Mostrar el registro sencillo del ítem

dc.contributor.authorMiranda, Julian
dc.contributor.authorFlórez Abril, Angélica
dc.contributor.authorOspina, Gustavo
dc.contributor.authorGamboa, Ciro Alberto
dc.contributor.authorAltuve, Miguel
dc.contributor.authorFLOREZ-GONGORA, CARLOS
dc.date.accessioned2021-11-06T18:05:47Z
dc.date.available2021-11-06T18:05:47Z
dc.date.issued2020-12-18
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/710
dc.description.abstractThis paper presents an integrated model for seismic events detection in Colombia using machine learning techniques. Machine learning is used to identify P-wave windows in historic records and hence detect seismic events. The proposed model has five modules that group the basic detection system procedures: the seeking, gathering, and storage seismic data module, the reading of seismic records module, the analysis of seismological stations module, the sample selection module, and the classification process module. An explanation of each module is given in conjunction with practical recommendations for its implementation. The resulting model allows understanding the integration of the phases required for the design and development of an offline seismic event detection system.eng
dc.format.extent17 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherFuture Internetspa
dc.relation.ispartofFuture Internet
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).eng
dc.sourcehttps://www.mdpi.com/1999-5903/12/12/231spa
dc.titleProposal for a system model for offline seismic event detection in Colombiaeng
dc.typeArtículo de revistaspa
dcterms.referencesEl Tiempo, C.E.E. ¿Cuán Vulnerable es Colombia Ante un Sismo? Available online: https://www.eltiempo.c om/archivo/documento/CMS-16571309 (accessed on 5 November 2019).spa
dcterms.referencesEl Tiempo, C.E.E. Los Peores Terremotos en la Historia de Colombia. Available online: https://www.eltiempo .com/colombia/otras-ciudades/terremotos-mas-fuertes-de-colombia-155006 (accessed on 18 February 2020).spa
dcterms.referencesWen-xiang, J.; Hai-ying, Y.; Li, L. A Robust Algorithm for Earthquake Detector. Available online: /paper/A-Robust-Algorithm-for-Earthquake-Detector-Wen-xiang-Hai-ying/fa34661c1689cc9ee9a871ae4e1 740bf323a54d2 (accessed on 18 February 2020).spa
dcterms.referencesCuéllar, A.; Suárez, G.; Espinosa-Aranda, J.M. Performance Evaluation of the Earthquake Detection and Classification Algorithm 2( tS–tP) of the Seismic Alert System of Mexico (SASMEX). Bull. Seismol. Soc. Am. 2017, 107, 1451–1463. [CrossRef]spa
dcterms.referencesSharma, B.K.; Kumar, A.; Murthy, V.M. Evaluation of seismic events detection algorithms. J. Geol. Soc. India 2010, 75, 533–538. [CrossRef]spa
dcterms.referencesUSGS 20 Largest Earthquakes in the World. Available online: https://www.usgs.gov/natural-hazards/earthqu ake-hazards/science/20-largest-earthquakes-world?qt-science_center_objects=0#qt-science_center_objects (accessed on 27 November 2020).spa
dcterms.referencesSarria Molina, A. Ingeniería Sísmica; Ediciones Uniandes, Ecoe Ediciones: Bogotá, Colombia, 1995; ISBN 958-9057-49-7.spa
dcterms.referencesFrohlich, C.; Kadinsky-Cade, K.; Davis, S.D. A reexamination of the Bucaramanga, Colombia, earthquake nest. Bull. Seismol. Soc. Am. 1995, 85, 1622–1634.spa
dcterms.referencesPrieto, G.A.; Beroza, G.C.; Barrett, S.A.; López, G.A.; Florez, M. Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics 2012, 570, 42–56.spa
dcterms.referencesBernal-Olaya, R.; Mann, P.; Vargas, C.A. Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean Margin of Northwestern Colombia. In Petroleum Geology and Potential of the Colombian Caribbean Margin; American Association of Petroleum Geologists: Tulsa, OK, USA, 2015; pp. 247–269.spa
dcterms.referencesOchoa, L.H.; Niño, L.F.; Vargas, C.A. Fast magnitude determination using a single seismological station record implementing machine learning techniques. Geod. Geodyn. 2018, 9, 34–41. [spa
dcterms.referencesKonovalov, A.V.; Stepnov, A.A.; Patrikeev, V.N. SEISAN software application for developing an automated seismological data analysis workstation. Seism. Instrum. 2012, 48, 270–281.spa
dcterms.referencesStepnov, A.A.; Gavrilov, A.V.; Konovalov, A.V.; Ottemöller, L. New architecture of an automated system for acquisition, storage, and processing of seismic data. Seism. Instrum. 2014, 50, 67–74.spa
dcterms.referencesHavskov, J.; Ottemoller, L. SEISAN earthquake analysis software. Seismol. Res. Lett. 1999, 70, 532–534.spa
dcterms.referencesWeber, B.; Becker, J.; Hanka, W.; Heinloo, A.; Hoffmann, M.; Kraft, T.; Pahlke, D.; Reinhardt, J.; Thoms, H. SeisComP3—Automatic and interactive real time data processing. Geophys. Res. Abstracts 2007, 9, 09219.spa
dcterms.referencesAlfaro, A. Difficulties on psha in Colombia because of data scarcity. Bull. Int. Inst. Seismol. Earthq. Eng. 2012, 46, 145–152.spa
dcterms.referencesMora-Páez, H.; Peláez-Gaviria, J.-R.; Diederix, H.; Bohórquez-Orozco, O.; Cardona-Piedrahita, L.; Corchuelo-Cuervo, Y.; Ramírez-Cadena, J.; Díaz-Mila, F. Space Geodesy Infrastructure in Colombia for Geodynamics Research. Seismol. Res. Lett. 2018, 89, 446–451.spa
dcterms.referencesZhu, W.; Mousavi, S.M.; Beroza, G.C. Seismic Signal Denoising and Decomposition Using Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9476–9488.spa
dcterms.referencesPerol, T.; Gharbi, M.; Denolle, M. Convolutional neural network for earthquake detection and location. Sci. Adv. 2018, 4, e1700578.spa
dcterms.referencesHildyard, M.W.; Nippress, S.E.J.; Rietbrock, A. Event Detection and Phase Picking Using a Time-Domain Estimate of Predominate Period Tpd. Bull. Seismol. Soc. Am. 2008, 98, 3025–3032.spa
dcterms.referencesToledo Peña, P.A. Algoritmo de Detección de Ondas P Invariante de Escala: Caso de Réplicas del Sismo del 11 de Marzo de 2010. Ph.D. Thesis, Universidad de Chile, Santiago, Chile, 2014.spa
dcterms.referencesAllen, R.M.; Gasparini, P.; Kamigaichi, O.; Bose, M. The status of earthquake early warning around the world: An introductory overview. Seismol. Res. Lett. 2009, 80, 682–693.spa
dcterms.referencesJoswig, M. Pattern recognition for earthquake detection. Bull. Seismol. Soc. Am. 1990, 80, 170–186.spa
dcterms.referencesDonoho, D.L. Nonlinear Wavelet Methods for Recovery of Signals, Densities, and Spectra from Indirect and Noisy Data. 1993. Available online: https://statistics.stanford.edu/sites/g/files/sbiybj6031/f/EFS%20NSF%20 437.pdf (accessed on 2 December 2020).spa
dcterms.referencesHafez, A.G.; Khan, T.A.; Kohda, T. Earthquake onset detection using spectro-ratio on multi-threshold time–frequency sub-band. Digit. Signal Process. 2009, 19, 118–126.spa
dcterms.referencesWithers, M.; Aster, R.; Young, C.; Beiriger, J.; Harris, M.; Moore, S.; Trujillo, J. A comparison of select trigger algorithms for automated global seismic phase and event detection. Bull. Seismol. Soc. Am. 1998, 88, 95–106.spa
dcterms.referencesAllen, R.V. Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am. 1978, 68, 1521–1532.spa
dcterms.referencesLeonard, M. Comparison of Manual and Automatic Onset Time Picking. Bull. Seismol. Soc. Am. 2000, 90, 1384–1390.spa
dcterms.referencesLi, Z.; Peng, Z.; Hollis, D.; Zhu, L.; McClellan, J. High-resolution seismic event detection using local similarity for Large-N arrays. Sci. Rep. 2018, 8, 1646.spa
dcterms.referencesSchorlemmer, D.; Woessner, J. Probability of Detecting an Earthquake. Bull. Seismol. Soc. Am. 2008, 98, 2103–2117.spa
dcterms.referencesYoon, C.E.; O’Reilly, O.; Bergen, K.J.; Beroza, G.C. Earthquake detection through computationally efficient similarity search. Sci. Adv. 2015, 1, e1501057.spa
dcterms.referencesAvvenuti, M.; Cresci, S.; Marchetti, A.; Meletti, C.; Tesconi, M. EARS (Earthquake Alert and Report System): A Real Time Decision Support System for Earthquake Crisis Management. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; ACM: New York, NY, USA, 2014; pp. 1749–1758.spa
dcterms.referencesSakaki, T.; Okazaki, M.; Matsuo, Y. Earthquake shakes Twitter users: Real-time event detection by social sensors. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; ACM: New York, NY, USA, 2010; pp. 851–860.spa
dcterms.referencesEarle, P.S.; Bowden, D.C.; Guy, M. Twitter earthquake detection: Earthquake monitoring in a social world. Ann. Geophys. 2012, 54.spa
dcterms.referencesLiu, H.; Zhang, J.Z. STA/LTA algorithm analysis and improvement of Microseismic signal automatic detection. Prog. Geophys. 2014, 29, 1708–1714.spa
dcterms.referencesHavskov, J.; Ottemöller, L. Seisan: The Earthquake Analysis Software for Windows, Solaris, Linuz and MacOSx Version 8.1; Institute of Solid Earth Science, University of Bergen: Bergen, Norway, 2008.spa
dcterms.referencesIRIS: Data Formats. Available online: https://ds.iris.edu/ds/nodes/dmc/data/formats/ (accessed on 19 February 2020).spa
dcterms.referencesPavlis, G. SEISPP Library: C++ Seismic Data Processing Library. Available online: https://pavlab.sitehost.iu .edu/software/seispp/html/index.html (accessed on 9 October 2020).spa
dcterms.referencesBeyreuther, M.; Barsch, R.; Krischer, L.; Megies, T.; Behr, Y.; Wassermann, J. ObsPy: A Python Toolbox for Seismology. Seismol. Res. Lett. 2010, 81, 530–533.spa
dcterms.referencesUnited States Geological Survey Earthquake Hazards—Software. Available online: https://www.usgs.gov/n atural-hazards/earthquake-hazards/software (accessed on 19 February 2020).spa
dcterms.referencesMiranda Calle, J.D.; Gamboa Entralgo, C.A. Desarrollo de un Sistema para la Detección de Movimientos Sísmicos usando Redes Neuronales Artificiales; Universidad Pontificia Bolivariana: Medellín, Colombia, 2018.spa
dcterms.referencesChen, Z.; Stewart, R.R. A multi-window algorithm for real-time automatic detection and picking of p-phases of microseismic events. CREWES Res. Rep. 2006, 18. Available online: https://www.crewes.org/ForOurSpons ors/ResearchReports/2006/2006-15.pdf (accessed on 2 December 2020).spa
dcterms.referencesSeisComP3 Scautopick. Makes Picks on Waveforms. Available online: https://www.seiscomp3.org/doc/jaka rta/current/apps/scautopick.html (accessed on 19 February 2020).spa
dcterms.referencesServicio Geológico Colombiano Consulta Catálogo Sísmico. Available online: https://www2.sgc.gov.co/sgc/ sismos/Paginas/catalogo-sismico.aspx (accessed on 11 February 2020).spa
dcterms.referencesCatálogo Mecanismo Focal y Tensor Momento. Available online: http://bdrsnc.sgc.gov.co/sismologia1/sism ologia/focal_seiscomp_3/index.html (accessed on 9 October 2020).spa
dcterms.referencesZhang, J.; Tang, Y.; Li, H. STA/LTA Fractal Dimension Algorithm of Detecting the P-Wave ArrivalSTA/LTA Fractal Dimension Algorithm of Detecting the P-Wave Arrival. Bull. Seismol. Soc. Am. 2018, 108, 230–237.spa
dcterms.referencesAkram, J.; Peter, D.; Eaton, D. A k-mean characteristic function to improve STA/LTA detection. In Proceedings of the Geoconvention, Calgary, AB, Canada, 7–11 May 2018; p. 5. Available online: https://geoconvention.com/wp-content/uploads/abstracts/2018/287_GC2018_A_k-mean_characteri stic_function_to_improve_STALTA1_detection.pdf (accessed on 2 December 2020).spa
dcterms.referencesGentili, S.; Michelini, A. Automatic picking of P and S phases using a neural tree. J. Seismol. 2006, 10, 39–63.spa
dcterms.referencesAudretsch, J.M.L. Earthquake Detection using Deep Learning Based Approaches. Master’s Thesis, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2020.spa
dcterms.referencesWiszniowski, J.; Plesiewicz, B.M.; Trojanowski, J. Application of real time recurrent neural network for detection of small natural earthquakes in Poland. Acta Geophys. 2014, 62, 469–485.spa
dcterms.referencesKong, Q.; Trugman, D.T.; Ross, Z.E.; Bianco, M.J.; Meade, B.J.; Gerstoft, P. Machine Learning in Seismology: Turning Data into Insights. Seismol. Res. Lett. 2019, 90, 3–14.spa
dcterms.referencesVenkatesh, B.; Anuradha, J. A Review of Feature Selection and Its Methods. Cybern. Inf. Technol. 2019, 19, 3–26.spa
dcterms.referencesMiranda, J.D.; Gamboa, C.A.; Flórez, A.; Altuve, M. Voting-based seismic data classification system using logistic regression models. In Proceedings of the 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), Bucaramanga, Colombia, 24–26 April 2019; pp. 1–5.spa
dcterms.referencesBormann, P.; Wielandt, E. Seismic Signals and Noise. New Man. Seismol. Obs. Pract. 2 NMSOP2 2013, 1–62.spa
dcterms.referencesKaur, K.; Wadhwa, M.; Park, E.K. Detection and identification of seismic P-Waves using Artificial Neural Networks. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–6.spa
dcterms.referencesBeyreuther, M.; Hammer, C.; Wassermann, J.; Ohrnberger, M.; Megies, T. Constructing a Hidden Markov Model based earthquake detector: Application to induced seismicity: Constructing a HMM based earthquake detector. Geophys. J. Int. 2012, 189, 602–610.spa
dcterms.referencesRiggelsen, C.; Ohrnberger, M. A Machine Learning Approach for Improving the Detection Capabilities at 3C Seismic Stations. Pure Appl. Geophys. 2014, 171, 395–411.spa
dcterms.referencesRuano, A.E.; Madureira, G.; Barros, O.; Khosravani, H.R.; Ruano, M.G.; Ferreira, P.M. Seismic detection using support vector machines. Neurocomputing 2014, 135, 273–283.spa
dcterms.referencesAsencio–Cortés, G.; Morales–Esteban, A.; Shang, X.; Martínez–Álvarez, F. Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure. Comput. Geosci. 2018, 115, 198–210.spa
dcterms.referencesLi, W.; Narvekar, N.; Nakshatra, N.; Raut, N.; Sirkeci, B.; Gao, J. Seismic Data Classification Using Machine Learning. In Proceedings of the 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), Bamberg, Germany, 26–29 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 56–63.spa
dcterms.referencesAmidan, B.G.; Hagedom, D.N. Logistic Regression Applied to Seismic Discrimination; No. PNNL-12031; Pacific Northwest National Lab.: Richland, WA, USA, 1998.spa
dcterms.referencesReynen, A.; Audet, P. Supervised machine learning on a network scale: Application to seismic event classification and detection. Geophys. J. Int. 2017, 210, 1394–1409.spa
dcterms.referencesIbs-von Seht, M. Detection and identification of seismic signals recorded at Krakatau volcano (Indonesia) using artificial neural networks. J. Volcanol. Geotherm. Res. 2008, 176, 448–456.spa
dcterms.referencesHassanAitLaasri, E.; Akhouayri, E.-S.; Agliz, D.; Atmani, A. Seismic Signal Classification using Multi-Layer Perceptron Neural Network. Int. J. Comput. Appl. 2013, 79, 35–43.spa
dcterms.referencesGiudicepietro, F.; Esposito, A.M.; Ricciolino, P. Fast Discrimination of Local Earthquakes Using a Neural Approach. Seismol. Res. Lett. 2017, 88, 1089–1096.spa
dcterms.referencesVallejos, J.A.; McKinnon, S.D. Logistic regression and neural network classification of seismic records. Int. J. Rock Mech. Min. Sci. 2013, 62, 86–95.spa
dcterms.referencesDiersen, S.; Lee, E.-J.; Spears, D.; Chen, P.; Wang, L. Classification of Seismic Windows Using Artificial Neural Networks. Procedia Comput. Sci. 2011, 4, 1572–1581.spa
dcterms.referencesAmei, A.; Fu, W.; Ho, C.-H. Time Series Analysis for Predicting the Occurrences of Large Scale Earthquakes. Int. J. Appl. Sci. Technol. 2012, 2, 12.spa
dcterms.referencesAdhikari, R.; Agrawal, R.K. An Introductory Study on Time series Modeling and Forecasting. arXiv 2013, arXiv:1302.6613. Available online: https://arxiv.org/abs/1302.6613 (accessed on 2 December 2020).spa
dcterms.referencesYu, J.; Wang, R.; Liu, T.; Zhang, Z.; Wu, J.; Jiang, Y.; Sun, L.; Xia, P. Seismic energy dispersion compensation by multi-scale morphology. Pet. Sci. 2014, 11, 376–384.spa
dcterms.referencesEgrioglu, E.; Khashei, M.; Aladag, C.H.; Turksen, I.B.; Yolcu, U. Advanced Time Series Forecasting Methods. Available online: https://www.hindawi.com/journals/mpe/2015/918045/ (accessed on 9 October 2020).spa
dcterms.referencesFong, S.; Deb, S.; Fong, S.; Deb, S. Prediction of Major Earthquakes as Rare Events Using RF-Typed Polynomial Neural Networks. In Encyclopedia of Information Science and Technology; IGI Global: Hershey, PN, USA, 2015; ISBN 978-1-4666-5888-2.spa
dc.coverage.countryColombia
dc.identifier.doihttps://doi.org/10.3390/fi12120231
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol.12 No.12.(2020)spa
dc.relation.citationendpage17spa
dc.relation.citationissue12(2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume12spa
dc.relation.citesMiranda, J., Flórez, A., Ospina, G., Gamboa, C., Flórez, C., & Altuve, M. (2020). Proposal for a System Model for Offline Seismic Event Detection in Colombia. Future Internet, 12(12), 231.
dc.relation.ispartofjournalFuture Internetspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalseismic event detectioneng
dc.subject.proposaldetection modeleng
dc.subject.proposalseismologyeng
dc.subject.proposalclassificationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem