Mostrar el registro sencillo del ítem

dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorAngel-Ospina, Astrid C.
dc.contributor.authorLopez-Barrera, German Luciano
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorMachuca-Martínez, Fiderman
dc.date.accessioned2024-04-08T16:48:55Z
dc.date.available2024-04-08T16:48:55Z
dc.date.issued2024-01-18
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6858
dc.description.abstractThe textile industry is one of the most important and economically significant industries in the world. China is the largest textile producer, for countries such as India, Pakistan, Bangladesh and Malaysia this sector is of crucial importance and it is also a growing sector in Latin America. This industry is responsible for 10 % of annual global carbon emissions and 20 % of global wastewater. This figure is worrying as this wastewater is highly recalcitrant, which has led to research into different treatment methods that are efficient and can provide a sustainable solution to this problem. The aim of this literature review was to identify the existing methods for the treatment of dry scrubber wastewater (TWWT) and the effects of this wastewater and its composition, focusing on biological, chemical and physicochemical processes from the point of view of advantages and disadvantages. It was analyzed which are the most important scientific areas of TWWT and which countries are the most important in this field, as well as the primary pollutants and TWWT processes. Finally, this analysis provides a context for current trends in TWWT research. In general, coagulation methods have been found to be fast but present difficulties due to the use of toxic coagulants; advanced oxidation processes (AOPs) are positioned as very effective methods that can disinfect and decontaminate these effluents. Currently, biological systems coupled with AOPs are a growing trend. Microalgae and cyanobacteria processes coupled with AOPs have attracted great interest due to the possibility of obtaining high added value products through the biorefining of biomass.eng
dc.format.extent21 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherEnvironmental Advancesspa
dc.relation.ispartofEnvironmental Advances Volume 15, April 2024, 100491
dc.rightsunder the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2666765724000097spa
dc.titleS-curve and landscape maps for the analysis of trends on industrial textile wastewater treatmenteng
dc.typeArtículo de revistaspa
dcterms.referencesAbd El-Rahim, W.M., Moawad, H., Abdel Azeiz, A.Z., Sadowsky, M.J., 2017. Optimization of conditions for decolorization of azo-based textile dyes by multiple fungal species. J. Biotechnol. 260 (April), 11–17. https://doi.org/10.1016/j. jbiotec.2017.08.022.spa
dcterms.referencesAcelas, N.Y., Martin, B.D., Lopez, ´ D., Jefferson, B., 2015. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere 119, 1353–1360. https://doi.org/10.1016/j. chemosphere.2014.02.024.spa
dcterms.referencesAdeleke, J.T., Theivasanthi, T., Thiruppathi, M., Swaminathan, M., Akomolafe, T., Alabi, A.B., 2018. Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl. Surf. Sci. 455, 195–200. https://doi.org/10.1016/J. APSUSC.2018.05.184. Oct.spa
dcterms.referencesAfanga, H., et al., 2020. Integrated electrochemical processes for textile industry wastewater treatment: system performances and sludge settling characteristics. Sustain. Environ. Res. 30 (1), 1–11. https://doi.org/10.1186/s42834-019-0043-2.spa
dcterms.referencesAlazaiza, M.Y.D., et al., 2022. Application of natural coagulants for pharmaceutical removal from water and wastewater: a review. Water (Switzerland) 14 (2), 1–16. https://doi.org/10.3390/w14020140spa
dcterms.referencesAlmeida, E.J.R., Corso, C.R., 2019. Decolorization and removal of toxicity of textile azo dyes using fungal biomass pelletized. Int. J. Environ. Sci. Technol. 16 (3), 1319–1328. https://doi.org/10.1007/S13762-018-1728-5/METRICS. Mar.spa
dcterms.referencesAl-Tohamy, R., Kenawy, E.R., Sun, J., Ali, S.S., 2020. Performance of a newly isolated salt-tolerant yeast strain Sterigmatomyces halophilus SSA-1575 for Azo Dye decolorization and detoxification. Front. Microbiol. 11 (June), 1–19. https://doi. org/10.3389/fmicb.2020.01163spa
dcterms.referencesAl-Tohamy, R., Sun, J., Fareed, M.F., Kenawy, E.R., Ali, S.S., 2020. Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Sci. Rep. 10 (1), 1–16. https://doi.org/10.1038/s41598-020-69304-4.spa
dcterms.referencesAnisuzzaman, S.M., Joseph, C.G., Pang, C.K., Affandi, N.A., Maruja, S.N., Vijayan, V., 2022. Current trends in the utilization of photolysis and photocatalysis treatment processes for the remediation of dye wastewater: a short review. ChemEngineering 6 (4). https://doi.org/10.3390/chemengineering6040058.spa
dcterms.referencesArefi-Oskoui, S., et al., 2022. Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein. Sep. Purif. Technol. 280 (October 2021), 119822 https://doi.org/10.1016/j.seppur.2021.119822.spa
dcterms.referencesArutselvan, C., Narchonai, G., Pugazhendhi, A., kumar Seenivasan, H., LewisOscar, F., Thajuddin, N., 2022. Phycoremediation of textile and tannery industrial effluents using microalgae and their consortium for biodiesel production. J. Clean. Prod. 367, 133100 https://doi.org/10.1016/J.JCLEPRO.2022.133100. Sepspa
dcterms.referencesBarathi, S., Aruljothi, K.N., Karthik, C., Padikasan, I.A., Ashokkumar, V., 2022. Biofilm mediated decolorization and degradation of reactive red 170 dye by the bacterial consortium isolated from the dyeing industry wastewater sediments. Chemosphere 286, 131914. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131914. Jan.spa
dcterms.referencesBehera, M., Nayak, J., Banerjee, S., Chakrabortty, S., Tripathy, S.K., 2021. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach. J. Environ. Chem. Eng. 9 (4), 105277 https://doi.org/10.1016/j.jece.2021.105277.spa
dcterms.referencesBehl, K., et al., 2020. Multifaceted applications of isolated microalgae Chlamydomonas sp. TRC-1 in wastewater remediation, lipid production and bioelectricity generation. Bioresour. Technol. 304, 122993 https://doi.org/10.1016/j.biortech.2020.122993. December 2019.spa
dcterms.referencesBerkessa, Y.W., Yan, B., Li, T., Jegatheesan, V., Zhang, Y., 2020. Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: Performance and microbial dynamics. Chemosphere 238, 124539. https://doi.org/10.1016/j.chemosphere.2019.124539.spa
dcterms.referencesBhatnagar, A., Chinnasamy, S., Singh, M., Das, K.C., 2011. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl. Energy 88 (10), 3425–3431. https://doi.org/10.1016/j. apenergy.2010.12.064.spa
dcterms.referencesBilinska, ´ L., Gmurek, M., Ledakowicz, S., 2016. Comparison between industrial and simulated textile wastewater treatment by AOPs – Biodegradability, toxicity and cost assessment. Chem. Eng. J. 306, 550–559. https://doi.org/10.1016/j. cej.2016.07.100.spa
dcterms.referencesButhelezi, S.P., Olaniran, A.O., Pillay, B., 2012. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules 17 (12), 14260–14274. https://doi.org/10.3390/molecules171214260spa
dcterms.referencesCabrera-Reina, A., Miralles-Cuevas, S., Rivas, G., S´ anchez P´erez, J.A., 2019. Comparison of different detoxification pilot plants for the treatment of industrial wastewater by solar photo-Fenton: are raceway pond reactors a feasible option? Sci. Total Environ. 648, 601–608. https://doi.org/10.1016/J.SCITOTENV.2018.08.143. Jan.spa
dcterms.referencesCardoso, J.C., Bessegato, G.G., Boldrin Zanoni, M.V., 2016. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res 98, 39–46. https://doi.org/10.1016/j. watres.2016.04.004.spa
dcterms.referencesChatterjee, S., Dey, S., Sarma, M., Chaudhuri, P., Das, S., 2020. Biodegradation of congo red by manglicolous filamentous fungus aspergillus flavus JKSC-7 isolated from Indian Sundabaran Mangrove ecosystem. Appl. Biochem. Microbiol. 56 (6), 708–717. https://doi.org/10.1134/S0003683820060046.spa
dcterms.referencesChaudhari, A.U., Paul, D., Dhotre, D., Kodam, K.M., 2017. Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules. Water Res 122, 603–613. https://doi.org/10.1016/j.watres.2017.06.005spa
dcterms.referencesChen, H., et al., 2021. Dyeing and finishing wastewater treatment in China: state of the art and perspective. J. Clean. Prod. 326 (October), 129353 https://doi.org/10.1016/ j.jclepro.2021.129353.spa
dcterms.referencesCho, D.W., et al., 2019. Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes. J. Hazard. Mater. 374, 412–419. https://doi.org/10.1016/J. JHAZMAT.2019.04.071. Julspa
dcterms.referencesCrini, G., Lichtfouse, E., 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 17 (1), 145–155. https://doi.org/ 10.1007/s10311-018-0785-9spa
dcterms.referencesCui, W., et al., 2022. Earth-Abundant CaCO3-based photocatalyst for enhanced ROS production, toxic by-product suppression, and efficient NO removal. Energy Environ. Mater. 5 (3), 928–934. https://doi.org/10.1002/eem2.12214spa
dcterms.referencesDarwesh, O.M., Matter, I.A., Eida, M.F., 2019. Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J. Environ. Chem. Eng. 7 (1), 102805 https://doi.org/10.1016/j.jece.2018.11.049.spa
dcterms.referencesDeveci, E.Ü., Dizge, N., Yatmaz, H.C., Aytepe, Y., 2016. Integrated process of fungal membrane bioreactor and photocatalytic membrane reactor for the treatment of industrial textile wastewater. Biochem. Eng. J. 105, 420–427. https://doi.org/ 10.1016/j.bej.2015.10.016.spa
dcterms.referencesDing, M., Zeng, H., 2022. A bibliometric analysis of research progress in sulfate-rich wastewater pollution control technology. Ecotoxicol. Environ. Saf. 238 (April), 113626 https://doi.org/10.1016/j.ecoenv.2022.113626.spa
dcterms.referencesEl-Kassas, H.Y., Mohamed, L.A., 2014. Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt. J. Aquat. Res. 40 (3), 301–308. https://doi.org/10.1016/j. ejar.2014.08.003.spa
dcterms.referencesEzugbe, E.O., Rathilal, S., 2020. Membrane technologies in wastewater treatment: a review. Membranes (Basel) 10 (5). https://doi.org/10.3390/membranes10050089spa
dc.identifier.doi10.1016/j.envadv.2024.100491
dc.relation.citationeditionVol.15 No. (2024)spa
dc.relation.citationendpage21spa
dc.relation.citationissue(2024)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume15spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalTextile wastewater treatmenteng
dc.subject.proposalBibliometric analysiseng
dc.subject.proposalAdvanced oxidation processeng
dc.subject.proposalCoagulationeng
dc.subject.proposalAdsorptioneng
dc.subject.proposalMicroalgaeeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).