Mostrar el registro sencillo del ítem

dc.contributor.authormolina, valentin
dc.contributor.authorLeyva-Díaz, Juan Carlos
dc.contributor.authorSanchez Molina, Jorge
dc.date.accessioned2021-11-06T21:07:32Z
dc.date.available2021-11-06T21:07:32Z
dc.date.issued2016-09-27
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/716
dc.description.abstractThis study analyzes the operation of Biomass System (BIO System) technology for the combustion of pellets from almond and olive trees within the circular economy model. Its aims are the reduction of greenhouse gas emissions as well as waste removal and its energy use by reintroducing that waste into the production process as technological nutrient. In order to do so, combustion efficiency under optimal conditions at nominal power was analyzed. In addition, a TESTO 350-XL analyzer was employed to measure CO and NOx emissions. High combustion efficiency values were obtained, 87.7% and 86.3%, for pellets from olive tree and almond tree, respectively. The results of CO and NOx emission levels were very satisfactory. Under conditions close to nominal power, CO emission levels were 225.3 ppm at 6% O2 for pellet from almond tree and 351.6 ppm at 6% O2 for pellet from olive tree. Regarding NOx emissions, the values were 365.8 ppm at 6% O2 and 333.2 ppm at 6% O2 for pellets from almond tree and olive tree, respectively. In general, these values were below those legally established by current legislation in European countries. Therefore, BIO System technology is a perfectly feasible option in terms of energy use and circular economy.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherEnergiesspa
dc.relation.ispartofEnergies
dc.rights© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).eng
dc.sourcehttps://www.mdpi.com/1996-1073/9/10/777spa
dc.titlePellet as a Technological Nutrient within the circular economy model: Compartive analysis of combustion efficiency and CO and NOx Emissions for pellets from olive and almond treeseng
dc.typeArtículo de revistaspa
dcterms.referencesGonzález, J.F.; González-García, C.M.; Ramiro, A.; Gañán, J.; Ayuso, A.; Turegano, J. Use of energy crops for domestic heating with a mural boiler. Fuel Process. Technol. 2006, 87, 717–726. [CrossRef]spa
dcterms.referencesLuque, R.; Davila, H.H.; Campelo, J.M.; Clark, J.H.; Hidalgo, J.M.; Luna, D.; Marinas, J.M.; Romero, A.A. Biofuels: A technological perspective. Energy Environ. Sci. 2008, 1, 542–564. [CrossRef]spa
dcterms.referencesZuwała, J. Life cycle approach for energy and environmental analysis of biomass and coal co-firing in CHP plant with backpressure turbine. J. Clean. Prod. 2012, 35, 164–175. [CrossRef]spa
dcterms.referencesLieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [CrossRef]spa
dcterms.referencesJorquera, O.; Kiperstok, A.; Sales, E.A.; Embiruçu, M.; Ghirardi, M.L. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 2010, 101, 1406–1413. [CrossRef] [PubMed]spa
dcterms.referencesMuthuraman, M.; Namioka, T.; Yoshikawa, K. A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste. Bioresour. Technol. 2010, 101, 2477–2482. [CrossRef] [PubMed]spa
dcterms.referencesGarcía, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 2012, 103, 249–258. [CrossRef] [PubMed]spa
dcterms.referencesDare, P.; Gifford, J.; Hooper, R.J.; Clemens, A.H.; Damiano, L.F.; Gong, D.; Matheson, T.W. Combustion performance of biomass residue and purpose grown species. Biomass Bioenergy 2001, 21, 277–287. [CrossRef]spa
dcterms.referencesFriberg, R.; Blasiak, W. Measurements of mass flux and stoichiometry of conversion gas from three different wood fuels as function of volume flux of primary air in packed-bed combustion. Biomass Bioenergy 2002, 23, 189–208. [CrossRef]spa
dcterms.referencesMcKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [CrossRef]spa
dcterms.referencesKylili, A.; Christoforou, E.; Fokaides, P.A. Environmental evaluation of biomass pelleting using life cycle assessment. Biomass Bioenergy 2016, 84, 107–117. [CrossRef]spa
dcterms.referencesShen, D.K.; Gu, S.; Luo, K.H.; Bridgewater, A.V.; Fang, M.X. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 2009, 88, 1024–1030. [CrossRef]spa
dcterms.referencesPermchart, W.; Kouprianov, V.I. Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels. Bioresour. Technol. 2004, 92, 83–91. [CrossRef] [PubMed]spa
dcterms.referencesHall, D.O.; Rosillo-Calle, F.; de Groot, P. Biomass energy lessons from case studies in developing countries. Energy Policy 1992, 20, 62–73. [CrossRef]spa
dcterms.referencesDemirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [CrossRef]spa
dcterms.referencesFernández, R.G.; García, C.P.; Lavín, A.G.; de las Heras, J.L. Study of main combustion characteristics for biomass fuels used in boilers. Fuel Process. Technol. 2012, 103, 16–26. [CrossRef]spa
dcterms.referencesBarbanera, M.; Lascaro, E.; Stanzione, V.; Esposito, A.; Altieri, R.; Bufacchi, M. Characterization of pellets from mixing olive pomace and olive tree pruning. Renew. Energy 2016, 88, 185–191. [CrossRef]spa
dcterms.references. Sesli, M.; Yegenoglu, E.D. RAPD-PCR analysis of cultured type olives in Turkey. Afr. J. Biotechnol. 2009, 8, 3418–3423.spa
dcterms.referencesAktas, T.; Thy, P.; Williams, R.B.; McCaffrey, Z.; Khatami, R.; Jenkins, B.M. Characterization of almond processing residues from the Central Valley of California for thermal conversion. Fuel Process. Technol. 2015, 140, 132–147. [CrossRef]spa
dcterms.referencesChen, P.; Cheng, Y.; Deng, S.; Lin, X.; Huang, G.; Ruan, R. Utilization of almond residues. Int. J. Agric. Biol. Eng. 2010, 3, 1–18spa
dcterms.referencesGonzález, J.F.; González-García, C.M.; Ramiro, A.; Gañán, J.; González, J.; Sabio, E.; Román, S.; Turegano, J. Use of almond residues for domestic heating. Study of the combustion parameters in a mural boiler. Fuel Process. Technol. 2005, 86, 1351–1368. [CrossRef]spa
dcterms.referencesNogués, F.S.; García, D.; Rezeau, A. Energías Renovables-Energía de la Biomasa (Volumen I); Prensas Universitarias de Zaragoza: Zaragoza, Spain, 2010; pp. 1–557spa
dcterms.referencesKüçük, M.M.; Demirbas, A. Biomass conversion processes. Energy Convers. Manag. 1997, 38, 151–165. [CrossRef]spa
dcterms.referencesVan Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-Firing; Earthscan: London, UK, 2010; pp. 1–442.spa
dcterms.referencesGonzález, J.F.; González-García, C.M.; Ramiro, A.; González, J.; Sabio, E.; Gañán, J.; Rodríguez, M.A. Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass Bioenergy 2004, 27, 145–154. [CrossRef]spa
dcterms.referencesTissari, J.; Hytonen, K.; Sippula, O.; Jokiniemi, J. The effects of operating conditions on emissions from masonry heaters and sauna stoves. Biomass Bioenergy 2009, 33, 513–520. [CrossRef]spa
dcterms.referencesLehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 2001, 20, 351–360. [CrossRef]spa
dcterms.referencesGilbert, P.; Ryu, C.; Sharifi, V.; Swithenbank, J. Effect of process parameters on pelletisation of herbaceous crops. Fuel 2009, 88, 1491–1497. [CrossRef]spa
dcterms.referencesKaliyan, N.; Vance, R. Factors affecting strength and durability of densified biomass products: Review. Biomass Bioenergy 2009, 33, 337–359. [CrossRef]spa
dcterms.referencesOravainen, H. Testing Methods and Emission Requirements for Small Boilers (<300 kW) in Europe; VTT Energy: Helsinki, Finland, 2000; pp. 1–13.spa
dcterms.referencesISO 17829:2015. Solid Biofuels. Determination of Length and Diameter of Pellets; International Organization for Standardization (ISO): Geneva, Switzerland, 2015.spa
dcterms.referencesEN 15150:2011. Solid Biofuels. Determination of Bulk Density; European Norm (EN): Brussels, Belgium, 2011.spa
dcterms.referencesISO 18134-2:2015. Solid Biofuels. Determination of Moisture Content. Oven Dry Method. Part 2: Total Moisture. Simplified Method; International Organization for Standardization (ISO): Geneva, Switzerland, 2015.spa
dcterms.referencesISO 18122:2015. Solid Biofuels. Determination of Ash Content; International Organization for Standardization (ISO): Geneva, Switzerland, 2015.spa
dcterms.referencesISO 18123:2015. Solid Biofuels. Determination of the Content of Volatile Matter; International Organization for Standardization (ISO): Geneva, Switzerland, 2015.spa
dcterms.referencesISO 16948:2015. Solid Biofuels. Determination of Total Content of Carbon, Hydrogen and Nitrogen; International Organization for Standardization (ISO): Geneva, Switzerland, 2015.spa
dcterms.referencesISO 16994:2015. Solid Biofuels. Determination of Total Content of Sulfur and Chlorine; International Organization for Standardization (ISO): Geneva, Switzerland, 2015.spa
dcterms.referencesEN 14918:2009. Solid Biofuels. Determination of Calorific Value; European Norm (EN): Brussels, Belgium, 2009spa
dcterms.referencesVerma, V.K.; Bram, S.; Delattin, F.; Laha, P.; Vandendael, I.; Hubin, A.; de Ruyck, J. Agro-pellets for domestic heating boilers: Standard laboratory and real life performance. Appl. Energy 2012, 90, 17–23. [CrossRef]spa
dcterms.referencesDias, J.; Costa, M.; Azevedo, J.L.T. Test of a small domestic boiler using different pellets. Biomass Bioenergy 2004, 27, 531–539. [CrossRef]spa
dcterms.referencesVerma, V.K.; Bram, S.; Gauthier, G.; de Ruyck, J. Evaluation of the performance of a multi-fuel domestic boiler with respect to the existing European standard and quality labels: Part-1. Biomass Bioenergy 2011, 35, 80–89. [CrossRef]spa
dcterms.referencesVerma, V.K.; Bram, S.; Gauthier, G.; de Ruyck, J. Performance of a domestic pellet boiler as a function of operational loads: Part-2. Biomass Bioenergy 2011, 35, 272–279. [CrossRef]spa
dcterms.referencesPersson, T.; Fiedler, F.; Nordlander, S.; Bales, C.; Paavilainen, J. Validation of a dynamic model for wood pellet boilers and stoves. Appl. Energy 2009, 86, 645–656. [CrossRef]spa
dc.identifier.doihttps://doi.org/10.3390/en9100777
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol.9 No.10.(2016)spa
dc.relation.citationendpage16spa
dc.relation.citationissue10 (2016)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume9spa
dc.relation.citesMolina-Moreno, V., Leyva-Díaz, J. C., & Sánchez-Molina, J. (2016). Pellet as a technological nutrient within the circular economy model: Comparative analysis of combustion efficiency and CO and NOx emissions for pellets from olive and almond trees. Energies, 9(10), 777.
dc.relation.ispartofjournalEnergiesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalpelleteng
dc.subject.proposalolive treeeng
dc.subject.proposalalmond treeeng
dc.subject.proposalemissioneng
dc.subject.proposalefficiencyeng
dc.subject.proposalcircular economyeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem