Mostrar el registro sencillo del ítem

dc.contributor.authorOrjuela Abril, Sofía
dc.contributor.authorFONSECA VIGOYA, MARLEN DEL SOCORRO
dc.contributor.authorPardo García, Carlos Eduardo
dc.date.accessioned2022-11-16T15:57:35Z
dc.date.available2022-11-16T15:57:35Z
dc.date.issued2022-04-07
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6519
dc.description.abstractIn the present investigation, a study is carried out using numerical simulation on the effects of cylinder deactivation on tribological parameters and emissions in an internal combustion engine. For the development of the research, a tribological model was used to predict the characteristics of the lubrication film, friction conditions, blow-by gas, and deformation of the piston rings. Additionally, the construction of a CFD model was carried out to describe the kinematic movement of the engine piston. The analysis of results allowed for the demonstration of the active cylinders presenting an increase of 21.53% and 7.65% in the pressure and temperature in the cylinder wall. Additionally, the active cylinders present a reduction of 11.33% in the minimum thickness of the lubrication film and an increase in the friction force due to asperities, which implies an increase of 33% in power losses due to friction. The implementation of technologies such as cylinder deactivation causes an increase in combustion gas leaks caused by the increase in pressure of the active cylinders. However, the use of this technology allows reducing 9.09%, 8.26%, and 7.41% in CO, HC, and NO emissions. Although the use of technologies such as cylinder deactivation allows significant fuel savings, it is necessary to consider the negative effects caused by this technology, such as the increase in combustion gas leaks and the increase in power loss by the greatest frictional forces.eng
dc.format.extentPaginas 17spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherLubricantesspa
dc.relation.ispartofPrograma de Administración de Empresas, Universidad Francisco de Paula Santander, San José de Cúcuta, 540001, Colombia; García, C.P., Programa de Ingeniería de Sistemas, Universidad Francisco de Paula Santander, San José de Cúcuta, 540001, Colombia.
dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.scopus.com/record/display.uri?eid=2-s2.0-85129107203&doi=10.3390%2flubricants10040060&origin=inward&txGid=7946c84f18d87a5f0731f04b1bb54623spa
dc.titlestudy of the Cylinder Deactivation on Tribological Parameters and Emissions in an Internal Combustion Engineeng
dc.typeArtículo de revistaspa
dcterms.referencesGurt, A.; Khonsari, M. The use of entropy in modeling the mechanical degradation of grease. Lubricants 2019, 7, 82.spa
dcterms.referencesChong, W.W.F.; Hamdan, S.H.; Wong, K.J.; Yusup, S. Modelling Transitions in Regimes of Lubrication for Rough Surface Contact. Lubricants 2019, 7, 77.spa
dcterms.referencesOchoa, G.V.; Prada, G.; Duarte-Forero, J. Carbon footprint analysis and advanced exergo-environmental modeling of a waste heat recovery system based on a recuperative organic Rankine cycle. J. Clean. Prod. 2020, 274, 122838–122857.spa
dcterms.referencesLeach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transp. Eng. 2020, 1, 100005.spa
dcterms.referencesRichardson, D.E. Review of Power Cylinder Friction for Diesel Engines. J. Eng. Gas Turbines Power 2000, 122, 506–519.spa
dcterms.referencesValencia, G.; Fontalvo, A.; Duarte Forero, J. Optimization of waste heat recovery in internal combustion engine using a dual-loop organic Rankine cycle: Thermo-economic and environmental footprint analysis. Appl. Therm. Eng. 2021, 182, 116109.spa
dcterms.referencesMorris, N.; Mohammadpour, M.; Rahmani, R.; Rahnejat, H. Optimisation of the piston compression ring for improved energy efficiency of high performance race engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 1806–1817.spa
dcterms.referencesOglieve, C.J.; Mohammadpour, M.; Rahnejat, H. Optimisation of the vehicle transmission and the gear-shifting strategy for the minimum fuel consumption and the minimum nitrogen oxide emissions. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 883–899.spa
dcterms.referencesFitzsimons, B. Introduction to the importance of fuel efficiency and role of the Encyclopedic research project. In Proceedings of the IMechE Seminar: A Drive for Fuel Efficiency, Loughborough, UK, 21 September 2011.spa
dcterms.referencesForero, J.D.; Ochoa, G.V.; Alvarado, W.P. Study of the Piston Secondary Movement on the Tribological Performance of a Single Cylinder Low-Displacement Diesel Engine. Lubricants 2020, 8, 97.spa
dcterms.referencesMenzel, G.; Och, S.H.; Mariani, V.C.; Moura, L.M.; Domingues, E. Multi-objective optimization of the volumetric and thermal efficiencies applied to a multi-cylinder internal combustion engine. Energy Convers. Manag. 2020, 216, 112930.spa
dcterms.referencesBalakheli, M.M.; Chahartaghi, M.; Sheykhi, M.; Hashemian, S.M.; Rafiee, N. Analysis of different arrangements of combined cooling, heating and power systems with internal combustion engine from energy, economic and environmental viewpoints. Energy Convers. Manag. 2020, 203, 112253.spa
dcterms.referencesCao, J.; Jia, M.; Niu, B.; Chang, Y.; Xu, Z.; Liu, H. Establishment of an improved heat transfer model based on an enhanced thermal wall function for internal combustion engines operated under different combustion modes. Energy Convers. Manag. 2019, 195, 748–759.spa
dcterms.referencesAgarwal, A.K.; Mustafi, N.N. Real-world automotive emissions: Monitoring methodologies, and control measures. Renew. Sustain. Energy Rev. 2021, 137, 110624.spa
dcterms.referencesTornatore, C.; Bozza, F.; De Bellis, V.; Teodosio, L.; Valentino, G.; Marchitto, L. Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine. Energy 2019, 172, 968–976.spa
dcterms.referencesDong, H.; Zhao, Z.; Fu, J.; Liu, J.; Li, J.; Liang, K.; Zhou, Q. Experiment and simulation investigation on energy management of a gasoline vehicle and hybrid turbocharger optimization based on equivalent consumption minimization strategy. Energy Convers. Manag. 2020, 226, 113518.spa
dcterms.referencesNazoktabar, M.; Jazayeri, S.A.; Parsa, M.; Ganji, D.D.; Arshtabar, K. Controlling the optimal combustion phasing in an HCCI engine based on load demand and minimum emissions. Energy 2019, 182, 82–92.spa
dcterms.referencesYusri, I.M.; Mamat, R.; Najafi, G.; Razman, A.; Awad, O.I.; Azmi, W.H.; Ishak, W.F.W.; Shaiful, A.I.M. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions. Renew. Sustain. Energy Rev. 2017, 77, 169–181.spa
dcterms.referencesGarcía, A.; Monsalve-Serrano, J.; Martínez-Boggio, S.; Wittek, K. Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy 2020, 195, 117039.spa
dcterms.referencesWittek, K.; Geiger, F.; Vaz, M.G.J. Characterization of the system behaviour of a variable compression ratio (VCR) connecting rod with eccentrically piston pin suspension and hydraulic moment support. Energy Convers. Manag. 2020, 213, 112814.spa
dcterms.referencesLópez, J.J.; Garcia, A.; Monsalve-Serrano, J.; Cogo, V.; Wittek, K. Potential of a two-stage variable compression ratio downsized spark ignition engine for passenger cars under different driving conditions. Energy Convers. Manag. 2020, 203, 112251.spa
dcterms.referencesMuhamad Said, M.F.; Latiff, Z.A.; Zainal Abidin, S.F.; Zahari, I. Investigation of Intake Valve Strategy on the Cylinder Deactivation Engine. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2016; Volume 819, pp. 459–465.spa
dcterms.referencesZhao, J.; Xi, Q.; Wang, S.; Wang, S. Improving the partial-load fuel economy of 4-cylinder SI engines by combining variable valve timing and cylinder-deactivation through double intake manifolds. Appl. Therm. Eng. 2018, 141, 245–256.spa
dcterms.referencesSingh, D.; Gu, F.; Fieldhouse, J.D.; Singh, N.; Singal, S.K. Prediction and analysis of engine friction power of a diesel engine influenced by engine speed, load, and lubricant viscosity. Adv. Tribol. 2014, 2014, 928015.spa
dcterms.referencesBewsher, S.R.; Turnbull, R.; Mohammadpour, M.; Rahmani, R.; Rahnejat, H.; Offner, G.; Knaus, O. Effect of cylinder de-activation on the tribological performance of compression ring conjunction. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 231, 997–1006.spa
dcterms.referencesTian, T. Dynamic behaviours of piston rings and their practical impact. Part 2: Oil transport, friction and wear of ring/liner interface and the effects of piston and ring dynamics. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2002, 216, 229–248.spa
dcterms.referencesGuo, Y.; Lu, X.; Li, W.; He, T.; Zou, D. A mixed-lubrication model considering elastoplastic contact for a piston ring and application to a ring pack. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 174–188.spa
dcterms.referencesPatir, N.; Cheng, H.S. An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication. J. Lubr. Technol. 1978, 100, 12–17.spa
dcterms.referencesDowson, D.; Higginson, G.R. A Numerical Solution to the Elasto-Hydrodynamic Problem. J. Mech. Eng. Sci. 1959, 1, 6–15.spa
dcterms.referencesHoupert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245.spa
dcterms.referencesGu, C.; Meng, X.; Xie, Y.; Kong, X. Performance of surface texturing during start-up under starved and mixed lubrication. J. Tribol. 2017, 139, 11702.spa
dcterms.referencesRahmani, R.; Theodossiades, S.; Rahnejat, H.; Fitzsimons, B. Transient elastohydrodynamic lubrication of rough new or worn piston compression ring conjunction with an out-of-round cylinder bore. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 284–305.spa
dcterms.referencesTeodorescu, M.; Balakrishnan, S.; Rahnejat, H. Integrated Tribological Analysis within a Multi-physics Approach to System Dynamics. In Tribology and Interface Engineering Series; Elsevier: Amsterdam, The Netherlands, 2005; Volume 48, pp. 725–737.spa
dcterms.referencesGreenwood, J.A.; Tripp, J.H. The Contact of Two Nominally Flat Rough Surfaces. Proc. Inst. Mech. Eng. 1970, 185, 625–633.spa
dcterms.referencesTurnbull, R.; Dolatabadi, N.; Rahmani, R.; Rahnejat, H. An assessment of gas power leakage and frictional losses from the top compression ring of internal combustion engines. Tribol. Int. 2020, 142, 105991–106002.spa
dcterms.referencesTheaker, M.; Rahmani, R.; Rahnejat, H. Prediction of Ring-Bore Conformance and Contact Condition and Experimental Validation. In Proceedings of the ASME 2012 Internal Combustion Engine Division Spring Technical Conference, Torino, Italy, 6–9 May 2012; pp. 885–892.spa
dcterms.referencesPopoola, O.; Cao, Y. The influence of turbulence models on the accuracy of CFD analysis of a reciprocating mechanism driven heat loop. Case Stud. Therm. Eng. 2016, 8, 277–290.spa
dcterms.referencesZavos, A.; Nikolakopoulos, P.G. Tribology of new thin compression ring of fired engine under controlled conditions-A combined experimental and numerical study. Tribol. Int. 2018, 128, 214–230.spa
dcterms.referencesTsujiuchi, N.; Koizumi, T.; Hamada, K.; Okamura, M.; Tsukijima, H. Optimization of profile for reduction of piston slap excitation. In SAE Technical Papers; SAE: Warrendale, PA, USA, 2004.spa
dcterms.referencesGore, M.; Theaker, M.; Howell-Smith, S.; Rahnejat, H.; King, P.D. Direct measurement of piston friction of internal-combustion engines using the floating-liner principle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 344–354.spa
dcterms.referencesMorris, N.; Mohammadpour, M.; Rahmani, R.; Johns-Rahnejat, P.M.; Rahnejat, H.; Dowson, D. Effect of cylinder deactivation on tribological performance of piston compression ring and connecting rod bearing. Tribol. Int. 2018, 120, 243–254.spa
dcterms.referencesWang, X.; Stone, C.R. A study of combustion, instantaneous heat transfer, and emissions in a spark ignition engine during warm-up. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2008, 222, 607–618.spa
dc.identifier.doi10.3390/lubricants10040060
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 10 N°. 4 (2022)spa
dc.relation.citationendpage17spa
dc.relation.citationissue4 (2022)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume10spa
dc.relation.citesOrjuela Abril, S.; Fonseca-Vigoya, M.D.S.; García, C.P. Study of the Cylinder Deactivation on Tribological Parameters and Emissions in an Internal Combustion Engine. Lubricants 2022, 10, 60. https://doi.org/10.3390/ lubricants10040060
dc.relation.ispartofjournalLubricantsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalcylinder deactivationeng
dc.subject.proposalpower losseng
dc.subject.proposalpiston compression ringeng
dc.subject.proposalblow-by gaseng
dc.subject.proposalemissionseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).