Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorBarajas Solano, andres F
dc.date.accessioned2021-10-13T23:28:48Z
dc.date.available2021-10-13T23:28:48Z
dc.date.issued2021-03-23
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/303
dc.description.abstractIncreasing energy needs have led to soaring fossil fuel consumption, which has caused several environmental problems. These environmental aspects along with the energy demand have motivated the search for new energy systems. In this context, biofuels such as biodiesel have been developing into a substitute for conventional fuels. Microalgae are considered a promising option for biodiesel production due to their high lipid content. Therefore, it is important to analyze the technical aspects of the biodiesel production system. In this work, the inherent safety analysis of three emerging topologies for biodiesel production from microalgae was performed using the inherent safety index (ISI) methodology. Selected topologies include biodiesel production via lipid extraction and transesterification, in-situ transesterification, and hydrothermal liquefaction (HTL). The results revealed that the processes are inherently unsafe achieving total inherent safety index scores of 30, 29, and 36. The main risks in the cases were associated with the chemical safety index. Operating conditions represented no risk for topologies 1 and 2, while for topology 3 pressure and temperature were identified as critical variables. In general, topology 2 showed better performance from a safety perspective.eng
dc.format.extent15 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherApplied Sciences
dc.relation.ispartofApplied Sciences (Switzerland) ISSN: 2076-3417, 2021 vol:11 fasc: 6 págs: 1 - 15, DOI:10.3390/app11062854
dc.rights2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2076-3417/11/6/2854spa
dc.titleEvaluation of Algae-Based Biodiesel Production Topologies via Inherent Safety Index (ISI)eng
dc.typeArtículo de revistaspa
dcterms.referencesOng, H.C.; Tiong, Y.W.; Hoe Goh, G.; Yang Gan, Y.; Mofijur, M.; Rizwanul, I.M.; Tung, C.; Asraful, M.; Voon Lee, H.; Dilitong, A.S.; et al. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Convers. Manag. 2020. [CrossRef]spa
dcterms.referencesTejada Carbajal, E.M.; Martínez Hernández, E.; Fernández Linares, L.; Novelo Maldonado, E.; Limas Ballesteros, R. Technoeconomic analysis of Scenedesmus dimorphus microalgae biorefinery scenarios for biodiesel production and glycerol valorization. Bioresour. Technol. Rep. 2020, 12. [CrossRef]spa
dcterms.referencesChowdhury, H.; Loganathan, B. Third-generation biofuels from microalgae: A review. Curr. Opin. Green Sustain. Chem. 2019, 20, 39–44. [CrossRef]spa
dcterms.referencesAzadi, P.; Malina, R.; Barrett, S.R.H.; Kraft, M. The evolution of the biofuel science. Renew. Sustain. Energy Rev. 2016, 76, 1479–1484. [CrossRef]spa
dcterms.referencesChisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [CrossRef]spa
dcterms.referencesAli, M.; Sultana, R.; Tahir, S.; Watson, I.; Saleem, M. Prospects of microalgal biodiesel production in Pakistan—A review. Renew. Sustain. Energy Rev. 2017, 80, 1588–1596. [CrossRef]spa
dcterms.referencesRutz, D.; Janssen, R. Biofuel Technology Handbook, in Sylvensteinstr. 2; WIP Renewable Energies: München, Germany, 2007.spa
dcterms.referencesKumar Pathaka, P.; Rajb, J.; Saxenab, G.; Shankar Sharmac, U. A Review on Production of Biodiesel by Transesterification using Heterogeneous Nanocatalyst. Int. J. Sci. Res. Dev. 2018, 5, 631–636.spa
dcterms.referencesDeng, X.; Li, Y.; Fei, X. Microalgae: A promising feedstock for biodiesel. Afr. J. Microbiol. Res. 2009, 3, 1008–1014.spa
dcterms.referencesAkubude, V.C.; Nwaigwe, K.N.; Dintwa, E. Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Mater. Sci. Energy Technol. 2019, 2, 216–225. [CrossRef]spa
dcterms.referencesHuete-Ortega, M.; Okurowska, K.; Kapoore, R.V.; Johnson, M.P.; Gilmour, D.J.; Vaidyanathan, S. Effect of ammonium and high light intensity on the accumulation of lipids in Nannochloropsis oceanica (CCAP 849/10) and Phaeodactylum tricornutum (CCAP 1055/1). Biotechnol. Biofuels 2018, 11, 1–15. [CrossRef]spa
dcterms.referencesTang, Y.; Rosenberg, J.N.; Betenbaugh, M.J.; Wang, F. Optimization of one-step in situ transesterification method for accurate quantification of epa in nannochloropsis gaditana. Appl. Sci. 2016, 6, 343. [CrossRef]spa
dcterms.referencesHena, S.; Znad, H.; Heong, K.T.; Judd, S. Dairy Farm Wastewater Treatment and Lipid Accumulation by Arthrospira Platensis. Water Res. 2018, 128, 267–277. [CrossRef] [PubMed]spa
dcterms.referencesGouveia, J.D.; Ruiz, J.; van den Broek, L.A.M.; Hesselink, T.; Peters, S.; Kleinegris, D.M.M.; Smith, A.G.; van der Veen, D.; Barbosa, M.J.; Wijffels, R.H. Botryococcus Braunii Strains Compared for Biomass Productivity, Hydrocarbon, and Carbohydrate Content. J. Biotechnol. 2017, 248, 77–86. [CrossRef] [PubMed]spa
dcterms.referencesBarajas-Solano, A.F.; Guzmán-Monsalve, A.; Kafarov, V. Effect of Carbon-Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccus Braunii UIS 003. Chem. Eng. Trans. 2016, 49, 247–252. [CrossRef]spa
dcterms.referencesKao, P.-H.; Ng, I.-S. CRISPRi Mediated Phosphoenolpyruvate Carboxylase Regulation to Enhance the Production of Lipid in Chlamydomonas Reinhardtii. Bioresour. Technol. 2017, 245, 1527–1537. [CrossRef]spa
dcterms.referencesShin, Y.S.; Jeong, J.; Nguyen, T.H.T.; Kim, J.Y.H.; Jin, E.; Sim, S.J. Targeted Knockout of Phospholipase A2 to Increase Lipid Productivity in Chlamydomonas Reinhardtii for Biodiesel Production. Bioresour. Technol. 2019, 271, 368–374. [CrossRef]spa
dcterms.referencesGao, F.; Yang, H.-L.; Li, C.; Peng, Y.-Y.; Lu, M.-M.; Jin, W.-H.; Bao, J.-J.; Guo, Y.-M. Effect of Organic Carbon to Nitrogen Ratio in Wastewater on Growth, Nutrient Uptake and Lipid Accumulation of a Mixotrophic Microalgae Chlorella sp. Bioresour. Technol. 2019, 282, 118–124. [CrossRef]spa
dcterms.referencesBauer, L.M.; Costa, J.A.V.; da Rosa, A.P.C.; Santos, L.O. Growth Stimulation and Synthesis of Lipids, Pigments and Antioxidants with Magnetic Fields in Chlorella Kessleri Cultivations. Bioresour. Technol. 2017, 244, 1425–1432. [CrossRef]spa
dcterms.referencesCheng, P.; Chu, R.; Zhang, X.; Song, L.; Chen, D.; Zhou, C.; Yan, X.; Cheng, J.J.; Ruan, R. Screening of the Dominant Chlorella Pyrenoidosa for Biofilm Attached Culture and Feed Production While Treating Swine Wastewater. Bioresour. Technol. 2020, 318, 124054. [CrossRef]spa
dcterms.referencesAlavijeh, R.S.; Karimi, K.; Wijffels, R.H.; van den Berg, C.; Eppink, M. Combined Bead Milling and Enzymatic Hydrolysis for Efficient Fractionation of Lipids, Proteins, and Carbohydrates of Chlorella Vulgaris Microalgae. Bioresour. Technol. 2020, 309, 123321. [CrossRef]spa
dcterms.referencesEstévez-Landazábal, L.L.; Barajas-Solano, A.F.; Barajas-Ferreira, C.; Kafarov, V. Improvement of Lipid Productivity on Chlorella vulgaris Using Waste Glycerol and Sodium Acetate. CT&F Cienc. Technol. Futuro 2013, 5, 113–126. Available online: http://www.scielo.org.co/ scielo.php?script=sci_arttext&pid=S0122-53832013000100009 (accessed on 29 November 2020).spa
dcterms.referencesGuiza-Franco, L.; Orozco-Rojas, L.G.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Production of Chlorella vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522. [CrossRef]spa
dcterms.referencesGarcia-Martinez, B.; Ayala-Torres, E.; Reyes-Gomez, O.; Zuorro, A.; Barajas-Solano, A.; Barajas-Ferreira, C. Evaluation of a Two-Phase Extraction System of Carbohydrates and Proteins from Chlorella vulgaris UTEX 1803. Chem. Eng. Trans. 2016, 49, 355–360. [CrossRef]spa
dcterms.referencesBarajas-Solano, A.F.; Gonzalez-Delgado, A.D.; Kafarov, V. Effect of Thermal Pre-Treatment on Fermentable Sugar Production of Chlorella Vulgaris. Chem. Eng. Trans. 2014, 37, 655–660. [CrossRef]spa
dcterms.referencesQuintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. Water 2019, 11, 1526. [CrossRef]spa
dcterms.referencesZuorro, A.; Malavasi, V.; Cao, G.; Lavecchia, R. Use of cell wall degrading enzymes to improve the recovery of lipids from Chlorella sorokiniana. Chem. Eng. J. 2019, 377, 120325. [CrossRef]spa
dcterms.referencesPriharto, N.; Ronsse, F.; Prins, W.; Carleer, R.; Heeres, H.J. Experimental Studies on a Two-Step Fast Pyrolysis-Catalytic Hydrotreatment Process for Hydrocarbons from Microalgae (Nannochloropsis Gaditana and Scenedesmus Almeriensis). Fuel Process. Technol. 2020, 206, 106466. [CrossRef]spa
dcterms.referencesSanchez-Silva, L.; López-González, D.; Garcia-Minguillan, A.M.; Valverde, J.L. Pyrolysis, Combustion and Gasification Characteristics of Nannochloropsis Gaditana Microalgae. Bioresour. Technol. 2013, 130, 321–331. [CrossRef]spa
dcterms.referencesGautam, R.; Vinu, R. Non-Catalytic Fast Pyrolysis and Catalytic Fast Pyrolysis of Nannochloropsis Oculata Using Co-Mo/γ-Al2O3 Catalyst for Valuable Chemicals. Algal Res. 2018, 34, 12–24. [CrossRef]spa
dcterms.referencesLiu, Z.; Li, H.; Zeng, J.; Liu, M.; Zhang, Y.; Liu, Z. Influence of Fe/HZSM-5 Catalyst on Elemental Distribution and Product Properties during Hydrothermal Liquefaction of Nannochloropsis sp. Algal Res. 2018, 35, 1–9. [CrossRef]spa
dcterms.referencesAysu, T.; Sanna, A. Nannochloropsis Algae Pyrolysis with Ceria-Based Catalysts for Production of High-Quality Bio-Oils. Bioresour. Technol. 2015, 194, 108–116. [CrossRef] [PubMed]spa
dcterms.referencesGirard, J.-M.; Roy, M.-L.; Hafsa, M.B.; Gagnon, J.; Faucheux, N.; Heitz, M.; Tremblay, R.; Deschênes, J.-S. Mixotrophic Cultivation of Green Microalgae Scenedesmus Obliquus on Cheese Whey Permeate for Biodiesel Production. Algal Res. 2014, 5, 241–248. [CrossRef]spa
dcterms.referencesCuéllar-García, D.J.; Rangel-Basto, Y.A.; Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Muñoz-Peñaloza, Y.A. Lipids production from Scenedesmus obliquus through carbon/nitrogen ratio optimization. J. Phys. Conf. Ser. 2019, 1388, 012043. [CrossRef]spa
dcterms.referencesCuéllar-García, D.J.; Rangel-Basto, Y.A.; Barajas-Solano, A.F.; Muñoz-Peñaloza, Y.A.; Urbina-Suarez, N.A. Towards the production of microalgae biofuels: The effect of the culture medium on lipid deposition. BioTechnologia 2019, 100, 273–278. [CrossRef]spa
dcterms.referencesSrivatsa, S.C.; Li, F.; Bhattacharya, S. Optimization of Reaction Parameters for Bio-Oil Production by Catalytic Pyrolysis of Microalga Tetraselmis Suecica: Influence of Ni-Loading on the Bio-Oil Composition. Renew. Energy 2019, 142, 426–436. [CrossRef]spa
dcterms.referencesAysu, T.; Abd Rahman, N.A.; Sanna, A. Catalytic Pyrolysis of Tetraselmis and Isochrysis Microalgae by Nickel Ceria Based Catalysts for Hydrocarbon Production. Energy 2016, 103, 205–214. [CrossRef]spa
dcterms.referencesEboibi, B.E.; Lewis, D.M.; Ashman, P.J.; Chinnasamy, S. Influence of Process Conditions on Pretreatment of Microalgae for Protein Extraction and Production of Biocrude during Hydrothermal Liquefaction of Pretreated Tetraselmis sp. RSC Adv. 2015, 5, 20193–20207. [CrossRef]spa
dcterms.referencesArun, J.; Gopinath, K.P.; SundarRajan, P.S.; Felix, V.; JoselynMonica, M.; Malolan, R. A conceptual review on microalgae biorefinery through thermochemical and biological pathways: Bio-circular approach on carbon capture and wastewater treatment. Bioresour. Technol. Rep. 2020, 11. [CrossRef]spa
dcterms.referencesGuccione, A.; Biondi, N.; Sampietro, G.; Rodolfi, L.; Bassi, N.; Tredici, M.R. Chlorella for protein and biofuels: From strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnol. Biofuels 2014, 7, 1–12. [CrossRef]spa
dcterms.referencesZuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The application of catalytic processes on the production of algae-based biofuels: A review. Catalysts 2021, 11, 22. [CrossRef]spa
dcterms.referencesRanganathan, P.; Savithri, S. Techno-economic analysis of microalgae-based liquid fuels production from wastewater via hydrothermal liquefaction and hydroprocessing. Bioresour. Technol. 2019, 284, 256–265. [CrossRef]spa
dcterms.referencesPeralta-Ruiz, Y.; González-Delgado, A.D.; Kafarov, V. Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Appl. Energy 2013, 101, 226–236. [CrossRef]spa
dcterms.referencesPardo-Cardenas, Y.; Herrera- Orozco, I.; González-Delgado, A.D.; Kafarov, V. Environmental Assessment of Microalgae Biodiesel Production in Colombia: Comparison of Three oil Extraction Systems. Latinoam. J. Oil Gas Altern. Energy 2013, 5, 85–100. [CrossRef]spa
dcterms.referencesMiao, X.; Wu, Q. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 2006, 97, 841–846. [CrossRef]spa
dcterms.referencesVicente, G.; Bautista, L.F.; Gutiérrez, F.J.; Sádaba, I.; Ruiz-Vázquez, R.M.; Torres-Martínez, S.; Garre, V. Biodiesel production from biomass of an oleaginous fungus. Biochem. Eng. J. 2009, 48, 22–27. [CrossRef]spa
dcterms.referencesMercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol. 2011, 113, 539–547. [CrossRef]spa
dcterms.referencesMusa, I.A. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt. J. Pet. 2016, 25, 21–31. [CrossRef]spa
dcterms.referencesEhimen Ehiaze, A. An Investigation on the Co-Production of Biodiesel and Methane from Microalgae; University of Otago: Otago, New Zealand, 2010.spa
dcterms.referencesVeljkovi´c, V.B.; Laki´cevi´c, S.H.; Stamenkovi´c, O.S.; Todorovi´c, Z.B.; Lazi´c, M.L. Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel 2006, 85, 2671–2675. [CrossRef]spa
dcterms.referencesPark, J.Y.; Park, M.S.; Lee, Y.C.; Yang, J.W. Advances in direct transesterification of algal oils from wet biomass. Bioresour. Technol. 2015, 184, 267–275. [CrossRef]spa
dcterms.referencesPonnusamy, V.K.; Nagappan, S.; Bhosale, R.; Lay, G.; Nguyen, D.; Pugazhendhi, A.; Woong, S.; Humar, G. Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. Bioresour. Technol. 2020, 310. [CrossRef]spa
dcterms.referencesDemirbas, A. Competitive liquid biofuels from biomass. Appl. Energy 2011, 88, 17–28. [CrossRef]spa
dcterms.referencesJones, S.; Zhu, Y.; Anderson, D.; Hallen, R.T.; Elliott, D.C. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading; PNNL: Richland, WA, USA, 2014; pp. 1–69.spa
dcterms.referencesHeikkilä, A. Inherent Safety in Process Plant Design; VTT Publications: Espoo, Finland, 1999; pp. 1–132.spa
dcterms.referencesKhan, F.I.; Amyotte, P.R. A comprehensive quantitative tool for inherent safety and cost evaluation. J. Loss Prev. Process Ind. 2005, 18, 310–326. [CrossRef]spa
dcterms.referencesEjikeme, P.M.; Anyaogu, I.D.; Ejikeme, C.L.; Nwafor, N.P.; Egbuonu, A.A.C.; Ukogu, K.; Ibemesi, A. Catalysis in Biodiesel Production by Transesterification Process-An Insight. Egypt. J. Pet. 1998, 9, 332–337.spa
dcterms.referencesMeramo-Hurtado, S.I.; Ojeda, K.A.; Sanchez-Tuiran, E. Environmental and Safety Assessments of Industrial Production of Levulinic Acid via Acid-Catalyzed Dehydration. ACS Omega 2019, 4, 22302–22312. [CrossRef]spa
dcterms.referencesAhmad, S.I.; Hashim, H.; Hassim, M.H.; Muis, Z.A. Inherent Safety Assessment of Biodiesel Production: Flammability Parameter. Procedia Eng. 2016, 148, 1177–1183. [CrossRef]spa
dcterms.referencesSalzano, E.; Di Serio, M.; Santacesaria, E. Emerging risks in the biodiesel production by transesterification of virgin and renewable oils. Energy Fuels 2010, 24, 6103–6109. [CrossRef]spa
dcterms.referencesMeramo-Hurtado, S.I.; Sanchez-Tuiran, E.; Ponce-Ortega, J.M.; El-Halwagi, M.M.; Ojeda-Delgado, K.A. Synthesis and Sustainability Evaluation of a Lignocellulosic Multifeedstock Biorefinery Considering Technical Performance Indicators. ACS Omega 2020, 5, 9259–9275. [CrossRef] [PubMed]spa
dcterms.referencesBarnwal, B.K.; Sharma, M.P. Prospects of biodiesel production from vegetable oils in India. Renew. Sustain. Energy Rev. 2005, 9, 363–378. [CrossRef]spa
dcterms.referencesSam Mannan, M.; Wang, Y.; Zhang, C.; West, H.H. Application of inherently safer design principles in biodiesel production process. Inst. Chem. Eng. Symp. Ser. 2006, 151, 982–989.spa
dc.identifier.doi10.3390/app11062854
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 11 No. 6 (2021)spa
dc.relation.citationendpage15spa
dc.relation.citationissue6 (2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume11spa
dc.relation.citesGonzález-Delgado, A.D.; García-Martínez, J.B.; Barajas-Solano, A.F. Evaluation of Algae-Based Biodiesel Production Topologies via Inherent Safety Index (ISI). Appl. Sci. 2021, 11, 2854. https://doi.org/ 10.3390/app11062854
dc.relation.ispartofjournalApplied Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalmicroalgaeeng
dc.subject.proposalbiodieseleng
dc.subject.proposalinherent safetyeng
dc.subject.proposaltransesterificationeng
dc.subject.proposalhydrothermal liquefactioneng
dc.subject.proposallipidseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).