Mostrar el registro sencillo del ítem

dc.contributor.authorROA BOHÓRQUEZ, KAROL LIZETH
dc.contributor.authorVera López, Enrique
dc.contributor.authorFONSECA PÁEZ, LUIS ALEJANDRO
dc.contributor.authorPeña Rodriguez, Gabriel
dc.date.accessioned2021-11-25T22:04:19Z
dc.date.available2021-11-25T22:04:19Z
dc.date.issued2019-07-01
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1440
dc.description.abstractThe present work reports the microstructure, physical and mechanical properties of a material composed of kaolin, diatomite and calcium carbonate reinforcement (CaCO3). The ceramic prototypes were shaped by the slip casting method and sintered at temperatures between 800 °C and 1100 °C. The morphology and average pore size was analyzed by Scanning Electron Microscopy (SEM) and the mineralogical phases were determined by X-Ray Diffraction (XRD). The apparent density was established by the mercury immersion method according to the E – 8B Standard of the Institute of Ceramic Technology (ITC); the percentage of absorption was determined by the boiling method according to ISO 10545-3 standard; linear contraction was studied in three directions: long, wide and high. The study of the mechanical resistance to compression followed the procedure established at ASTM C773–88 standard and the breaking modulus was calculated by the three-point bending test, according to ISO 10545–4. Results show that the material structure is affected with increasing temperature reporting a decrease in quartz phase from 51.16 % to 33.81 %. Percentage of absorption revealed its most significant variation between 950 °C and 1100 °C with a decrease of 21 % approximately. Mechanical resistance values showed wide dispersion which was attributed to the different orientations in which the material failed during each test. According to the pore diameters found, the compound is characterized by being macro and mesoporous facilitating its application in catalysis, photochemistry, microelectronics and other microfiltration mediaeng
dc.description.abstractEl presente trabajo reporta la microestructura, propiedades físicas y mecánicas de un material compuesto de caolín, diatomita y refuerzo de carbonato de calcio (CaCO3). Los prototipos cerámicos se conformaron por el método de slip casting o colado y se sinterizaron a temperaturas entre 800 °C y 1100 °C. La morfología y tamaño promedio de poro se analizó mediante Microscopía Electrónica de Barrido (MEB) y las fases mineralógicas se determinaron por Difracción de Rayos X (DRX). La densidad aparente se estableció por el método de inmersión en mercurio de acuerdo a la Norma E – 8B del Instituto de Tecnología Cerámica (ITC); el porcentaje de absorción se determinó por el método de ebullición según la norma ISO 10545–3; la contracción lineal se estudió en tres direcciones: largo, ancho y alto. El estudio de la resistencia mecánica a la compresión siguió el procedimiento establecido en la norma ASTM C773–88 y el módulo de rotura se calculó por el ensayo de flexión a tres puntos, según norma ISO 10545–4. Los resultados revelan que el aumento de temperatura afecta la estructura del material, reportando una disminución de la fase cuarzo de 51.16 % a 33.81 %. La variación más significativa del porcentaje de absorción se presentó entre 950 °C y 1100 °C con una disminución de 21 % aproximadamente. Los valores de resistencia mecánica mostraron una amplia dispersión, la cual se atribuyó a las distintas orientaciones en las que el material falló durante cada ensayo. De acuerdo a los diámetros de poros encontrados, el compuesto se caracteriza por ser macro y mesoporoso facilitando su aplicación en catálisis, fotoquímica, microelectrónica y otros medios microfiltrantes.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherDYNAspa
dc.relation.ispartofDYNA
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.sourcehttps://revistas.unal.edu.co/index.php/dyna/article/view/77450spa
dc.titleMicrostructure, physical and mechanical properties of kaolin - diatomite composite reinforced with CaCO3eng
dc.typeArtículo de revistaspa
dcterms.referencesFerrer, M., Peña, G. y Dulce, H., Construcción y caracterización de cerámicas porosas a partir de espumas de poliuretano y barbotinas de arcillas rojas. Revista Colombiana de Física, [en línea]. 43(2), pp. 446-450, 2011. Disponible en: http://revcolfis.org/ojs/index.php/rcf/spa
dcterms.referencesFonseca, L., Trujillo, E. y Peña, G., Tortuosidad y permeabilidad de materiales cerámicos mesoporosos de caolín y diatomita. Revista UIS Ingenierías, 18(2), pp. 111-118, 2018. DOI: 10.18273/revuin.v18n1-2019009spa
dcterms.referencesRosa, D., Salvini, V. and Pandolfelli, V., Processamento e avaliação das propriedades de tubos cerâmicos porosos para microfiltração de emulsões. Cerâmica, 52(322), pp. 167-171, 2006. DOI: 10.1590/s0366-69132006000200008spa
dcterms.referencesDanil-de Namor, A., El Gamouz, A., Frangie, S., Martinez, V., Valiente, L. and Webb, O., Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water. Journal of Hazardous Materials, 14-31, pp. 241-242, 2012. DOI: 10.1016/j.jhazmat.2012.09.030spa
dcterms.referencesHa, J., Oh, E. and Song, I., The fabrication and characterization of sintered diatomite for potential microfiltration applications. Ceramics International, 39(7), pp. 7641-7648, 2013. DOI: 10.1016/j.ceramint.2013.02.102spa
dcterms.referencesHa, J., Oh, E., Bae, B. and Song, I., The effect of kaolin addition on the characteristics of a sintered diatomite composite support layer for potential microfiltration applications. Ceramics International, 39(8), pp. 8955-8962, 2013. DOI: 10.1016/j.ceramint.2013.04.092spa
dcterms.referencesHubadillah, S., Othman, M., Matsuura, T., Ismail, A., Rahman, M. and Harun, Z., Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review. Ceramics International, 44(5), pp. 4538-4560, 2017. DOI: 10.1016/j.ceramint.2017.12.215spa
dcterms.referencesVafai, K., Lage, J. and Narasimhan, A., Handbook of Porous Media. Abingdon: CRC Press, 2000.spa
dcterms.referencesHuang, S., Huang, C., Lu, S. and Chou, K., Ceramic/polyaniline composite porous membranes. Journal of Porous Materials, 6(2), pp. 153-159, 1999. DOI: 10.1023/A:1009687523387spa
dcterms.referencesDavid, C., Arivazhagan, M. and Ibrahim, M., Spent wash decolourization using nano-Al2O3/kaolin photocatalyst: Taguchi and ANN approach. Journal of Saudi Chemical Society, 19(5), pp. 537-548, 2015. DOI: 10.1016/j.jscs.2015.05.012spa
dcterms.referencesGhouil, B., Harabi, A., Bouzerara, F., Boudaira, B., Guechi, A., Demir, M. and Figoli, A., Development and characterization of tubular composite ceramic membranes using natural alumino-silicates for microfiltration applications. Materials Characterization, 103, pp. 18-27, 2015. DOI: 10.1016/j.matchar.2015.03.009spa
dcterms.referencesHa, J., Oh, E., Bae, B. and Song, I., The effect of kaolin addition on the characteristics of a sintered diatomite composite support layer for potential microfiltration applications. Ceramics International, 39(8), pp. 8955-8962, 2013. DOI: 10.1016/j.ceramint.2013.04.092spa
dcterms.referencesLuyten, J., Mullens, S. and Thijs, I., Designing with Pores-Synthesis and Applications. KONA Powder and Particle Journal, 28(0), pp. 131-142, 2010. DOI: 10.14356/kona.2010012spa
dcterms.referencesFerrer, M., Peña, G. y Vera, E., Estructura, porosidad y resistencia mecánica a la flexión de cerámicas porosas elaboradas con barbotinas rojas y espumas de poliuretano. Revista Colombiana de Física, [en línea]. 45(3), pp. 214-217, 2013. Disponible en: http://revcolfis.org/ojs/index.php/rcf/spa
dcterms.referencesQiu, M., Chen, X., Fan, Y. and Xing, W., Ceramic membranes. Comprehensive Membrane Science and Engineering, 2, pp. 270-297, 2017. DOI: 10.1016/b978-0-12-409547-2.12243-7spa
dcterms.referencesGalzerano, B., Capasso, I., Verdolotti, L., Lavorgna, M., Vollaro, P. and Caputo, D., Design of sustainable porous materials based on 3D-structured silica exoskeletons, Diatomite: chemico-physical and functional properties. Materials and Design, 145, pp. 196-204, 2018. DOI: 10.1016/j.matdes.2018.02.063spa
dcterms.referencesArzani, M., Mahdavi, H., Sheikhi, M., Mohammadi, T. and Bakhtiari, O., Ceramic monolith as microfiltration membrane: preparation, characterization and performance evaluation. Applied Clay Science, 161, pp. 456-463, 2018. DOI: 10.1016/j.clay.2018.05.021spa
dcterms.referencesHubadillah, S., Othman, M., Harun, Z., Ismail, A., Rahman, M. and Jaafar, J. et al., Superhydrophilic, low cost kaolin-based hollow fibre membranes for efficient oily-wastewater separation. Materials Letters, 191, pp. 119-122, 2017. DOI: 10.1016/j.matlet.2016.12.099.spa
dcterms.referencesAnbu, P., Kang, C., Shin, Y. and So, J., Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus, 5(1), 2016. DOI: 10.1186/s40064-016-1869-2spa
dcterms.referencesKanoje, B., Parikh, J. and Kuperkar, K., Crystallization study and morphology behaviour of calcium carbonate crystals in aqueous Surfactant-Pluronics prototype. Journal of Materials Research and Technology, 2018. DOI: 10.1016/j.jmrt.2017.10.005spa
dcterms.referencesRodríguez, G., Miranda, A. y Santafe, G., Efecto de la temperatura y tiempo de cocción en la porosidad de mezclas a base de arcillas de caolines. Revista de la Sociedad Colombiana de Física, [en línea]. 41(1), pp. 27-30, 2009. Disponible en: http://www.sociedadcolombianadefisica.org.co/spa
dcterms.referencesÁlvarez, L., Rosas, F., Márquez, E. y Velazco, E., Caracterización y estabilización de la fase metaestable del carbonato de calcio obtenida mediante la aplicación de una capa de Bi2O2CO3: Al a temperatura ambiente. Avances en Química, [en línea]. 12(1), pp. 13-21, 2017. Disponible en: http://www.saber.ula.ve/avancesenquimicaspa
dcterms.referencesSimão, L., Caldato, R., Innocentini, M. and Montedo, O., Permeability of porous ceramic based on calcium carbonate as pore generating agent. Ceramics International, 41(3), pp. 4782-4788, 2015. DOI: 10.1016/j.ceramint.2014.12.031spa
dcterms.referencesFalamaki, C., Afarani, M. and Aghaie, A., Initial sintering stage pore growth mechanism applied to the manufacture of ceramic membrane supports. Journal of the European Ceramic Society, 24(8), pp. 2285-2292, 2004. DOI: 10.1016/s0955-22190300643-5spa
dcterms.referencesMonash, P., Pugazhenthi, G. and Saravanan, P., Various fabrication methods of porous ceramic supports for membrane applications. Reviews in Chemical Engineering, 29(5), pp. 357-383, 2013. DOI: 10.1515/revce-2013-0006spa
dcterms.referencesBenito, J., Conesa, A. y Rodríguez, M., Membranas cerámicas. Tipos, métodos de obtención y caracterización. Boletín de la Sociedad Española de Cerámica y Vidrio, 43(5), pp. 829-842, 2004. DOI: 10.3989/cyv.2004.v43.i5spa
dcterms.referencesBrown, G., Report of the clay minerals group sub-committee on nomenclature of clay minerals. Clay Minerals, 2(13), pp. 294-302, 1955. DOI: 10.1180/claymin.1955.002.13.12spa
dcterms.referencesPenedo, L., Caracterización de las arcillas de la mina San José Oruro, Bolívia para fines comerciales, BSc Thesis, Universitat Politècnica de Catalunya, Manresa, Spain, 2018.spa
dcterms.referencesBartolomé, J., El Caolín: composición, estructura, génesis y aplicaciones. Boletín de la Sociedad Española de Cerámica y Vidrio, 36(1), pp. 7-19, 1997. DOI: 10.3989/cyv.1997.v36.i1spa
dcterms.referencesHan, K., Graser, J., Robert, C., Martins de Mendonca Filho, L., Mc Lennan, J. and Sparks, T., Synthesis and microstructural evolution in iron oxide kaolinite based proppant as a function of reducing atmosphere, sintering conditions and composition. Ceramics International, 44(8), pp. 9976-9983, 2018. DOI: 10.1016/j.ceramint.2018.03.047spa
dcterms.referencesZhou, H., Qiao, X. and Yu, J., Influences of quartz and muscovite on the formation of mullite from kaolinite. Applied Clay Science, 80-81, pp. 176-181, 2013. DOI: 10.1016/j.clay.2013.04.004spa
dcterms.referencesNdayishimiye, A., Largeteau, A., Prakasam, M., Pechev, S., Dourges, M.A. and Goglio, G., Low temperature hydrothermal sintering process for the quasi-complete densification of nanometric α-quartz. Scripta Materialia, 145, pp. 118-121, 2018. DOI: 10.1016/j.scriptamat.2017.10.023spa
dcterms.referencesD’Ippolito, V., Andreozzi, G., Hålenius, U., Skogby, H., Hametner, K. and Günther, D., Color mechanisms in spinel: cobalt and iron interplay for the blue color. Physics and Chemistry of Minerals, 42(6), pp. 431-439, 2015. DOI: 10.1007/s00269-015-0734-0spa
dcterms.referencesNdlovu, B., Becker, M., Forbes, E., Deglon, D. and Franzidis, J., The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Minerals Engineering, 24(12), pp. 1314-1322, 2011. DOI: 10.1016/j.mineng.2011.05.008spa
dcterms.referencesNdlovu, B., Forbes, E., Farrokhpay, S., Becker, M., Bradshaw, D. and Deglon, D., A preliminary rheological classification of phyllosilicate group minerals. Minerals Engineering, 55, pp. 190-200, 2014. DOI: 10.1016/j.mineng.2013.06.004spa
dcterms.referencesLaita, E. and Bauluz, B., Mineral and textural transformations in aluminium-rich clays during ceramic firing. Applied Clay Science, 152, pp. 284-294, 2018. DOI: 10.1016/j.clay.2017.11.025spa
dcterms.referencesMachner, A., Zajac, M., Ben Haha, M., Kjellsen, K., Geiker, M. and De Weerdt, K., Portl and metakaolin cement containing dolomite or limestone – Similarities and differences in phase assemblage and compressive strength. Construction and Building Materials, 157, pp. 214-225, 2017. DOI: 10.1016/j.conbuildmat.2017.09.056spa
dcterms.referencesRodríguez, J., López, O. y Nogueira, A., Secado del citrato de calcio y magnesio a escala de banco. Revista Cubana de Farmacia, [en línea]. 43(1), 2009. Disponible en: http://scielo.sld.cu/revistas/far/einstruc.htmspa
dcterms.referencesZheng, R., Ren, Z., Gao, H., Zhang, A. and Bian, Z., Effects of calcination on silica phase transition in diatomite. Journal of Alloys and Compounds, 757, pp. 364-371, 2018. DOI: 10.1016/j.jallcom.2018.05.010spa
dcterms.referencesSaxena, S., Thermodynamic databases and phase diagrams. informatics for materials science and engineering, Butterworth-Heinemann, 2013, pp. 245-269. DOI: 10.1016/b978-0-12-394399-6.00011-4spa
dcterms.referencesEverett, D., Manual of symbols and terminology for physicochemical quantities and units. Appendix II: definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry, 31(4), pp. 577-638, 1972. DOI: 10.1351/pac197231040577spa
dcterms.referencesEsquivel, D., Síntesis, caracterización y aplicaciones de materiales periódicos mesoporosos organosilícicos, Tesis Dr., Departamento de Química Orgánica, Universidad de Córdoba, Córdoba, España, 2011.spa
dcterms.referencesAskeland, D., Fulay, P. and Wright, W., The science and engineering of materials, 6th Ed., Cengage Learning Eds., 2011.spa
dcterms.referencesLorici, L. and Brusa, A., Porous and vitrified single‐fired tiles. In: Wachtman, J.B. (Ed.), Materials & Equipment/Whitewares: Ceramic Engineering and Science Proceedings, 12, pp. 183-184, 2008. DOI: 10.1002/9780470313183.ch24.spa
dcterms.referencesAnderson, J., Ciencia de los materiales: propiedades mecánicas de los cerámicos, 2a ed., Limusa S.A, México, 2002. pp. 365-368.spa
dcterms.referencesManicone, P., Rossi, P. and Raffaelli, L., An overview of zirconia ceramics: basic properties and clinical applications. Journal of Dentistry, 35(11), pp. 819-826, 2007. DOI: 10.1016/j.jdent.2007.07.008spa
dcterms.referencesIbañez, A. y Sandoval, F., La Wollastonita: propiedades, síntesis y aplicaciones cerámicas. Boletín de la Sociedad Española de Cerámica y Vidrio, [en línea]. 32(6), pp. 349-361, 1993. Disponible en: http://boletines.secv.esspa
dcterms.referencesKnudsen, F., Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. Journal of the American Ceramic Society, 42(8), pp. 376-387, 1959. DOI: 10.1111/j.1151-2916.1959.tb13596.xspa
dcterms.referencesLiu, D., Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic. Ceramics International, 23(2), pp. 135-139, 1997. DOI: 10.1016/s0272-88429600009-0.spa
dcterms.referencesJurowski, K. and Grzeszczyk, S., The influence of concrete composition on Young's modulus. Procedia Engineering, 108, pp. 584-591, 2015. DOI: 10.1016/j.proeng.2015.06.181spa
dcterms.referencesYakub, I., Du, J. and Soboyejo, W., Mechanical properties, modeling and design of porous clay ceramics. Materials Science and Engineering: A, 55(8), pp. 21-29, 2012. DOI: 10.1016/j.msea.2012.07.038spa
dcterms.referencesGridi-Bennadji, F., Chateigner, D., Di Vita, G. and Blanchart, P., Mechanical properties of textured ceramics from muscovite–kaolinite alternate layers. Journal of the European Ceramic Society, 29(11), pp. 2177-2184, 2009. DOI: 10.1016/j.jeurceramsoc.2009.01.004.spa
dcterms.referencesDeng, Z., Fukasawa, T., Ando, M., Zhang, G. and Ohji, T., Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide. Journal of the American Ceramic Society, 84(11), pp. 2638-2644, 2001. DOI: 10.1111/j.1151-2916.2001.tb01065.xspa
dc.identifier.doihttps://doi.org/10.15446/dyna.v86n210.77450
dc.relation.citationeditionVol.86 No.210.(2019)spa
dc.relation.citationendpage332spa
dc.relation.citationissue210 (2019)spa
dc.relation.citationstartpage323spa
dc.relation.citationvolume86spa
dc.relation.citesROA BOHÓRQUEZ, K. L., VERA LÓPEZ, E., FONSECA PÁEZ, L. A., & PEÑA RODRÍGUEZ, G. (2019). Microstructure, physical and mechanical properties of kaolin–diatomite composite reinforced with CaCO3•. DYNA, 86(210), 323-332. https://doi.org/10.15446/dyna.v86n210.77450
dc.relation.ispartofjournalDYNAspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalcomposite materialeng
dc.subject.proposalceramic membraneseng
dc.subject.proposalmechanical propertieseng
dc.subject.proposalkaolin clayseng
dc.subject.proposalSEMeng
dc.subject.proposalmateriales compuestosspa
dc.subject.proposalmembranas cerámicasspa
dc.subject.proposalpropiedades mecánicasspa
dc.subject.proposalarcillas caolinitasspa
dc.subject.proposalMEBspa
dc.title.translatedMicroestructura, propiedades físicas y mecánicas del compuesto caolín-diatomita reforzado con CaCO3
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem