Show simple item record

dc.contributor.authorValenzuela-Balcázar, Ibonne Geaneth
dc.contributor.authorVisconti-Moreno, Efraín Francisco
dc.contributor.authorFaz, Ángel
dc.contributor.authorAcosta, José A.
dc.date.accessioned2022-12-04T22:02:07Z
dc.date.available2022-12-04T22:02:07Z
dc.date.issued2021-12-23
dc.identifier.issn2073-4395spa
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6632
dc.description.abstractAfter changes in tillage on croplands, it is necessary to assess the effects on soil organic carbon (SOC) dynamics in order to identify if soil is a sink or emitter of carbon to the atmosphere. This study was conducted in two plots of rice cultivation, where tillage and water management changes occurred. A third plot of native forest with Cacao trees was used as reference soil (agroforestry). For SOC balance estimation, measurement of organic carbon (OC) inputs was determined from necromass, roots, microbial biomass, and urea applications. CO2 and CH4 emissions were also measured. Results showed that the change in the use of irrigation and tillage in rice cultivation did not cause significant differences in OC inputs to soil or in outputs due to carbon emissions. Further-more, it was found that both irrigation and tillage management systems in rice cultivation com-pared with agroforestry were management systems with a negative difference between OC inputs and outputs due to CO2 emissions associated with intense stimulation of crop root respiration and microbial activity. The comparison of SOC dynamics between the agroforestry system and rice cultivation systems showed that an agroforestry system is a carbon sink with a positive OC dynamic.eng
dc.format.extent15 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2073-4395/12/1/17spa
dc.titleSoil Organic Carbon Dynamics in Two Rice Cultivation Systems Compared to an Agroforestry Cultivation Systemeng
dc.typeArtículo de revistaspa
dcterms.referencesKarlen, D.; Ditzler, C.; Andrews, S. Soil quality: Why and how? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]spa
dcterms.referencesLal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627.spa
dcterms.referencesManlay, R.J.; Feller, C.; Swift, M. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric. Ecosyst. Environ. 2006, 119, 217–233.spa
dcterms.referencesManlay, R.J.; Feller, C.; Swift, M. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric. Ecosyst. Environ. 2006, 119, 217–233.spa
dcterms.referencesMondini, C.; Sequi, P. Implication of soil C sequestration on sustainable agriculture and environment. Waste Manag. 2008, 28, 678–684spa
dcterms.referencesMondini, C.; Sequi, P. Implication of soil C sequestration on sustainable agriculture and environment. Waste Manag. 2008, 28, 678–684spa
dcterms.referencesLiu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. GCB Bioenergy 2016, 8, 392–406.spa
dcterms.referencesLiu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. GCB Bioenergy 2016, 8, 392–406.spa
dcterms.referencesLiu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. GCB Bioenergy 2016, 8, 392–406.spa
dcterms.referencesMalyan, S.K.; Kumar, S.S.; Fagodiya, R.K.; Ghosh, P.; Kumar, A.; Singh, R.; Singh, L. Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renew. Sustain. Energy Rev. 2021, 149, 111379.spa
dcterms.referencesMona, S.; Malyan, S.K.; Saini, N.; Deepak, B.; Pugazhendhi, A.; Kumar, S.S. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere 2021, 275, 129856spa
dcterms.referencesSmith, E.G.; Janzen, H.H.; Ellert, B.H. Soil organic carbon changes as influenced by carbon inputs and previous cropping system. Can. J. Soil Sci. 2018, 98, 566–569.spa
dcterms.referencesSaljnikov, E.; Cakmak, D.; Rahimgalieva, S. Soil Organic Matter Stability as Affected by Land Management in Steppe Ecosystems; Intech Open Access Publisher: London, UK, 2013.spa
dcterms.referencesHaque, M.; Kim, S.Y.; Kim, G.W.; Kim, P.J. Optimization of removal and recycling ratio of cover crop biomass using carbon balance to sustain soil organic carbon stocks in a mono-rice paddy system. Agric. Ecosyst. Environ. 2015, 207, 119–125.spa
dcterms.referencesHaque, M.; Kim, S.Y.; Kim, G.W.; Kim, P.J. Optimization of removal and recycling ratio of cover crop biomass using carbon balance to sustain soil organic carbon stocks in a mono-rice paddy system. Agric. Ecosyst. Environ. 2015, 207, 119–125.spa
dcterms.referencesLal, R. Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security. Bioscience 2010, 60, 708–721.spa
dcterms.referencesYu, Y.; Guo, Z.; Wu, H.; Kahmann, J.A.; Oldfield, F. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000. Glob. Biogeochem. Cycles 2009, 23, GB2021.spa
dcterms.referencesYu, H.; Ding, W.; Luo, J.; Geng, R.; Ghani, A.; Cai, Z. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biol. Fertil. Soils 2012, 48, 325–336.spa
dcterms.referencesSun, Y.; Huang, S.; Yu, X.; Zhang, W. Stability and saturation of soil organic carbon in rice fields: Evidence from a long-term fertilization experiment in subtropical China. J. Soils Sediments 2013, 13, 1327–1334.spa
dcterms.referencesIrisarri, P.; Pereyra, V.; Fernández, A.; Terra, J.; Tarlera, S. Emisiones de CH4 y N2O en un arrozal: Primeras medidas en el sistema productivo uruguayo. Agrociencia Urug. 2012, 16, 1–10spa
dcterms.referencesAdeel, M.; Zain, M.; Shafi JAhmad, M.; Rizwan MShafiq, M.; Rui, Y. Conservation agriculture, a way to conserve soil carbon for sustainable agriculture productivity and mitigating climate change: A review. Fresenius Environ. Bull. 2018, 27, 6297–6308spa
dcterms.referencesMarques, J.D.D.O.; Luizão, F.J.; Teixeira, W.G.; Sarrazin, M.; Ferreira, S.J.F.; Beldini, T.P.; Marques, E.M.D.A. Distribution of organic carbon in different soil fractions in ecosystems of central amazonia. Rev. Bras. De Ciência Do Solo 2015, 39, 232–242.spa
dcterms.referencesFrouz, J.; Elhottová, D.; Pizl, V.; Tajousky, K.; Sourková, M.; Picek, T.; Maly, S. The effect of litter quality and soil faunal composition on organic matter dynamics in post-mining soil: A laboratory study. Appl. Soil. Ecol. 2007, 37, 72–80.spa
dcterms.referencesSix, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569.spa
dcterms.referencesMiltner, A.; Bombach, P.; Schmidt-Bruecken, B.; Kaestner, M. SOM genesis: Microbial biomass as a significant source. Biogeochemistry 2012, 111, 41–55.spa
dcterms.referencesLange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707spa
dcterms.referencesFedearroz. Estadísticas. Rev. Arroz. 2018, 66, 54–56.spa
dcterms.referencesValenzuela, I.; Camarón, F.; Visconti, E. Efecto del uso y manejo sobre las propiedades físicas de un suelo bajo dos sistemas de cultivo en el distrito de riego del río Zulia, Norte de Santander. Suelos Ecuatoriales 2015, 45, 41–47.spa
dcterms.referencesMuñoz-Rojas, M.; Jordán, A.; Zavala, L.M.; De la Rosa, D.; Abd-Elmabod, S.K.; Anaya-Romero, M. Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain). Solid Earth 2012, 3, 375–386spa
dcterms.referencesÁlvaro-Fuentes, J.; Plaza-Bonilla, D.; Arrúe, J.L.; Bielsa, A.; Cantero-Martínez, C. Soil Carbon Dynamics Under Different Land Uses in Dryland Mediterranean Conditions. Soil Manag. Clim. Chang. 2018, 39, 39–51.spa
dcterms.referencesIGAC, Instituto Geográfico Agustín Codazzi. Estudio General de Suelos y Zonificación de Tierras Del Departamento Norte de Santander; Instituto Geográfico Agustín Codazzi: Bogotá, Colombia, 2016.spa
dcterms.referencesPla, I. Metodología para la caracterización física con fines de diagnóstico de problemas de manejo y conservación de suelos en condiciones tropicales. In Revista de la Facultad de Agronomia; Alcance No. 32; Universidad Central de Venezuela: Caracas, Venezuela, 1983; 91p.spa
dcterms.referencesPla, I. Medición y evaluación de propiedades físicas de los suelos: Dificultades y errores más frecuentes. I–Propiedades mecánicas. Suelos Ecuat. 2010, 40, 75–93spa
dcterms.referencesPla, I. Medición y evaluación de propiedades físicas de los suelos: Dificultades y errores más frecuentes. I–Propiedades mecánicas. Suelos Ecuat. 2010, 40, 75–93spa
dcterms.referencesPla, I. Medición y evaluación de propiedades físicas de los suelos: Dificultades y errores más frecuentes. I–Propiedades mecánicas. Suelos Ecuat. 2010, 40, 75–93spa
dcterms.referencesPla, I. Medición y evaluación de propiedades físicas de los suelos: Dificultades y errores más frecuentes. I–Propiedades mecánicas. Suelos Ecuat. 2010, 40, 75–93spa
dcterms.referencesVargas-Parra, L.; Varela, A. Producción de hojarasca de un bosque de niebla en la Reserva Natural La Planada (Nariño, Colombia). Rev. Univ. Sci. 2007, 12, 49–56.spa
dcterms.referencesIbrahim, M.; Chacón, M.; Cuartas, C.; Naranjo, J.; Ponce, G.; Vega, P.; Casasola, F.; Rojas, J. Almacenamiento de carbono en el suelo y la biomasa arbórea en sistemas de usos de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Agroforestería Am. 2007, 45, 27–36.spa
dcterms.referencesMalhi, Y.; Aragão, L.E.O.C.; Metcalfe, D.B.; Paiva, R.; Quesada, C.A.; Almeida, S.; Anderson, L.; Brando, P.; Chambers, J.; Da Costa, A.C.L.; et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Chang. Biol. 2009, 15, 1255–1274.spa
dcterms.referencesFonseca-González, W. Revisión de métodos para el monitoreo de biomasa y carbón vegetal en ecosistemas forestales tropicales. Revista de Ciencias Ambientales. Trop. J. Environ. Sci. 2017, 51, 91–109.spa
dcterms.referencesFortin, M.; Rochette, P.; Pattey, E. Soil carbon dioxide fluxes from conventional and no-tillage small grain cropping systems. Soil Sci. Soc. Am. J. 1996, 60, 1541–1547.spa
dcterms.referencesSacco, D.; Cremon, C.; Zavattaro, L.; Grignani, C. Seasonal variation of soil physical properties under different water managements in irrigated rice. Soil Tillage Res. 2012, 118, 22–31.spa
dcterms.referencesGosling, P.; Parsons, N.; Bending, G. What are the primary factors controlling the light fraction and particulate soil organic matter content of agricultural soils? Biol. Fertil. Soils 2013, 49, 1001–1014.spa
dcterms.referencesPark, B.; Shin, J. Soil organic matter and nutrient accumulation at the abandoned fields. J. Korean For. Soc. 2008, 97, 492–500.spa
dcterms.referencesBusari, M.; Kukal, S.; Kaur, A.; Bhatt, R.; Dulazib, A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Research. 2015, 3, 119–129.spa
dcterms.referencesValenzuela, B.I.G.; Visconti, M.E.F. Influence of climate, soil use and soil depth on soil organic carbon content at two Andean altitudinal sites in Norte de Santander, Colombia. Rev. Colomb. Cienc. Hortícolas 2018, 12, 233–243.spa
dcterms.referencesWolf, S.; Eugster, W.; Potvin, C.; Turner, B.L.; Buchmann, N. Carbon sequestration potential of tropical pasture compared with afforestation in Panama. Glob. Chang. Biol. 2011, 17, 2763–2780.spa
dcterms.referencesDon, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Chang. Biol. 2011, 17, 1658–1670.spa
dcterms.referencesPaolini-Gómez, J. Actividad microbiológica y biomasa microbiana en suelos cafetaleros de los Andes venezolanos. Terra Latinoam. 2018, 36, 13–22spa
dcterms.referencesMarumoto, T.; Anderson, J.; Domsch, K. Mineralization of nutrients from soil microbial biomass. Soil Biol. Biochem. 1982, 14, 469–475spa
dcterms.referencesMarumoto, T.; Anderson, J.; Domsch, K. Mineralization of nutrients from soil microbial biomass. Soil Biol. Biochem. 1982, 14, 469–475spa
dcterms.referencesSchmidt, M.W.I.; Torn, M.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.; et al. Persistence of soil organic matter as an ecosystem property. Nat. Cell Biol. 2011, 478, 49–56.spa
dcterms.referencesBiederbeck, V.O.; Campbell, C.A.; Zentner, R.P. Effect of crop rotation and fertilization on some biological properties of a loam in southwestern Saskatchewan. Can. J. Soil Sci. 1984, 64, 355–367.spa
dcterms.referencesGómez, Y.; Paolini, J. Variación en la actividad microbiana por cambio de uso en suelos en sabanas, Llanos Orientales, Venezuela. Rev. Biol. Trop. 2011, 59, 1–15.spa
dcterms.referencesZornoza, R.; Acosta, J.; Gabarrón, M.; Gómez-Garrido, M.; Sánchez-Navarro, V.; Terrero, A.; Martínez-Martínez, S.; Faz, Á.; Pastor, A.P. Greenhouse gas emissions and soil organic matter dynamics in woody crop orchards with different irrigation regimes. Sci. Total Environ. 2018, 644, 1429–1438.spa
dcterms.referencesTate, K.; Scott, N.; Parshotam, A.; Brown, L.; Wilde, R.; Giltrap, D.; Trustrum, N.; Gomez, B.; Ross, D. A multi-scale analysis of a terrestrial carbon budget: Is New Zealand a source or sink of carbon? Agric. Ecosyst. Environ. 2000, 82, 229–246.spa
dcterms.referencesOmay, A.B.; Rice, C.W.; Maddux, L.D.; Gordon, W.B. Changes in Soil Microbial and Chemical Properties under Long-term Crop Rotation and Fertilization. Soil Sci. Soc. Am. J. 1997, 61, 1672–1678.spa
dcterms.referencesAvilés-Hernández, V.; Velázquez-Martínez, A.; Ángeles-Pérez, G.; Etchevers-Barra, J.; De los Santos-Posadas, H.; Llanderal, T. Variación en almacenes de carbono en suelos de una toposecuencia. Agrociencias 2009, 43, 457–464.spa
dcterms.referencesSingh, S.; Singh, J.; Kashyap, A. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol. Biochem. 1999, 31, 1219–1228.spa
dcterms.referencesKasimir-Klemedtsson, A.; Klemedtsson, L.; Berglund, K.; Martikainen, P.; Silvola, J.; Oenema, O. Greenhouse gas emissions from farmed organic soils: A review. Soil Use Manag. 1997, 13, 245–250spa
dcterms.referencesRaich, J.W.; Potter, C.S. Global patterns of carbon dioxide emissions from soils. Glob. Biogeochem. Cycles 1995, 9, 23–36.spa
dcterms.referencesManzoni, S.; Taylor, P.; Richter, A.; Porporato, A.; Ågren, G.I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 2012, 196, 79–91.spa
dc.contributor.corporatenameMDPIspa
dc.identifier.doihttps://doi.org/10.3390/agronomy12010017
dc.relation.citationendpage15spa
dc.relation.citationissue17spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume12spa
dc.relation.ispartofjournalAgronomy MDPIspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalcarbon sequestrationeng
dc.subject.proposalgreenhouse gas emissionseng
dc.subject.proposalsoil degradationeng
dc.subject.proposalsustainable agricultureeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Except where otherwise noted, this item's license is described as © 2021 by the authors. Licensee MDPI, Basel, Switzerland.