	taciones	al	or	
	385	240,	92.5	185	\$	OBRERO	
	,42	00	00,00	%	50.000,00		(2)
	385	240,	92.5	185	\$	PALETER	
	,42	00	00,00	%	50.000,00		OS (2)
7 70,83	Sub-Total	<u>.</u>	<u> </u>	<u>.</u>			

			3.
	Total	Costo Directo	650,00
V. COSTOS INDIRECTOS			
Descripción	Porc	Val	
Descripción	entaje	or Total	
		839	
ADMINISTRACION	23%	,50	
		73,	
IMPREVISTOS	2%	00	
		182	
UTILIDAD	5%	,50	
			1.
		Sub-Total	095.00

	4.
Precio unitario total aproximado al peso	745,00

P ROYECTO:	ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 19 ENTRE CALLES 3 Y 4ª, CALLE 3 ENTRE AVENIDAS 20 Y 21, AV 19ª ENTRE CALLES 3 Y 4ª, Y LA AV. 20 ENTRE CALLES 3 Y 4ª, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER							
C APITULO:	REHABILITACIÓN DE	PAV. RÍGIDO EX	ISTENTE					
IT EM:	3.5							
A CTIVIDAD:	MEZCLA DENSA EN C	CALIENTE MDC-1	19 PARA BACH	EO e = 0,06 m				
					U NIDAD	3 M		
I. E	QUIPO							
	Descripción	Tip	Ta rifa/Hora	Re ndimiento	V alor-Unit.			
HER	RAMIENTA MENOR (10% M.	0	Палпога	naimento	5			
DE O.)					55,00			
F ::	ala a u		11	4,	2			
Finis	sher		4.300,00 99	50 4,	_ · · · ,			
Vibr	ocompactador		.800	50	2.177,78			
					Sub-Total	4 8.132,78		
II. N	MATERIALES EN OBRA							
	Descripción	Uni dad	Pr ecio-Unit.	Ca ntidad	V alor-Unit.			
Mez incluye acarr	cla densa en caliente MDC-19- eo y liga	M3	38 6.600,00	1, 300	5 02.580,00			
					Sub-Total	02.580,00		
III. `	TRANSPORTES							

M aterial	Vol-	peso ó Cant.	Dis tancia	M 3-Km	Ta rifa	V alor-Unit.	
						Sub-Total	0, 00
IV.	MANO DE OB	RA					
	Trabajador	Jor	Pr	Jo	Re	٧	
	Trabajaaoi	nal	estaciones	rnal Total	ndimiento	alor-Unit.	
	/··	\$	18	92	70	1.	
OFIC	CIAL (1)	50.000,00	5%	.500,00	,00	321,43	
OBR	RERO (4)	\$ 100.000,00	18 5%	18 5.000,00	70 ,00	2. 642,86	
	(. /	,	18	11	70	1.	
RAS	TRILLERO (2)	60.000,00	5%	1.000,00	,00	585,71	
							5.
						Sub-Total	550,00

			5
	Total C	Costo Directo	56.263,00
V. COSTOS INDIRECTOS			
Descripción	Po	V	
Descripcion	rcentaje	alor Total	
	23	1	
ADMINISTRACION	%	27.940,49	
		1	
IMPREVISTOS	2%	1.125,26	
		2	
UTILIDAD	5%	7.813,15	
	·		1
		Sub-Total	66.878.90

Precio unitario total aproximado al peso 23.142,00

	ESTUDI	OS TÉCNICOS PA	RA LA FORMUL <i>A</i>	ACIÓN DEL DISE	ÑO DE LA ESTR	UCTURA DE
	PAVIMENTO, EN	FLEXIBLE Y RÍGII	DO POR EL MÉT	TODO DE LA AA	SHTO E INVIAS	, PARA LAS
DDOVECTO.		E 4ª DESDE LA A				
PROYECTO:		S 3 Y 4 ^a , AV. 18 ^a E AS 20 Y 21. AV. 19				
		JCUTA 75 DE LA C				
	DE SANTANDER					
CAPITULO:		NTACIÓN				
ITEM:	4.1					
ACTIVIDAD:	SUB - B	ASE GRANULAR	e = 0,14 m	T		
					UN IDAD	М 3
I. EQUIPO					IDAD	3
			Tar	Ren	Va	
	cripción	Tipo	ifa/Hora	dimiento	lor-Unit.	
Carrotanque o	le agua(1000		52. 000,00	20, 00	2. 600,00	
Vibrocompata	dar natanaia		10	20,	5.	
153 HP, peso 10 Ton.	dor, potencia		5.000,00	20, 00	250,00	
	ra potencia 215		17	20,	8.	
HP, ancho de cuchilla 4	,27 m, peso 18		2.000,00	00	600,00	
ton. HERRAMIENT		·		1.		
(10%MO)					903,29	
					Sub-Total	1 8.353,29
II. MATERIA	ALES EN OBRA	ı				
Desc	cripción	Uni dad	Pre cio-Unit.	Can tidad	Va Ior-Unit.	
	o base taamaño		25.	1,3	32	
maximo de 2 1/2"		m3	000	00	.500,00	
Agua		Lt	50	24, 000	1. 200,00	
, .guu			55	555	200,00	
		ı			Sub-Total	3 3.700,00
III. TRANSF	PORTES					
	Vol.	Dist	M3-	Tari	Va	
Material	Peso ó Cant.	ancia	Km	fa	lor-Unit.	

2 1.931,50

9 5.037,00

Sub-Total

Precio unitario total aproximado al peso

2. 018,40	
ıb-Total	2. 018,40
ib-Total	018,40
Va	
-Unit.	
9.	
516,46	
9. 516,46	
010,40	
	1
ıb-Total	9.032,92
	7
Directo	7 3.105,00
	0.100,00
Va	
Total	
16	
.814,15	
1. 462,10	
3.	
655,25	

PROYECTO :	ESTUDIO PAVIMENTO, EN F DE LA CALLE 4ª ENTRE CALLES 3 ENTRE AVENIDAS EL BARRIO CÚCU SANTANDER	DESDE LA AV. 1 Y 4ª, AV. 18ª EN S 20 Y 21, AV. 19ª	O POR EL MÉTC 7ª HASTA LA A' TRE CALLES 3 ENTRE CALLES	DOO DE LA AASH V. 20, AV. 17ª EI Y 4ª, AV. 19 EN 3 Y 4ª, Y LA AV.	TO E INVIAS, PA NTRE CALLES 3 FRE CALLES 3 Y 20 ENTRE CALLI	RA LAS VÍAS Y 4 ^a , AV. 18 4 ^a , CALLE 3 ES 3 Y 4 ^a , EN
CAPITULO:	PAVIME	NTACIÓN				
ITEM:	4.2					
ACTIVIDAD:	BASE G	RANULAR e= 0,1	1 m			
					UN IDAD	M3
I. EQUIPO						
Desc	cripción	Tipo	Tar ifa/Hora	Ren dimiento	Va lor-Unit.	
Carrotanque Galones)			52. 000,00	15, 00	3. 466,67	
153 HP, peso 10 Ton.	ador, potencia		105 .000,00	15, 00	7. 000,00	
Motonivelado HP, ancho de cuchilla 4 ton.	ra potencia 215 4,27 m, peso 18		172 .000,00	15, 00	11 .466,67	
HERRAMIENT (10%MO)	TA MENOR				1. 927,08	
					Sub-Total	23. 860,42
II. MATERI	ALES EN OBRA	\				•
	cripción	Uni dad	Pre cio-Unit.	Can tidad	Va lor-Unit.	
Material de af SELECCIONADO)	firmado (SUELO	М³	32. 050,00	1,3 00	.665,00	
						41.
					Sub-Total	665,00
III. TRANSI	PORTES					

11 2.859,00

Precio unitario total aproximado al peso

	80-4	Vol-	Dist	M3-	Tari	Va	
	Material ACARREO	peso ó Cant.	ancia	Km	fa 1.1	lor-Unit.	
material		0,87	2,0	1,7	60,00	018,40	
			,	.,	- ,		
						Sub-Total	2.0 18,40
	IV. MANO	DE OBRA				0.00.00.00.00.00.00.00.00.00.00.00.00.0	,
			Pre	Jor	Ren	Va	
	Trabajador	Jornal	staciones	nal Total	dimiento	lor-Unit.	
(2)	OBREROS	\$ 50.000,00	185 %	92. 500,00	9,6 0	9. 635,42	
(2)	PALETERO	\$0.000,00	185	92.	9,6	9.	
S (2)	TALLTERO	50.000,00	%	500,00	0	635,42	
				,		·	
						Sub-Total	19. 270,83
							210,03
							86.
Г					Total (Costo Directo	814,65
	V. COSTO	SINDIRECTOS					
					Por	Va Va	
		Descrip	oción		centaje	lor Total	
	ADMINISTRA	CION			23 %	19 .967,37	
	ADMINISTRA	CION			70	. 967,37	
	IMPREVISTO	S			2%	736,29	
	UTILIDAD				5%	4. 340,73	
	UTILIDAD				370	340,73	26.
						Sub-Total	044,40

PR OYECTO:	PAVIMENTO, EN FLEXIBLE Y R CALLE 4ª DESDE LA AV. 17ª H Y 4ª, AV. 18ª ENTRE CALLES 3 AV. 19ª ENTRE CALLES 3 Y 4ª	ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18ª ENTRE CALLES 3 Y 4ª, AV. 19 ENTRE CALLES 3 Y 4ª, CALLE 3 ENTRE AVENIDAS 20 Y 21, IV. 19ª ENTRE CALLES 3 Y 4ª, Y LA AV. 20 ENTRE CALLES 3 Y 4ª, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER								
CA PITULO:	PAVIMENTACIÓN	PAVIMENTACIÓN								
ITE M:	4.3									
AC TIVIDAD:	RIEGO DE IMPRIMAC	ION CON EMULS	SION ASFALTIC	Α						
					U NIDAD	M 2				
I. EC	QUIPO									
		Tip	Та	Re	V					
	Descripción	0	rifa/Hora	ndimiento	alor-Unit.					
Carr	otanque Irrigador de asfalto,		66	49,	1.					
	ES DE CAPACIDAD		.000,00	00	346,94					
HERI	HERRAMIENTA MENOR (2% MO)									
	5,06									
						1				
					Sub-Total	.362,00				
II. M	IATERIALES EN OBRA									
	Descripción	Uni dad	Pr ecio-Unit.	Ca ntidad	V alor-Unit.					
Emul	lsión CRL-0(INCLUYE	LT	1.	0,8	1.					
TRANSPORTE	=)		525,00	50	296,25					
		<u> </u>			Sub-Total	.296,25				
III. 7	TRANSPORTES				Jub-1 Juli	.200,20				

	V alor-Unit.	Ta rifa	M 3-Km	Dis tancia	oeso ó Cant.	Vol-p	Ma terial
,	Sub-Total						
						IANO DE OBF	IV. MA
	V	Re	Jo	Pre	Jo		
	alor-Unit.	ndimiento	rnal Total	staciones	rnal	rabajador	Tra
	3	24	92	18	\$	50 (0)	00000
	76,55	5,65	.500,00	5%	50.000,00	RO (2)	OBRERO
	3	24	92	18 5%	\$	TEBOS (O)	DALETE
	76,55	5,65	.500,00	5%	50.000,00	TEROS (2)	PALETE
53,	Sub-Total						
	Г						
.411,	osto Directo	Total C					
					ECTOS	OSTOS INDIR	V. COS
	V	Po					
	alor Total	rcentaje		n	Descripció		
	7	23			•		
	84,53	%				NISTRACION	ADMINIS
	6						
	8,22	2%				EVISTOS	IMPREV
	1						
	70,55	5%				DAD	UTILIDA
	- 1						
.023,	Sub-Total						

Precio unitario total aproximado al peso .434,00

ÍAS DE LA ALLES 3 Y) Y 21, AV.	AS, PARA LAS VÍ AV. 18 ENTRE CA RE AVENIDAS 20	AASHTO E INVIA CALLES 3 Y 4ª, . ¹ , CALLE 3 ENTE EN EL BARRIO (ÉTODO DE LA A AV. 17ª ENTRE E CALLES 3 Y 4ª FALLES 3 Y 4ª, E	GIDO POR EL M ASTA LA AV. 20, 4ª, AV. 19 ENTRE AV. 20 ENTRE C	ESTUDIOS TÉCNICO PAVIMENTO, EN FLEXIBLE Y R CALLE 4ª DESDE LA AV. 17ª H. 4ª, AV. 18ª ENTRE CALLES 3 Y 19ª ENTRE CALLES 3 Y 4ª, Y LA DE SAN JOSÉ DE CÚCUTA, DE	PR OYECTO:
					PAVIMENTACIÓN	CA PITULO:
					4.4	IT EM:
			ALTICA CRR -1	EMULSION ASFA	RIEGO DE LIGA CON	AC TIVIDAD:
M 2	U NIDAD					
	1	•			QUIPO	I. EC
	V alor-Unit.	Re ndimiento	Ta rifa/Hora	Tip o	Descripción	
	1. 346,94	49, 00	.000,00		otanque Irrigador de asfalto, ES DE CAPACIDAD	
	1 5,42				RAMIENTA MENOR (2% MO)	HER
1 .362,36	Sub-Total					
			<u>, </u>	<u> </u>	MATERIALES EN OBRA	II. N
	V alor-Unit.	Ca ntidad	Pr ecio-Unit.	Uni dad	Descripción	
	1. 517,25	0,8 50	1. 785,00	LT	lsión CRL-1-INCLUYE E	Emul TRANSPORTE
1						
.517,25	Sub-Total				TRANSPORTES	111 7
	V	Та	M3	Dis	TRANSPORTES Vol-peso ó Cant.	Ma

	-					
				l		
<u> </u>	Sub-Total				D.A.	IV MANO DE ODI
	V	Re	Jo	Pre	KA Jo	IV. MANO DE OBF
	alor-Unit.	ndimiento	rnal Total	staciones	rnal	Trabajador
ľ	3	24	92	185	\$	
1	85,42	0,00	.500,00	%	50.000,00	OBRERO (2)
1	3	24	92	185	\$	
1	85,42	0,00	.500,00	%	50.000,00	PALETEROS (2)
		Į.	Į.	Į.		
	Sub-Total					
.6	Costo Directo	Total C				
.6					RECTOS	V. COSTOS INDIF
.6	V	Po		òn		V. COSTOS INDIF
.(V alor Total	Po rcentaje		òn	RECTOS Descripció	V. COSTOS INDIF
.6	V alor Total	Po rcentaje 23		òn		
.6	V alor Total 8 39,50	Po rcentaje		ón		V. COSTOS INDIR
).	V alor Total 8 39,50 7	Po rcentaje 23 %		ón		ADMINISTRACION
.(V alor Total 8 39,50	Po rcentaje 23		ón		
.6	V alor Total 8 39,50 7 3,00	Po rcentaje 23 %		ón		ADMINISTRACION
.(V alor Total 8 39,50 7 3,00	Po rcentaje 23 %		òn		ADMINISTRACION IMPREVISTOS

Precio unitario total aproximado al peso .745,00

NIDAD 3 NIDAD 3 NIDAD 3 NIDAD 3 NIDAD NIDAD NIDAD NIDAD NIDA												
PAVIMENTO, EN FLEXIBLE Y RIGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VIAS DE LA CALLE 4 DESDE LA AV. 178 HARTA LA AV. 20, AV. 178 HARTE CALLES 3 Y 4°, AV. 18 ENTRE CALLES 3 Y 4°, AV. 18 ENTRE CALLES 3 Y 4°, AV. 18 ENTRE CALLES 3 Y 4°, AV. 19° ENTRE CALLES 3 Y 4°, AV. 10° ENTRE CALLES 3 Y 4°, AV. 10° ENTRE CALLES 3 Y 4°, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CUCUTA, DEPARTAMENTO NORTE DE SANTANDER C PAVIMENTACIÓN IT 4.5 EM: A MEZCLA DENSA EN CALIENTE MDC-19 PARA BACHEO e = 0.06 m I. EQUIPO Descripción Tip Tip Ta Re alor-Unit. HERRAMIENTA MENOR (10° M. 55,00 Finisher 4.300,00 50 5.400,00 Vibrocompactador 99 4, 2 Vibrocompactador 99 4, 2 Vibrocompactador 99 4, 2 Vibrocompactador 99 4, 2 Sub-Total 8.132,78 II. MATERIALES EN OBRA Descripción dad Uni Pr Ca alor-Unit. ntidad alor-Unit. Mezcla densa en caliente MDC-19- M3 6.600,00 300 02.580,00		T										
APITULO:	•	PAVIMENTO, EN FLEXIBLE Y RÍC CALLE 4ª DESDE LA AV. 17ª HA 4ª, AV. 18ª ENTRE CALLES 3 Y 4 19ª ENTRE CALLES 3 Y 4ª, Y LA	GIDO POR EL M STA LA AV. 20, ª, AV. 19 ENTRI AV. 20 ENTRE (IÉTODO DE LA AV. 17ª ENTRE E CALLES 3 Y 4 CALLES 3 Y 4ª,	AASHTO E INV CALLES 3 Y 4ª Iª, CALLE 3 ENT EN EL BARRIO	ΊAS, PARA LAS , AV. 18 ENTRE ΓRE AVENIDAS	VÍAS DE LA CALLES 3 Y 20 Y 21, AV					
EM: 4.5 CTIVIDAD: MEZCLA DENSA EN CALIENTE MDC-19 PARA BACHEO e = 0.06 m NIDAD 3 M	•	PAVIMENTACIÓN										
NIDAD		4.5										
NIDAD 3 NIDAD 3 NIDAD	= =	MEZCLA DENSA EN CA	MEZCLA DENSA EN CALIENTE MDC-19 PARA BACHEO e = 0.06 m									
Descripción						- 1	M 3					
Descripcion O rifa/Hora ndimiento alor-Unit.	I. E	QUIPO										
HERRAMIENTA MENOR (10% M.		Descripción	•			•						
DE O.)	HER	RRAMIENTA MENOR (10% M.	0	па/пога	naimento							
Sub-Total Sub-						55,00						
99 4, 2 2 2.177,78	Finis	shor			,							
Nibrocompactador .800 50 2.177,78	FIIIIS	Silei										
Sub-Total 8.132,78	Vibr	rocompactador		.800		2.177,78						
Sub-Total 8.132,78												
Sub-Total 8.132,78												
Descripción Uni							4					
Descripción Uni dad Pr Ca ntidad No alor-Unit.						Sub-Total	8.132,78					
Descripcion dad ecio-Unit. ntidad alor-Unit.	II. N	MATERIALES EN OBRA										
incluye acarreo y liga M3 6.600,00 300 02.580,00		Descripción										
Sub-Total 02.580,00			M3			- 1						
Sub-Total 02.580,00												
Sub-Total 02.580,00							<u> </u>					
III. I KANSPORTES						Sub-Total	02.580,00					
		TRANSPORTES										

M aterial	Vol-	peso ó Cant.	Dis tancia	M 3-Km	Ta rifa	V alor-Unit.	
						Sub-Total	0, 00
IV.	MANO DE OB	RA					
	Trabajador	Jor	Pr	Jo	Re	٧	
	Trabajaaoi	nal	estaciones	rnal Total	ndimiento	alor-Unit.	
	/··	\$	18	92	70	1.	
OFIC	CIAL (1)	50.000,00	5%	.500,00	,00	321,43	
OBR	RERO (4)	\$ 100.000,00	18 5%	18 5.000,00	70 ,00	2. 642,86	
	(. /	,	18	11	70	1.	
RAS	TRILLERO (2)	60.000,00	5%	1.000,00	,00	585,71	
							5.
						Sub-Total	550,00

			5
	Total C	Costo Directo	56.263,00
V. COSTOS INDIRECTOS			
Descripción	Po	٧	
Descripcion	rcentaje	alor Total	
	23	1	
ADMINISTRACION	%	27.940,49	
		1	
IMPREVISTOS	2%	1.125,26	
		2	
UTILIDAD	5%	7.813,15	
		•	1
		Sub-Total	66.878.90

Precio unitario total aproximado al peso 23.142,00

Anexo FCronograma de actividades y flujos de fondos

SECTOR EN ESTUDIO "BARRIO CÚCUTA 75"

ESTUDIOS TÉCNICOS PARA LA FORMULACIÓN DEL DISEÑO DE LA ESTRUCTURA DE PAVIMENTO, EN FLEXIBLE Y RÍGIDO POR EL MÉTODO DE LA AASHTO E INVIAS, PARA LAS VÍAS DE LA CALLE 4ª DESDE LA AV. 17ª HASTA LA AV. 20, AV. 17ª ENTRE CALLES 3 Y 4ª, AV. 18 ENTRE CALLES 3 Y 4ª, AV. 18º ENTRE CALLES 3 Y 4ª, AV. 19 ENTRE CALLES 3 Y 4ª, CALLE 3 ENTRE AVENIDAS 20 Y 21, AV. 19ª ENTRE CALLES 3 Y 4ª, Y LA AV. 20 ENTRE CALLES 3 Y 4ª, EN EL BARRIO CÚCUTA 75 DE LA CIUDAD DE SAN JOSÉ DE CÚCUTA, DEPARTAMENTO NORTE DE SANTANDER

ITEM	ACTIVIDAD			CANTIDAD	VR TOTAL ACTIVIDAD	% Actividad/Cost o Directo
	PRELIMINARES					
,1	Localización y replanteo	L	N	1.140,30	\$ 5.245.380,00	1,0 54%
,2	Señalización de seguridad en doble línea incluye señales verticales y provisionales	L	M	2.280,60	\$ 24.197.166,00	4,8 61%
,3	Valla informativa temporal	nd	U	1,00	\$ 355.681,00	0,0 72%
,4	Comisión topográfica permanente	L	N	1.140,30	\$ 25.336.326,00	5,0 90%
	DEMOLICIONES					
,1	Corte de pavimento en concreto	L	N	358,66	\$ 3.106.713,00	0,6 24%
,2	Demolición manual de losas de concreto	2	M	3698,43	\$ 55.261.941,00	11, 102%
,3	Excavación mecánica sin clasificar (Incluye retiro)	3	N	1.241,55	\$ 32.245.065,00	6,478%
,4	Excavación manual sin clasificar	3	N	178,58	\$ 7.410.534,00	1,4 89%
,5	Retiro de sobrantes de demoliciones	3	N	2326,97	\$ 42.990.771,00	8,6 37%
	REHABILITACI ÓN DE PAV. RÍGIDO EXISTENTE					
,1	Sub-Base granular e= 0,14 m	3	M	517,78	\$ 37.852.307,00	7,6 04%
,2	Base granular e= 0,11 m	3	N	443,81	\$ 38.529.210,00	7,7

,3	Riego de imprimación con emulsión asfáltico	2 N	3698,43	\$ 12.615.345,00	2,5 34%
,4	Riego de liga con emulsión asfáltica CRR - 1	2 N	3698,43	\$ 13.499.270,00	2,7 12%
,5	Mezcla densa en caliente MDC-19 para bacheo e = 0,06 m	3 N	295,87	\$ 164.581.534,00	33,
	PAVIMENTACIÓ N				
,1	Sub-Base granular e= 0,14 m	3 N	66,98	\$ 4.896.573,00	0,9 84%
,2	Base granular e= 0,11 m	3 N	57,41	\$ 4.984.029,00	1,0 01%
,3	Riego de imprimación con emulsión asfáltico	2 N	478,42	\$ 1.631.891,00	0,3 28%
,4	Riego de liga con emulsión asfáltica CRR -1	2 N	478,42	\$ 1.746.233,00	0,3 51%
,5	Mezcla densa en caliente MDC-19 para bacheo e = 0,06 m	3 N	38,27	\$ 21.288.185,00	4,2 77%
				\$ 497.774.154,00	0% 10
					Va lor Programado Mensual Costo Directo
	CO	STO TOTAL C	\$497.774.154,00	Va lor Programado Mensual Costo Obras	
		COSTOS INDI	RECTOS 30%	\$149.332.246,00	
	COSTO	TOTAL DEL P	PROYECTO DE OBRA	\$ 647.106.400,00	

	V			MES 1				MES 2	
TE M	ALOR TOTAL	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	SEMANA 5	SEMANA 6	SEMANA 7	SEMANA 8
,1	\$ 5.245.380, 00	\$ 5.245.380, 00							
,2	\$ 24.197.16 6,00		\$ 1.273.535,0 0	\$ 1.273.535,0 0	\$ 1.273.535,0 0	\$ 1.273.535,0 0	\$ 1.273.535,0 0	\$ 1.273.535, 00	\$ 1.273.535, 00
,3	\$ 355.681,0 0	\$ 355.681,0 0							
,4	\$ 25.336.32 6,00		\$ 1.333.491,0 0	\$ 1.333.491,0 0	\$ 1.333.491,0 0	\$ 1.333.491,0 0	\$ 1.333.491,0 0	\$ 1.333.491, 00	\$ 1.333.491, 00
	ф.								
,1	\$ 3.106.713, 00		\$ 238.978,00		\$ 238.978,00	\$ 238.978,00			\$ 238.978,00
,2	\$ 55.261.94 1,00		\$ 4.250.919,0 0	\$ 4.250.919,0 0	\$ 4.250.919,0 0	\$ 4.250.919,0 0			\$ 4.250.919, 00
,3	\$ 32.245.06 5,00			\$ 3.582.785,0 0	\$ 3.582.785,0 0	\$ 3.582.785,0 0			\$ 3.582.785, 00
,4	7.410.534, 00								
,5	\$ 42.990.77 1,00		\$ 2.686.923,0 0	\$ 2.686.923,0 0	\$ 2.686.923,0 0	\$ 2.686.923,0 0			\$ 2.686.923, 00
,1	\$37.852.3 07,00						\$ 3.441.119,0 0	\$ 3.441.119, 00	\$ 3.441.119, 00
,2	\$38.529.2 10,00						\$ 3.210.768,0 0	\$3.210.7 68,00	\$ 3.210.768, 00
,3	\$ 12.615.34 5,00							\$ 1.401.705, 00	
,4	\$13.499.2 70,00								
,5	\$ 164.581.5 34,0				\$ 23.511.648, 00	\$ 23.511.648, 00			

,1	\$ 4.896.573, 00								
,2	\$ 4.984.029, 00								
,3	\$ 1.631.891, 00								
,4	\$ 1.746.233, 00								
,5	\$ 21.288.18 5,00								
		\$ 5.601.061, 00	\$ 9.783.846,0 0	\$ 13.127.653, 00	\$ 36.878.279, 00	\$ 36.878.279, 00	\$ 9.258.913,0 0	\$ 10.660.61 8,00	\$ 20.018.518 ,00
		\$ 5.601.061, 00	\$ 9.783.846,0 0	\$ 13.127.653, 00	\$ 36.878.279, 00	\$ 36.878.279, 00	\$ 9.258,913,0 0	\$ 10.660.61 8,00	\$ 20.018.518 ,00
	FLUJO ENSUAL O DIRECTO	AL \$65.390.839,00				\$76	5.816.328,00		
	FLUJO ENSUAL COSTO DIRECTO		\$.	19.617.252,00			\$23	3.044.898,00	
M COS	FLUJO ENSUAL TO TOTAL PROYECTO		\$	85.008.091,00			\$99	2.861.226,00	

	V			MES 3				MES 4	
TE M	ALOR TOTAL	SEMANA 9	SEMANA 10	SEMANA 11	SEMANA 12	SEMANA 13	SEMANA 14	SEMANA 15	SEMANA 16
,1	\$ 5.245.380, 00								
,2	\$ 24.197.16 6,00	\$ 1.273.535,0 0	\$ 1.273.535, 00	\$ 1.273.535,0 0	\$ 1.273.535,0 0	\$ 1.273.535,0 0	\$ 1.273.535,0 0	\$ 1.273.535, 00	\$ 1.273.535, 00
,3	\$ 355.681,0 0								

,4	\$ 25.336.32 6,00	\$ 1.333.491,0 0	\$ 1.333.491, 00	\$ 1.333.491,0 0	\$ 1.333.491,0 0	\$ 1.333.491,0 0	\$ 1.333.491,0 0	\$ 1.333.491, 00	\$ 1.333.491, 00
	2,00								
,1	\$ 3.106.713, 00	\$ 238.978,00	\$ 238.978,0 0	\$ 238.978,00	\$ 238.978,00	\$ 238.978,00		\$ 238.978,0 0	\$ 238.978,00
,2	\$ 55.261.94 1,00	\$ 4.250.919,0 0	\$ 4.250.919, 00	\$ 4.250.919,0 0	\$ 4.250.919,0 0	\$ 4.250.919,0 0		\$ 4.250.919, 00	\$ 4.250.919, 00
,3	\$ 32.245.06 5,00	\$ 3.582.785,0 0		\$ 3.582.785,0 0		\$ 3.582.785,0 0	\$ 3.582.785,0 0		
,4	\$ 7.410.534, 00							\$ 1.852.634, 00	\$ 1.852.634, 00
,5	\$ 42.990.77 1,00	\$ 2.686.923,0 0	\$ 2.686.923, 00	\$ 2.686.923,0 0	\$ 2.686.923,0 0	\$ 2.686.923,0 0	\$ 2.686.923,0 0	\$ 2.686.923, 00	\$ 2.686.923, 00
,1	\$37.852.3 07,00	\$ 3.441.119,0 0	\$ 3.441.119, 00	\$ 3.441.119,0 0		\$ 3.441.119,0 0	\$ 3.441.119,0 0	\$ 3.441.119, 00	
,2	\$38.529.2 10,00	\$ 3.210.768,0 0	\$ 3.210.768, 00	\$ 3.210.768,0 0	\$ 3.210.768,0 0	\$ 3.210.768,0 0	\$ 3.210.768,0 0		\$ 3.210.768, 00
,3	\$12.615.3 45,00	\$ 1.401.705,0 0	\$ 1.401.705, 00		\$ 1.401.705,0 0	\$ 1.401.705,0 0	\$ 1.401.705,0 0		\$ 1.401.705, 00
,4	\$13.499.2 70,00				\$ 2.699.854,0 0		\$ 2.699.854,0 0		\$ 2.699.854, 00
,5	\$164.581. 534,0				\$ 23.511.648, 00		\$ 23.511.648, 00		\$ 23.511.648 ,00
,1	\$ 4.896.573, 00								
,2	\$ 4.984.029, 00								
,3	\$ 1.631.891, 00								
,4	\$ 1.746.233, 00								
,5	\$ 21.288.18 5,00								
		\$ 21.420.223, 00	\$ 17.837.43 8,00	\$ 20.018.518, 00	\$ 40.607.821, 00	\$ 21.420.223, 00	\$ 43.141.828, 00	\$ 15.077.59 9,00	\$ 42.460.455 ,00

		\$ 21.420.223, 00	\$ 17.837.43 8,00	\$ 20.018.518, 00	\$ 40.607.821, 00	\$ 21.420.223, 00	\$ 43.141.828, 00	\$ 15.077.59 9,00	\$ 42.460.455 ,00
	FLUJO ENSUAL O DIRECTO	\$99.884.000,00			\$122.100.105,00				
	FLUJO MENSUAL COSTO INDIRECTO S29,965,200,00			\$36.630.032,00					
FLUJO MENSUAL COSTO TOTAL DEL PROYECTO		\$129.849.200,00				\$158.730.137,00			

	ALOR TOTAL	MES 5						
TE M		SEMANA 17	SEMANA 18	SEMANA 19	SEMANA 20			
,1	\$ 5.245.380,0 0							
,2	\$ 24.197.166, 00	\$ 1.273.535,00	\$ 1.273.535,00	\$ 1.273.535,00	\$ 1.273.535,00			
,3	\$ 355.681,00							
,4	\$ 25.336.326, 00	\$ 1.333.491,00	\$ 1.333.491,00	\$ 1.333.491,00	\$ 1.333.491,00			
,1	\$ 3.106.713,0 0	\$ 238.978,00			\$ 238.978,00			
,2	\$ 55.261.941, 00	\$ 4.250.919,00						
,3	\$ 32.245.065, 00				\$ 3.582.785,00			
,4	7.410.534,0 0	\$ 1.852.634,00	\$ 1.852.634,00					
,5	\$ 42.990.771, 00	\$ 2.686.923,00	\$ 2.686.923,00		\$ 2.686.923,00			
	\$							
,1	37.852.307, 00		\$ 3.441.119,00		\$ 3.441.119,00			
,2	\$ 38.529.210, 00			\$3.210.768,00	\$ 3.210.768,00			
,3	\$ 12.615.345, 00			\$ 1.401.705,00	\$ 1.401.705,00			
,4	\$ 13.499.270, 00			\$ 2.699.854,00	\$ 2.699.854,00			
,5	\$164.581.53 4,00			\$ 23.511.648,00	\$ 23.511.648,00			
	\$							
,1	4.896.573,0 0				\$ 4.896.573,00			

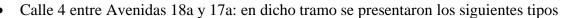
,2	\$ 4.984.029,0 0				\$ 4.984.029,00		
,3	\$ 1.631.891,0 0				\$ 1.631.891,00		
,4	\$ 1.746.233,0 0				\$ 1.746.233,00		
,5	\$ 21.288.185, 00				\$21.288.185,00		
		\$ 11.636.480,00	\$ 19.567.496,00	\$ 33.431.001,00	\$ 77.927.717		
		\$ 11.636.480,00	\$ 19.567.496,00	\$ 33.431.001,00	\$ 77.927.717		
FLUJO MENSUAL COSTO DIRECTO		\$142.562.694,00					
FLUJO MENSUAL COSTO INDIRECTO		\$42.768.808,00					
FLUJO MENSUAL COSTO TOTAL DEL PROYECTO		\$185.331.502,00					

Anexo GRegistro fotográfico

Patologías de tramos de vía en estudio

• Calle 3 entre avenidas 21 y 20: en dicho tramo se presentaron los siguientes tipos de daños: Desintegración, punzonamiento, fragmentación múltiple o losa dividida, y grietas longitudinales y transversales, como se puede observar a continuación.

• Avenida 20 entre calles 3 y 4: en dicho tramo se presentaron los siguientes tipos de daños: Desintegración, y fragmentación múltiple o losa dividida, como se puede observar a continuación:



• Calle 4 entre Avenidas 20 y 19a: en dicho tramo se presentaron los siguientes tipos de daños: Desintegración, fragmentación múltiple o losa dividida, y grietas longitudinales como se puede observar a continuación:

• Calle 4 entre Avenidas 19a y 18a: en dicho tramo se presentaron los siguientes tipos de daños: fragmentación múltiple o losa dividida, como se puede observar a continuación:

de daños: fragmentación múltiple o losa dividida, como se puede observar a continuación:

• Avenidas 19 entre calles 3 y 4: en dicho tramo se presentaron los siguientes tipos de daños: fragmentación múltiple o losa dividida tipo malla, punzonamiento y desintegración, como se puede observar a continuación:

 Avenidas 19a entre calles 3 y 4: en dicho tramo se presentaron los siguientes tipos de daños: fragmentación múltiple tipo malla o losa dividida, como se puede observar a continuación:

• Avenidas 18a entre calles 3 y 4: el tramo no presenta capa de rodadura, como se puede observar a continuación:

• Avenidas 18 entre calles 3 y 4: en dicho tramo se presentaron los siguientes tipos de daños: grieta de esquina, descaramiento de esquina, y desconchamiento, como se puede observar a continuación:

• Avenidas 17ª entre calles 3 y 4: en dicho tramo se presentaron los siguientes tipos de daños: piel de cocodrilo, y desprendimiento de agregados, como se puede observar a continuación:

Realización de Apiques, extracción de muestra inalterada

Ejecución apique número 1 de un metro de profundidad

Extracción de la muestra de suelo inalterada

Apique número 2

Apique número 3

Realización ensayos de laboratorio

Registro fotográfico ensayo de granulometría por tamizado con lavado

Se disgregó material para pasarlo por el tamiz #40

Registro fotográfico ensayo de límites de Atterberg

Se obtienen los pesos secos de los límites de consistencia

Registro fotográfico ensayo de granulometría por tamizado con lavado

Se toman 500 gramos para lavado sobre el tamiz #200

Realización levantamiento topográfico

Anexo H Planos