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Abstract. Production programming consists of assigning, sequencing and timing tasks leading 

to the acquisition of physical assets in productive resources. Normally, we talk about "jobs" to 

be sequenced in "machines" so that the result of the production programming is shown in the 

form of a Gantt chart where each job is divided into as many tasks as necessary and each task is 

executed in the machines of the factory as technologically necessary. In the productive reality 

several machines are observed in each stage of the production process, which suggests a problem 

of hybrid flow workshop type (HFS). However, in some companies a machine of each stage is 

joined by conveyor belts. All these machines would behave like a single virtual machine since 

the works enter in order in the first machine and that order is maintained until the last machine, 

without allowing neither stops nor changes in the sequence. Then in a modelling approach, it is 

suggested to reduce the problem of (HFS) to a problem with several production lines in parallel 

where each line would behave would be basically like a virtual machine. The problem is that 

since the line is so long, once the last element of a job leaves the first stage, it can start the 

processing of a new job while the first sequenced work moves through the production line. 

Effectively, the "parallel machine" modelling the line would be processing more than one job at 

the same time, that is, overlaps between the processed jobs are evident. The model is evaluated 

with the help of two of the commercial solvers and to be able to evaluate it, it was necessary to 

create a set of instances that would represent the situation under study. 

1. Introduction 

The increasing involvement of production companies in international markets is becoming increasingly 

demanding because of competitiveness to offer of a wide range of products, with short life cycles and 

low profit margins; This situation requires companies to have great flexibility in the production process 

in order to comply with increasingly smaller orders, with personalized characteristics a required delivery 

date. 

The characteristics mentioned before demand from companies the efficient and rational use of all 

their available resources in order to guarantee customer satisfaction, the profitability of their products 

and business consolidation. 

Regardless of what production system used, as mentioned in [1-3], every company production must 

plan to consider the time horizon, and from this activity the Master Production Plan is generated. Long-

term production policy such as product lines to be elaborated or production capacity. In the medium 

term, aspects such as the need for raw materials and labor, among others, are considered; already in the 

short term, the control of the production takes place, which is based on the allocation phases (the 

necessary resources are determined over time to guarantee the realization of the various products), 
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sequencing (the order of execution of the different manufacturing orders identifying the start and end 

moments of each of them) and programming (it is the unification of the two previous phases), and all 

together form the production program [4]. 

As evidence as mentioned previously, it is a complex process to generate a good production order 

that optimizes the company’s available resources (which always will be scarce). This production order 

would demand adequate tools that contribute to the optimization of the process that is why all the 

investigations that can be carried out in this field provide greater knowledge on the subject. 

2. Parallel machines 

The present investigation focused on the problems of parallel machines where it is necessary to carry 

out the assignment without interruption of n independent jobs N = {n1, … , nn} with positive processing 

times p1, p2, … , pn in m machines parallel M = {m1, … , mm} to minimize the completion time of the 

last work completed in the workshop Cmáx = máx{C1, … , Cm} which is also known as makespan, where 

Ci is the sum of the processing times of the jobs assigned to the machine i. This problem can be 

abbreviated as P //Cmáx using the triple field notation of [5]. 

For the particular case of the unrelated parallel machines, the following assumptions are added: a) 

each job j, j = 1, … , n must be processed in exactly one of the m machines in parallel; b) no machine 

can process more than one job at a time and once a job has been processed in the machine, it cannot be 

interrupted until it is finished; c) the processing time of a job is known, certain , finite and a fixed positive 

number that depends on the speed of the machine in which it is made. With the above, the model can be 

denoted as R //Cmáx. 

To solve combinatorial problems, the traditional method is the definition of a mathematical model 

that guarantees obtaining the optimal solution. This solution scheme is only possible with problems of 

relatively small size, because when the problems are complex or large; this solution paradigm is not 

recommended since it demands considerably large amounts of time and memory. Using mixed-integer 

linear programming (MILP), the generic problem of non-related parallel machines is defined 

mathematically. The binary variable xijadds the value of 1 if job j is assigned to machine i and zero in 

any other case. The minimization of the makespan min Cmáxis defined as an objective function and is 

subject to the following restrictions, 

 

∑ 𝑥𝑖𝑗 = 1

𝑚

𝑖=1

, ∀𝑗 ∈ 𝑁 (1) 

∑ 𝑝𝑖𝑗

𝑛

𝑗=1

. 𝑥𝑖𝑗 ≤ 𝐶máx, ∀𝑖 ∈ 𝑀 (2) 

𝑥𝑖𝑗 ∈ {0,1}, ∀𝑗 ∈ 𝑁, ∀𝑖 ∈ 𝑀 (3) 

𝐶máx  ≥ 0 (4) 

 

The first set of constraints Equation (1) is processed on only a single machine. The second set of 

constraints Equation (2) ensures that the maximum sum of all jobs assigned to each machine is the value 

of Cmáx. The restriction Equation (3) is used to define Cmáx as a binary variable and the restriction 

Equation (4) defines the Cmáx as a non-negative variable that can take any real value greater than or 

equal to zero. 

The contributions of [6] allow us to know a little more about the operation offered by this MILP 

model since it is not the only model that has been addressed in the literature. In the same year, the work 

carried out by [7] was highlighted, arguing that the problem of programming with MIP models can be 

described based on the decision variables on which it is based. They considered the following types of 

decision variables: a) Variables of the completion time of a job, which is a key metric to measure the 

quality of a production schedule and which are sometimes called "variables of natural date"; b) 
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Assignment and date position variables, specify what work is planned below and at what time the 

processing of this work will begin; c) Variables of linear ordering, through them the relations of 

precedence between the works are described and they are denominated "variables of the sequence"; d) 

Indexed time variables, usually assign jobs to time periods; e) Network variables, or variables of the 

traveling salesperson. 

They proposed four different paradigms of the MILP model for the problem of optimization in the 

programming of parallel machines. Specifically, the decision variables considered were indexed time 

variables, network variables, and date assignment and positional variables. The model that used time-

indexed variables (called M1) took less time, was able to provide optimal solutions more frequently, 

and if it did not find the optimal solution, it provided lower limits closer to the optimum. 

In [8] a mathematical model of mixed integer programming (MIP) is developed for the problem of 

parallel machines no related to configuration times dependent on the sequence denoted as R /sijk/Cmáx. 

By adding the configuration times to the generic problem, this is no longer just an assignment problem, 

since depending on how different jobs are sequenced among those assigned to a machine, the end time 

of that machine will be different, so the model to solve this problem should consider allocation and 

sequencing operations. 

2.1. Proposed mathematical model 

In the MILP formulation for the case of a company in the ceramic sector that presents several machines 

in each of the stages of production, but with the particularity that in each stage there is a machine linked 

to another of the next stage by the band system conveyor; therefore, despite being a typical hybrid flow 

workshop situation [9], it can be approached as a case of parallel virtual machines, considering in the 

model the configuration times depending on the machine and the sequence, without leisure time in the 

machines and the overlaps between jobs since has already said, considering each production line as a 

single virtual machine with a single process it is unproductive to wait for the last ceramic tile to come 

out of a job to start the next sequenced work. The proposed model takes as background the mathematical 

models generated in the works of doctoral theses of [10-12]. 

Let N = {1, … , n} be the set of all the jobs to be performed in M = {1, … , m} parallel virtual machines 

not related to processing time in each virtual machine i for each job j of Pijand time of configuration 

between consecutive jobs on the machine denoted as Sijk. It is considered a parameter qij that contains 

the maximum level from which a job j can overlap in the virtual machine i with its successor k. This 

time depends on the speed at which the press works (bottleneck in the production process) since in the 

company the fastest presses have been connected to the slower ovens. Based on information provided 

by the production manager, it is concluded that the levels generated from the 30%, 25%, 20% and 15% 

of the processing time of the j and k jobs in the virtual machines 1, 2 are generated after the elapsed 

time 3 and 4, respectively. 

Additionally, the positive whole constant V is considered. The model aims to minimize the makespan 

and involves the following decision variables: 

• Xijk It is worth 1 if job j precedes work k in virtual machine i and 0 otherwise. 

• Cij Job completion time j in the virtual machine i. 

• lagijk It is the overlap between the consecutive jobs j and k in the virtual machine i, being j ≠

 k. 
• Cmáx Maximum completion time. 

 

It is subject to the following restrictions: 

 

∑ ∑ 𝑋𝑖𝑗𝑘 = 1, 𝑘 = {1, … , 𝑛} 
𝑚

𝑖=1

𝑛

𝑗=0
𝑗≠𝑘

 (5) 



IV International Congress / Days of Applied Mathematics

IOP Conf. Series: Journal of Physics: Conf. Series 1160 (2019) 012017

IOP Publishing

doi:10.1088/1742-6596/1160/1/012017

4

∑ ∑ 𝑋𝑖𝑗𝑘 ≤ 1, 𝑗 = {1, . . , 𝑛}
𝑚

𝑖=1

𝑛

𝑘=1
𝑗≠𝑘

 (6) 

∑ 𝑋𝑖ℎ𝑗 ≥ 𝑋𝑖𝑗𝑘 , 𝑗, 𝑘 = {1, . . , 𝑛}, 𝑗 ≠ 𝑘, 𝑖 = {1, . . , 𝑚}
𝑛

ℎ=0
ℎ≠𝑗,ℎ≠𝑘

 (7) 

∑ (𝑋𝑖𝑗𝑘 + 𝑋𝑖𝑘𝑗) ≤ 1, 𝑗 = {1, . . , 𝑛}, 𝑘 = {𝑗 + 1, . . , 𝑛}, 𝑗 ≠ 𝑘
𝑚

𝑖=1
 (8) 

∑ 𝑋𝑖0𝑘 ≤ 1, 𝑖 = {1, . . , 𝑚} 
𝑛

𝑘=1
 (9) 

𝐶𝑖0 = 0, 𝑖 = {1, . . , 𝑚} (10) 

𝐶𝑖𝑘 + 𝑉(1 − 𝑋𝑖𝑗𝑘) = 𝐶𝑖𝑗 + 𝑃𝑖𝑘 + 𝑆𝑖𝑗𝑘 − 𝑙𝑎𝑔𝑖𝑗𝑘 , 𝑗 = {0, . . , 𝑛}, 𝑘 = {1, … , 𝑛}, 𝑗 ≠ 𝑘, 𝑖

= {1, . . , 𝑚} 
(11) 

 𝑙𝑎𝑔𝑖𝑗𝑘 ≤ 𝑞𝑖𝑗 , 𝑖 = {1, … , 𝑚}, 𝑗 = {1, … , 𝑛}, 𝑘 = {1, … , 𝑛 − 1} (12) 

𝑙𝑎𝑔𝑖𝑗𝑘 ≤ 𝑞𝑖𝑘 , 𝑖 = {1, … , 𝑚}, 𝑗 = {1, … , 𝑛}, 𝑘 = {1, … , 𝑛 − 1} (13) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖𝑘 , 𝑘 = {1, . . , 𝑛}, 𝑖 = {1, … , 𝑚} (14) 

𝑋𝑖𝑗𝑘 ∈ {0,1}, 𝑗, 𝑘 = {1, … , 𝑛}, 𝑖 = {1, … , 𝑚} (15) 

 

The set of restrictions Equation (5) ensures that each job is processed in a single virtual machine. 

The set of restrictions Equation (6) ensures that each job has at most one successor. The set of restrictions 

Equation (7) ensures that if a job is processed in a virtual machine, that job has a predecessor. The set 

of restrictions Equation (8) ensures that between two consecutive jobs only one condition of being 

predecessor or successor of one another is fulfilled. The set of restrictions Equation (9) limits to a single 

successor of the dummy jobs in each virtual machine. The set of constraints Equation (10) defines the 

completion time at zero for the dummy jobs in each virtual machine. The set of constraints Equation 

(11) controls the completion time in each virtual machine, in case the job k is the successor of job j on 

line i (Xijk = 1) then the completion time Cik  must be equal to Cij , plus the processing time of work k, 

plus the configuration time between jobs j and k, minus the level of overlap between jobs j and k within 

the virtual machine. In case that (Xijk = 0 then the constant V represents the redundant constraint. The 

set of constraints Equation (12) and Equation (13) establishes the minimum permissible overlap level 

between two consecutively sequenced jobs. For example, if qij = 6 and qik = 9 the overlap between 

jobs would be lagijk = 6, which indicates that the lowest bound will always be accepted and the other 

restriction would be redundant. The set of constraints Equation (14) defines the makespan and Equation 

(15) defines the binary variables. 

3. Computational evaluation 

The characteristic elements of the model considered are described in detail in Table 1. As you can see, 

the smallest instance has 7 jobs to be done in 2 machines considering a preparation time equivalent to 

10% ∗ U[1.99]; and the largest, 15 jobs to be carried out on 4 machines considering a configuration 

time equivalent to 125% ∗ U[1.99]. It is important to emphasize that the values of N and M were 

considered equidistant, thus facilitating the statistical analyzes to be carried out. In addition, as can be 

seen in later sections, the size of the instances is adequate for the exact models that are proposed. 

For the evaluation of the proposed mathematical model, tests were performed on a computer with an 

Intel Core i5 processor at 2.39 GHz and 8 GB of RAM. For each instance under evaluation, a maximum 

execution time of 60 minutes has been allowed. 
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The main intention is to identify if there are differences in the functioning of these two solvers with 

the proposed model using the created instances. For this, one of the most powerful methodologies is 

used, such as the Design of Experiments (DOE) [13]. The DOE is a structured and organized method to 

determine the relationship between the factors that possibly affect a process. For the case of study in 

this situation, we will study the effect on the response variable, execution time and the factors: Jobs, 

Virtual Machines, Solvers and Preparation Times. 

 

Table 1. Description of the factors considered in the instances created defines the binary variables. 
Feature Description 

Number of jobs (𝑛) {7, 8, 9, 10, 11, 12, 13, 14, 15} 

Number of virtual machines (𝑚) {2, 3, 4} 

Processing times of each job (𝑝𝑖𝑗) 𝑈 [1,99] 

Preparation times between jobs (𝑠𝑖𝑗𝑘) 
{10% ∗ 𝑈[1,99], 50% ∗ 𝑈[1,99], 
100% ∗ 𝑈[1,99], 125% ∗ 𝑈[1,99]} 

Overlaps (𝑙𝑎𝑔𝑖𝑗𝑘) {70%𝑝𝑖𝑗 , 75%𝑝𝑖𝑗 , 80%𝑝𝑖𝑗 , 85%𝑝𝑖𝑗} 

Solvers 𝐶𝑃𝐿𝐸𝑋 12.6.2.0 −  𝐺𝑢𝑟𝑜𝑏𝑖 6.0.4 

Number of replicates by instance type 5 

Total instances 540 

4. Results 

To determine which of the two solvers works best in this situation studied, the number of resolved 

instances was optimally analyzed for each of them in the execution time considered (maximum 

60 minutes). In Table 2 the percentage of unresolved instances is very similar for both solvers, then 

one could believe that there are no significant differences in the functioning of the two.  

 

Table 2. Instances resolved optimally according to the Solver. 
 Instances Solved Instances No Solved 

Cplex 

Gurobi 
35.64% 

36.20% 

14.37% 

13.79% 

Total 71.84% 28.16% 

 

In order to determine the representative characteristics in the model, an analysis of variance of the 

aforementioned factors was performed for the time (in seconds) required to find the solution. Only 

resolved instances were included in the analysis(774 optimal solutions). From the ANOVA (see Table 

3) it can be concluded that the solver used does not have a statistically significant effect on the execution 

time, that is, it is indifferent to use Cplex or Gurobi in our study situation.  

 

Table 3. Analysis of Variance for Time considering all the factors. 

Source 
Sum of 
squares 

gl 
Medium 

square 

Reason 

F 

Value 

P 

Main Effects 

A: n 9.88875E7 8 1.23609E7 50.90 0.0000 

B: m 1.73539E7 2 8.67696E6 35.73 0.0000 

C: Setup 8.64734E6 3 2.88245E6 11.87 0.0000 

D: Solver 342.629 1 342.629 0.00 0.9700 

Residue 1.84577E8 760 242864.0   

Total (After correcting) 2.89954E8 744    

 

Also, from Table 3 it is concluded that there is a statistically significant effect on time with the 

factors: number of jobs (n), number of machines (m) and preparation time (Setup) with a confidence 

level of 95%. In order to graphically visualize the effects on each factor that was significant, the 

Tukey HSD Intervals are presented below. 
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As shown in Figure 1 the amount of work to be done could be grouped into four clusters with 

significant differences between them, which would be: a) Cluster #1: for 7, 8 and 9 jobs; b) Cluster #2: 

for 10 job; c) Cluster #3: for 11 and 12 jobs; d) Cluster #4: for 13, 14 and 15 jobs. Likewise, in Figure 

2 it can be observed that there are no significant differences in time when there are 2 or 3 machines, but 

with the addition of one more machine to the production process, the times are significantly reduced. 

 

 
Figure 1. Tukey Intervals at 95% for the Number 

of jobs (n). 

 
Figure 2. Tukey Intervals at 95% for the 

Number of machines (m). 

 

Figure 3 shows the possible existence of an inverse relationship between the increase in the 

percentage of the (setup time) of the machines between jobs and the search time of the optimal solution.  

 

 
Figure 3. Tukey Intervals at 95% for Setup Time. 

5. Conclusions 

It began by addressing a problem already studied, the problem of the hybrid flow workshop that is the 

production environment closest to the ceramic tile production sector. Considering the production 

environment of a particular ceramics company, it was observed that the company, using conveyor belts, 

connected all the machines of the production process from the pressing phase to the packaging phase. 

Additionally, the company does not present material storage buffers in progress and the line must always 

be producing. 

With the mentioned characteristics, it was analyzed that in spite of having a hybrid flow workshop 

problem, the fact that a machine of each phase of the productive process were connected to each other, 

behaved with a single virtual machine, then in the end it was concluded that the problem would be 

transformed into a problem of unrelated parallel virtual machines, which demand optimal allocation and 

sequencing processes, guaranteeing the incorporation of some operating characteristics such as: the 

preparation and adjustment times of the machines depending on the machine and sequence; the absence 

of idle times between sequenced jobs within each virtual machine and in order to always ensure the 

continuity of the production process, overlaps between jobs were included. 

With the, we started with a problem that was already known until we came to formulate a real 

productive situation that has never been studied before, according to a review of the investigative 

background. Part of the background information consulted was the starting point for the construction of 
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an exact mathematical model that would optimally solve the problem posed. Finally, certain instances 

were created that served as a test bench for the proposed model, which led us to conclude that there were 

no significant differences between the solvers evaluated, but that the number of jobs, the number of 

machines and the time of preparation were significant with respect to the time it took the model to 

achieve the optimal solution. 
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