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Abstract 

 

Non-conservative mechanical models are developed to be applied to the low 

energy impact phenomenon. The analytical description of the proposed models is 

made and the numerical solution of the system of differential equations is 

proposed. The impact of materials is undoubtedly the object of research, due to 

the dynamic condition inherent in the bodies that interact in our universe. That is 

why we have standardized methodologies for its study, such as Izod and Charpy 

impact techniques, among others. However, this work places special emphasis on 

the method of plate bending, which, due to its geometric configuration, interprets 

real impact situations to which some bodies are subjected, in addition to the low 

energy technique in which the energy available in the impactor is less than that 

absorbed in the breaking process, makes it possible to obtain information on the 

material in the elastic, plastic, initiation and crack propagation range. 
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1. Introduction 
 

The evolution of the knowledge of physical phenomena has found in modelling a 

strong tool to interpret their real behavior [1], in this sense, the present work 

intends to apply this tool to the low energy impact phenomenon, using non-

conservative models. The use of non-conservative models is based on the fact that 

there are considerable energy losses, which explain why conservative models, 

although they give an idea of the phenomenon, are not the best results [2]. 

Fracture processes in plastic materials are influenced by their properties. Polymers 

do not have the structural regularity of other materials such as ceramics and 

metals, although some polymers have a certain crystalline structure, the presence 

of macromolecules makes their accommodation and cohesion strength different 

from that of other materials, thus influencing their mechanical properties [3]. That 

is to say, an essential characteristic of polymers is that they are formed by long 

chains of macromolecules that in turn entangle each other, and it can be observed 

that their structure, apparently a solid, is in fact more similar to that of liquids. 

This is why it is considered to be a new state of matter between solids and liquids, 

called the visco-elastic state. Because it is a very elastic solid or a very viscous 

liquid [4]. Due to the viscoelastic state of the polymers, the deformation 

mechanisms depend on time, this exclusive property of the polymers is of special 

relevance for their study and application, since in the search for relating the 

structure of the materials with their mechanical behaviour, reliable methods must 

be established to characterize the response of the materials in low, medium and 

high speed conditions [5]. Within these ranges, materials subjected to impact play 

an important role and require further research, along with the use of additional 

techniques and equipment to complement and improve existing impact tests. The 

impact techniques used to evaluate the impact behaviour of plastic materials have 

evolved ostensibly from sophisticated equipment and from classical techniques to 

the development of the theory of fracture mechanics [6]. References of work 

based on these advances can be found in studies carried out on impact techniques, 

fracture mechanics, and characterization in quasi-static or high-speed conditions 

of stressing polymer materials (natural or modified). In the investigations of 

Sánchez-M [7], Jiménez-O [8] or Gámez-J [9]. 

 

2. Methodology 
 

2.1. Model development. Bending model non-conservative parallel-series 

indentation 

 

It is proposed to develop a model that interprets together the indentation and 

flexion that a body experiences when subjected to impact. In this sense, the 

following phases of the new model are proposed: Indentation phase. A series 

indentation model is developed, consisting of the arrangement of a non-linear 

spring and a linear damper in series (see Figure 1a), which was studied and tested 

in multiple indentation tests. Bending phase, a parallel arrangement is proposed,  
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which consists of the arrangement of a linear spring and a linear damper in 

parallel (see figure 1b). In such a way that the configuration obtained is a new 

bending/indentation model with a non-conservative parallel parallel series, which 

consists of a mass element (m), 2 linear dampers (one with Ci indentation and the 

other with Cf bending) and two elastic elements (one linear for Kf bending and the 

other non-linear due to Ki indentation) see figure 1c. 

 

 

a) Non-conservative 

serial Indentation 

Model 

b) Non-conservative 

parallel bending model 

c) Non-conservative 

bending/indentation model for 

parallel series 

 

Figure 1. Non-conservative bending/indentation model for parallel series 

The equations that govern the system in Figure 1 are: 

𝐹𝑚 = 𝑚 ∗ 𝛼̈ + 𝑚𝑔          (1) 

𝐹𝑐𝑖 = 𝐶𝑖 ∗ 𝛼 ∗ 𝑐𝑖         (2) 

𝐹𝑐𝑓 = 𝐶𝑓 ∗ 𝛼 ∗ 𝑐𝑓         (3) 

𝐹𝐾𝑓 = 𝐾𝑓 ∗ 𝛼𝐾𝑓          (4) 

𝐹𝐾𝑖 = 𝐾𝑖 ∗ 𝛼𝐾𝑖          (5) 

The model in figure 1c represents the collision of the low energy impactor-probe 

system, where: 

 

m, mass of the impactor. 

K, the constant of the springs. 

C, damping coefficient. 

Subscript i is used for indentation and f for bending. 

The Ki spring is non-linear (Hertzian). 

 

As it is a series-parallel model, the applied force must be analyzed in each 

element, while the total displacement is the sum of the individual ones, taking into 

account that the displacement of Kf and Cf are the same. From the model it follows  
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that the constants Kf and Ki, according to the theory of simply supported discs [11, 

12], are expressed as: 

𝐾𝑓 =
16𝜋(1+𝑣)∗𝐷

(3+𝑣)∗𝑟2 =
4∗𝜋∗𝐸∗𝑒3

3∗(3+𝑣)∗(1−𝑣)∗𝑟2      (6) 

 

𝐾𝑖 =
4∗√𝑅

3∗𝜋∗(𝐾1+𝐾2)
=

4∗√𝑅

3∗𝜋
(

1−𝑣1
2

𝐸1
+

1−𝑣2
2

𝐸2
)

−1

      (7) 

 

The constant Cf  is defined as: 

𝐶𝑓 =
2∗√𝐾𝑚

√1+(
𝜋

𝑙𝑛𝜀
)

2
          (8) 

In the case of Ci it is a factor to be adjusted for the whole solution. Displacements 

are defined as: 

𝛼 = 𝛼1 + 𝛼2 + 𝛼3        (9) 

 

Where α is the total displacement of the system as well as the mass element. 

 𝛼𝐾𝑖 = 𝛼1, corresponds to the elastic part of the indentation.  

 𝛼𝐶𝑖 = 𝛼2, describing the non-elastic deformation of the indentation. 

 𝛼𝐾𝑓 = 𝛼𝐶𝑓 = 𝛼3, describes the displacement due to bending of both 

elastic and non-elastic parts. 

When constructing the system of differential equations that describes the behavior 

of the system we have to: 

𝑚 ∗ 𝛼̈ = 𝐾𝑖 ∗ 𝛼1
3/2

        (10) 

 

𝐾𝑖 ∗ 𝛼1
3/2

= 𝐶𝑖 ∗ 𝛼2         (11) 

 

𝐾𝑖 ∗ 𝛼1
3/2

= 𝐾𝐹 ∗ 𝛼3 + 𝐶𝐹 ∗ 𝛼3    (12) 

 

The term of the gravitational effect has been disregarded. The appearance of the 

non-linear term corresponding to Hertz's law prevents us from finding an 

analytical solution that satisfies the system, and that is why the numerical method 

of Runge-Kutta of 4th order has been used to solve it. 

 

3. Results and discussion 
 

3.1. Numerical solution 

Since in the development of the equations we observe that a spring has a non-

linear behavior, the differential equation proposed lacks a solution that can be 

represented by an analytical function. However, it is possible to find a numerical 

function that is a solution to this problem. As this is an ordinary differential 

equation, it is possible to use numerical methods for its resolution. Numerical 

methods are based on algorithms, which take the initial conditions to perform the 

calculations iteratively, the convenience of the method determines it, the required 

accuracy and the breadth of the study range. For this case, the study interval is  
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relatively long, so the Euler and Euler-Gauss methods are not optimal because 

they do not provide valid solutions far from the vicinity of the starting point. 

However, the 4th order Runge Kutta method, despite the large number of 

calculations required, allows generating a numerical function that is the solution 

of an ordinary differential equation over a longer interval. 

The Runge Kutta method is based on the calculation of slopes between a known 

point and the one you want to know. It makes use of the first terms of Taylor's 

series. This makes it possible to program it and calculate the solution with a high 

density of points. In this case, since the differential equation has more than one 

variable and its respective derivatives, it is necessary to express the model as a 

system of ordinary equations related to each other that allows us to calculate the 

different variables. Once the numerical method to be used has been established, in 

order to find the function that satisfies the system of equations, it is necessary to 

express this system so that we can program the method. From equation (9) it 

follows that: 

𝛼1 = 𝛼 − 𝛼2 − 𝛼3    (13) 

From equation (13) it is necessary to: 

 

𝛼2 =
𝐾𝑖

𝐶𝑖
∗ 𝛼1

3/2
    (14) 

Replacing (13) in equation (14) has: 

 

𝛼2 =
𝐾𝑖

𝐶𝑖
∗ (𝛼 − 𝛼2 − 𝛼3)3/2    (15) 

 

From equation (10) and (11) it is necessary to: 

𝛼̈ = −
𝐶𝑖

𝑚
∗ 𝛼2      (16) 

 

Replacing equation (15) with (16) gives: 

 

𝛼 = −
𝐶𝑖

𝑚
∗ (

𝐾𝑖

𝐶𝑖
∗ (𝛼 − 𝛼2 − 𝑎3)3/2) 

 

Simplifying 

𝛼̈ = − (
𝐾𝑖

𝑚
∗ (𝛼 − 𝛼2 − 𝛼3)3/2)   (17) 

Starting from equation (12) it is necessary to: 

 

𝛼3 =
1

𝐶𝐹
∗ (𝐾𝑖 ∗ 𝛼1

3/2
− 𝐾𝐹 ∗ 𝛼3)   (18) 

 

And by replacing equation (13) in (19) it is necessary to: 

 

𝛼3 =
1

𝐶𝐹
∗ (𝐾𝑖 ∗ (𝛼 − 𝛼2 − 𝛼3)

3

2 − 𝐾𝐹 ∗ 𝛼3)   (19) 

 



2646                                                                   Milton F. Coba Salcedo et al. 
 

 

Expressions (15), (17), and (19) allow you to build the function system required 

by the Runge Kutta method. However, the presence of 4 derivatives (3 explicit 

and a fourth that does not appear) makes it necessary to have a fourth equation, 

so, in addition to the three previous equations, we define a fourth function that 

allows us to calculate all the variables that appear. 

𝛼 =
𝜕𝛼

𝜕𝑡
      (20) 

In this way, the set of functions is expressed as: 

 

𝑓𝑖 =
𝐾𝑖

𝐶𝑖
∗ (𝛼 − 𝛼2 − 𝛼3)3/2    (21) 

 

𝑓2 = − (
𝐾𝑖

𝑚
∗ (𝛼 − 𝛼2 − 𝛼3)3/2)    (22) 

 

𝑓3 =
1

𝐶𝐹
∗ (𝐾𝑖 ∗ (𝛼 − 𝛼2 − 𝛼3)3/2 − 𝐾𝐹 ∗ 𝛼3)  (23) 

 

𝑓4 = 𝛼 =
𝜕𝛼

𝜕𝑡
      (24) 

With this system of equations, the algorithm was developed and programmed in 

Excel for the ease with which this program can handle data tables and dynamic 

calculation, as well as for its convenience in visualizing the different variables and 

results. In its programming the intervals of 1 or 2 μs are used between each 

calculated point. These will correspond to the same time interval as the data 

acquisition equipment used in the experiments. For the operation of the algorithm 

the initial conditions are: 

 Impact velocity (𝛼𝑡=0 = 𝑣0) 

 Non-elastic strain rate (damping element); (𝛼 2,𝑡=0 = 0) 

 The acceleration of the mass element (𝛼̈ = 0) 

The parameters of the model are the mass of the impactor (m) and the constants K 

(related to the elastic part) and C (related to the loss of energy and therefore to the 

restitution coefficient). These two parameters can be manually varied to adjust the 

model to the experimental values. 

 

3.2. Non-conservative series-parallel bending-indentation model considering 

gravitational effects 

 

In this model, the collision of the impactor-probe system at low energy is 

represented by the arrangement of figure 2, the model considers the mass of the 

specimen (mp). Where: 

m, mass of the impactor. 

mp, mass of the test tube. 

K, the constant of the springs. 

C, damping coefficient. 

Subscript i is used for indentation and f for bending. 

The Ki spring is non-linear (Hertzian). 
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Figure 2. Non-conservative parallel series bending/indentation model with 

effective specimen mass. 

 

The equations governing the system in Figure 2 are: 

𝐹𝑚 = 𝑚 ∗ 𝛼̈ + 𝑚 ∗ 𝑔     (25) 

 

𝐹𝐶𝑖 = 𝐶𝑖 ∗ 𝛼𝐶𝑖      (26) 

 

𝐹𝐶𝑓 = 𝐶𝑓 ∗ 𝛼 ∗ 𝑐𝑓     (27) 

 

𝐹𝐾𝑓 = 𝐾𝑓 ∗ 𝛼𝐾𝑓     (28) 

 

𝐹𝐾𝑖 = 𝐾𝑖 ∗ 𝛼𝐾𝑖     (29) 

 

The constants Kf and Ki are defined as 

: 

𝐾𝐹 =
16𝜋(1+𝑣)𝐷

(3+𝑣)𝑟2
=

4𝜋𝐸𝑒3

3(3+𝑣)(1−𝑣)𝑟2
   (30) 

 

𝐾𝑖 =
4√𝑅

3𝜋(𝐾1+𝐾2)
=

4√𝑅

3𝜋
(

1−𝑣1
2

𝐸1
+

1−𝑣2
2

𝐸2
)

−1

  (31) 

The constant Cf is defined as: 

𝐶𝑓 =
2√𝐾𝑚

√1+(
𝜋

𝐼𝑛𝜀
)

2
     (32) 

In the case of Ci is a factor that needs to be adjusted so that overall the solution. 

Displacements are defined as: 

𝛼 = 𝛼1 + 𝛼2 + 𝛼3    (33) 

 

Where α is the total displacement of the system as well as the mass element. 

When constructing the system of differential equations that describes the behavior 

of this system we have to: 
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 𝛼𝐾𝑖 = 𝛼1, corresponding to the elastic part of the indentation. 

 𝛼𝐶𝑖 = 𝛼2, describing the non-elastic deformation of the indentation. 

 𝛼𝐾𝐹 = 𝛼𝐶𝑓 = 𝛼3, describes the displacement due to bending of both 

elastic and non-elastic parts. 

When constructing the system of differential equations that describes the behavior 

of this system we have to: 

𝑚 ∗ 𝛼 + 𝑚 ∗ 𝑔 = 𝐾𝑖 ∗ 𝛼1
3/2̈

     (34) 

 

𝐾𝑖 ∗ 𝛼1
3/2

= 𝐶𝑖 ∗ 𝛼2     (35) 

 

𝑚 ∗ 𝑝 ∗ 𝛼̈ + 𝑚 ∗ 𝑝 ∗ 𝑔 = 𝐾𝑖 ∗ 𝛼1 − 𝐶𝐹 ∗ 𝛼3 − 𝐾𝐹 ∗ 𝛼3  (36) 

The appearance of the non-linear term corresponding to Hertz's law prevents us 

from finding an analytical solution that satisfies the system, and that is why the 

numerical method of Runge-Kutta of 4th order has been used to solve it. From 

equation 33 it follows that: 

𝛼1 = 𝛼 − 𝛼2 − 𝛼3      (37) 

From equation 35 it is necessary to: 

𝛼2 =
𝐾𝑖

𝐶𝐼
∗ 𝛼1

3/2
     (38) 

 

Replacing equation (36) with (37) gives: 

𝛼2 =
𝐾𝑖

𝐶𝑖
∗ (𝛼 − 𝛼2 − 𝛼3)3/2    (39) 

 

By replacing equation (35) in (34) you have: 

𝛼̈ = −
𝐶𝑖

𝑚
∗ 𝛼2 − 𝑔    (40) 

 

Replacing (36) in equation (38): 

𝛼̈ = −
𝐶𝑖

𝑚
∗ (

𝐾𝑖

𝐶𝑖
∗ (𝛼 − 𝛼2 − 𝛼3)

3

2) − 𝑔    (41) 

 

Simplifying: 

𝛼̈ = − (
𝐾𝑖

𝑚
∗ (𝛼 − 𝛼2 − 𝛼3)

3

2) − 𝑔     (42) 

 

Starting from equation (36) it is necessary to: 

𝛼̈ = −
𝐾𝐼

𝑚𝑝
∗ (𝛼1)

3

2 −
𝐾𝐹

𝑚𝑝
∗ 𝛼3 −

𝐶𝐹

𝑚𝑝
∗ 𝛼3 − 𝑔  (43) 

 

Replacing equation (36) with (42) gives: 

𝛼̈3 = −
𝐾𝐼

𝑚𝑝
∗ (𝛼 − 𝛼2 − 𝛼3)

3

2 −
𝐾𝐹

𝑚𝑝
∗ 𝛼3 −

𝐶𝐹

𝑚𝑝
𝛼3 − 𝑔  (44) 

 

Expressions (38), (41) and (43) allow you to build the function system required by 

the Runge-Kutta method. However, the presence of 4 derivatives (3 explicit and a 

fourth that does not appear) makes it necessary to have a fourth equation, so in  



Development of non-conservative mechanical models                                      2649 

 

 

addition to the three previous equations, a 4th function was defined to calculate all 

the variables that appear. 

 

𝛼̇ =
𝜕𝛼

𝜕𝑡
      (45) 

In this way, the set of functions is defined as: 

 

𝑓1 =
𝐾𝑖

𝐶𝑖
∗ (𝛼 − 𝛼2 − 𝛼3)3/2    (46) 

 

𝑓2 = − (
𝐾𝑖

𝑚
(𝛼 − 𝛼2 − 𝛼3)

3

2) − 𝑔   (47) 

 

𝑓3 = − (
𝐾𝐼

𝑚𝑝
∗ (𝛼 − 𝛼2 − 𝛼3)

3

2) −
𝐾𝐹

𝑚𝑝
∗ 𝛼3 −

𝐶𝐹

𝑚𝑝
∗ 𝛼3 − 𝑔    (48) 

 

𝑓4 = 𝛼 =
𝜕𝛼

𝜕𝑡
     (49) 

With this system of equations an algorithm was developed and programmed. 

 Speed of impact (𝛼𝑡=0, = 𝑣0) 

 Non-elastic strain rate (shock-absorbing element); (𝛼2,𝑡=0 = 0) 

 The acceleration of the mass element (𝛼̈ = 0) 

 The acceleration of the mass element (𝛼̈3 = 0) 

The parameters of the model are the mass of the impactor (m), the mass of the test 

piece (mp) and the constants K (related to the elastic part) and C (related to the 

loss of energy and therefore to the coefficient of restitution). These two 

parameters can be manually varied to fit the model to the experimental values. 

 

4. Conclusions 
 

The application of the bending and indentation models with and without mass 

allows distinguishing at what value of the energy or the maximum force the 

beginning of the damage in the specimen takes place. The models allow us to 

discriminate dynamic phenomena due to the impact of the energy absorbed and 

recovered by the material, even allowing us to differentiate the behavior of two 

materials that may consume the same energy or present similarity in the force-

time curve. The parallel series model with mass, in addition to reproducing the 

quasi-sinusoidal shape of the experimentally obtained curves, also reproduces the 

undulations present in the tests performed, which are motivated by inertial forces 

due to the effective mass of the test tube. 
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