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Abstract. Drinking-water distribution systems are generally designed with methodologies based 
on trial-and-error tests, which generate feasible results. However, these trials are not the most 
economical and reliable solution since they do not consider the optimization of the network. For 
the present work, the hydraulic model of the drinking water distribution network of San José de 
Cúcuta, Colombia, was optimized by applying the concept of resilience rate and minimum cost. 
The development of the work consisted of the hydraulic modeling of the physical components 
of the network in EPANET software, as well as the application of calculations of the connectivity 
coefficient and the unitary power of each section. With the data obtained from the modeling and 
calculations, the physical parameters were optimized, and the cost-benefit ratio was estimated. 
It was found that the current drinking water distribution system does not have a power surplus 
to overcome a system failure. The optimization increased the total energy surplus of the network 
(261%) and the resilience rate (585%). Also, the connectivity coefficient was improved with an 
average value of 0.95. The hydraulic optimization methodology applied resulted in a network 
resilient to system failures. 

1. Introduction 
Water is considered one of the most important natural resources in the life of human beings since it 
supplies basic needs and is a fundamental element in domestic and industrial activities [1]; a drinking 
water distribution system (DWDS) captures and supplies water for a community [2]. However, when 
the system does not comply with its function, either due to the increase in population or the inefficiency 
of its structures, it becomes necessary to search for different alternatives that can optimize the system 
and achieve the objective for which it was planned [3]. 

Hydraulic optimization of the physical parameters of a DWDS is a practice associated with the 
solution of several problems, such as deteriorated infrastructures that cause losses due to leaks, 
decreased water transport capacity, various failures in system components (pumps, valves, pipes, etc.); 
also, increased maintenance and operating costs, poor fluid quality due to constant service interruptions, 
and decreased reliability of the system, generating problems to meet the required demand and          
pressure [4]. 

Distribution network research has the priority to optimize the design of a DWDS, to ensure the 
development and proper functioning of a society. In recent years, the design of distribution networks 
has raised different optimization methodologies and from the perspective of minimum cost, which 
allows finding an optimal point (where costs are minimal). Saldarriaga used the specific power [5], 
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Prasad, Park, Creaco, Franchini, and Todini used the resilience index [6,7], and Creaco, Fortunato, 
Franchini, and Mazzola used the uniformity of network diameters and the demand satisfaction rate [8]. 

In addition, that meets the required demand and pressure conditions, i.e., finding economic designs, 
but with an acceptable degree of reliability. The methodology based on the resilience index and 
minimum cost allow optimizing a DWDS by creating energy surpluses, defined as the total surplus 
energy in each network, which allows guaranteeing the demand required by a community in adverse 
events such as increased demand, pipeline closures, or pipeline failures [9]. 

The optimal design of the distribution network is conditioned by a good performance of the 
implemented system, generating the concept of hydraulic reliability. Reliability is related to factors such 
as the redundancy of the routes by which the fluid can reach the consumption nodes [10], the probability 
that the fluid reaches the demand points of the network [11], the ability to ensure the minimum required 
pressure at the nodes, the overpressure available to the consumption nodes [12], among others. To 
achieve reliability in a DWDS it is necessary to implement an optimal hydraulic design methodology 
from a minimum cost perspective [13]. 

This study aims to optimize the physical parameters of the DWDS matrix network of the city of San 
José de Cúcuta, Colombia, to improve the efficiency of a hydraulic model based on the concept of 
resilience index and minimum cost. The analysis of the optimization allows knowing the state of the 
distribution network in terms of resilience to possible failures. 

2. Methodology 
The concept of the resilience of a DWDS is defined as the ability of a network to overcome a failure and 
can be estimated by a design methodology that includes minimum cost analysis and resilience index, 
important reliability parameters [14]. Therefore, it is necessary to provide more power to each of the 
nodes so that there is a power surplus that can be dissipated internally in the event of a pipe failure or 
an increase in demand; mathematically it is given by the ratio between the power surplus per unit weight 
that could be dissipated internally by the network without failing to satisfy the minimum required 
pressure (15 mWC - meters water column) [14,15]. 

The distribution network is supplied with a power per unit weight, represented by Equation (1) [14], 
called power per unit weight input, quantified in terms of flow rate and pressure supplied by energy 
sources such as reservoirs, tanks, and pumps. 
 

P!"# = ∑ (Q$H$)i + ∑
%!
&

"#'
!()

"$
!() , (1) 

 
where P!"# is power per unit weight input, Q$ is the flow rate and H$ is the piezometric head delivered 

by the reservoir, ne the number of reservoirs, P! is the power delivered by the pump, i and npu the 
number of pumps in the network. At each consumption node, a power per unit weight is delivered, and 
the sum of this across the nodes is called power per unit weight output (P*'+). Two types are considered: 
a minimum power per unit weight output (P,!"/*'+) corresponding to a minimum pressure at all 
consumption nodes and a real power per unit weight output corresponding to the real pressure present 
at the nodes, as shown in Equation (2) [14]. 
 

P,!"/*'+ = ∑ Q.H∗.
""
.() , (2) 

 
where Q. is the flow rate supplied to node j, H∗. is the minimum piezometric head, and H. is the 

actual piezometric head for that node; in its passage through the distribution network the flow loses 
energy, this power that is consumed by the network is called P!"+ of system operation, the presence of 
leaks in the network increases the power per unit weight. From the above it can be deduced that the 
power per unit weight input (P!"#) must be equal to the sum of the power per unit weight operation and 
the P*'+, shown in Equation (3) [14]. 
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P!"# = P!"+ + P*'+. (3) 
 

Therefore, the real internal power (P0$123!"+) represents the power per unit weight, consumed by the 
network and the maximum internal power (P,143!"+) represents the maximum power per unit weight, 
that could be consumed internally by the network without failing to satisfy the minimum pressure. The 
equation defining the resilience index (I5) is stated in Equation (4) [14]. 
 

I5 = 1 − %#$%&'!"(
%)%*'!"(

. (4) 
 

The most resilient networks are those that represent a lower value of the ratio P0$123!"+/P,143!"+ and 
therefore tend to 1 in the value of the resilience index. The general expression for the resilience index is 
shown in Equation (5) and is stated below [14]. 
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The analysis and subsequent optimization of the DWDS matrix network of the city of San José de 

Cúcuta, Colombia, which is supplied by the Pamplonita and Zulia rivers, Colombia, was carried out. 
The system to be optimized is divided into four large zones, named the South, East, North, and North 
Valleys. The city's DWDS has a configuration based on the principle of hydraulic sectorization [15]. 
The matrix network that supplies each sector and subsector is shown in Figure 1. 

There are 23 sectors and 43 hydraulic subsectors, supplied by the Pamplonita river, Colombia, basin. 
In addition, the system has 6 pumping stations and 4 storage tanks. Detailed information on the main 
network was provided by the city's water system operator. The hydraulic analysis and modeling of the 
physical components of San José de Cúcuta, Colombia, WPS main network were performed in the 
EPANET software [16,17]. The physical characteristics of the different components of the network and 
the demand of each subsector were provided by the operating company, as well as the network's own 
increase factors, the number of inhabitants per sector, area of each subsector, and the consumption curve. 
The maximum hourly, maximum daily, and average daily flow rates were calculated and an approximate 
real representation of the operation of the network was obtained. 
 

 
Figure 1. Diagram of the hydraulic zoning 
of San José de Cúcuta, Colombia, DWDS. 

 
The optimization of the distribution network was carried out, considering the minimum cost method 

versus the resilience index, looking for an optimal combination of the most relevant physical parameters, 
the diameters of each pipe, which would minimize the construction cost of the system and at the same 
time provide acceptable reliability levels. The cost function can generally be expressed by means of an 
exponential relationship of the diameter, for this project the construction cost was considered to include 
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the commercial value of the pipes plus their installation cost, and it was determined to replace the 
existing sections with ductile iron pipes. 

The connectivity coefficient (C.) measures the variability of diameters connected to the same node 
in a network, that is, it measures the uniformity of diameter sizes in a node. The value of C. is equal to 
one (C. = 1) when the pipes connected to a node have the same diameter or there is only one pipe 
connected to it, and it will be less than one (C. < 1) when the pipes connected to a node present different 
diameter, the connectivity coefficient is obtained by Equation (6) [18]. Where NT is the number of pipes 
connected to node j and D) is the diameter of each pipe. 
 

C. =
∑ 	?/45
!./

@A	,14	{?/}
. (6) 

 
The unit power (PDA) of a pipe i, is defined as the flow rate flowing in this, multiplied by the 

difference between the piezometric height of the initial and final nodes, where q!. is the flow rate flowing 
through the pipe from node i to node j, and the pressures of nodes i and j, are h! and h. respectively and 
is obtained by Equation (7) [5]. 
 

PDA = q!.(h! − h.). (7) 

3. Results 
The resilience index and the connectivity coefficient of the current DWDS network were calculated, to 
then determine the unit power found in the nodes with the lowest connectivity coefficient and calculate 
the cost of changing each of the pipes connected to the nodes with the lowest connectivity coefficient, 
to select the pipe with the highest ratio (PUT/cost) and run the hydraulic model again with the optimized 
physical parameters. The new cost and the new resilience index of the DWDS were calculated until 
obtaining a resilience index equal to or higher than 0.5, a value with which a system or network is 
considered resilient. 

The hydraulic optimization of the physical parameters of the DWDS matrix network of the city of 
San José de Cúcuta, Colombia, was carried out under the concept of resilience index and minimum cost, 
with 200 iterations. The resilience index was increased from 0.0714 to 0.489, i.e., there was an increase 
of 585% to the initial value, which allows observing the efficiency of the optimization, going from being 
an unreliable network to a resilient network capable of overcoming system failures in terms of flow and 
pressure. The resulting IR value is close to what is expected but does not guarantee a minimum for the 
resilience rating of 0.59 as mentioned in [14]. However, this value allows the preservation of a sufficient 
degree of resilience in the system to cope with possible failures [8,14]. 

The process of increasing the IR does not involve a large initial increase in cost (low slopes), this 
initial behavior varies as the iterations of the optimization process increase, with an increase in the IR 
that generates considerable increases in cost; there was an increase in cost concerning the initial value 
of 30.17 %, as shown in Figure 2. The connectivity coefficient was improved with an average value of 
0.95, obtaining practical connectivities, i.e., the pipes connected to the same node do not vary widely in 
diameter and the evaluation of the energy surplus was performed, where it was obtained that the total 
energy surplus of the network went from 4849.7 mWC (meters water column) to 17526.4 mWC, 
showing an increase of 261 %. 

Finally, the hydraulic simulation of the current distribution network was carried out and then the 
simulation of the optimized DWDS was performed under the concept of resilience index and minimum 
cost. The analysis of the pressures of the two hydraulic models, shown in Figure 3, shows critical zones 
in the current model at the hour of maximum consumption, 9:00 a.m., where pressure values of less than 
20 mWC. are obtained. The situation improved significantly in the optimized model, where uniform 
pressures are observed in the DWDS, increasing the degree of hydraulic reliability, maximizing the 
conservation of energy input, and dissipated by the system. 
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 (a) (b) 

Figure 2. Resilience index vs. cost, 
benefit-cost ratio.  Figure 3. Hydraulic modeling: (a) current DWDS, and 

(b) optimized DWDS. 
 

Figure 4 shows the pressure isolines of the network for 9:00 a. m. for the current DWDS model and 
the optimized DWDS model. This plot shows that at present, the network shows an imbalance in the 
available power in the northern area of the city, which is reflected in the degree of reliability of the 
network, which decreases considerably, being the DWDS matrix network of the city, a network 
susceptible to recurrent damage in this area, contrary to what is observed in the optimized DWDS, where 
uniformity is observed in the state of pressure at the time of maximum consumption and during the day. 

The efficiency allowed by hydraulic optimization is not limited with simplified networks but is also 
used in the matrix network for more rigorous optimizations, as discussed in [14]. There is a balance in 
the available power and an acceptable hydraulic behavior, showing improvements in the efficiency of 
the hydraulic optimization of the physical parameters of the DWDS matrix network of the city of San 
José de Cúcuta, Colombia. 
 

 Figure 4. Pressure isoline: (a) current DWDS, 
and (b) optimized DWDS. (a) (b) 
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4. Conclusions 
The resilience index of the network was increased from an initial value of 0.07139 to 0.489, an increase 
of 585% concerning the initial value, going from being an unreliable network to a resilient network 
capable of overcoming failures in the system (in terms of flow and pressure). In addition to improving 
the connectivity coefficient to an average value of 0.95, obtaining practical connectivities, i.e., the pipes 
connected to the same node do not vary widely in diameter. 

The analysis of pressures at the hour of maximum consumption, in the model of the current drinking 
water distribution system, allows identifying that, at present, the network presents an imbalance in the 
available power in the north zone of the city, a network susceptible to recurrent damages in this zone. 
This is contrary, in the optimized drinking water distribution system, in the state of pressure at the hour 
of maximum consumption and throughout the day. 

References 
[1] Padowski J C, Gorelick S M 2014 Global analysis of urban surface water supply vulnerability 

Environmental Research Letters 9(10) 104004:1 
[2] Morelos R A, Ramírez J 2017 Modelación hidráulica de la red de distribución de agua potable en una ciudad 

Mexicana EPANET Revista Iberoamericana de Ciencias 4(2) 120 
[3] Cruz Lasso O I 2015 Estudio de Caso para la Optimización del Sistema de Acueducto del Municipio de 

Paipa Departamento de Boyacá y Búsqueda de Fuentes Alternativas para el Abastecimiento de Agua 
(Bogotá: Universidad Libre) 

[4] Ayamamani Garcia N P 2018 Mejoramiento de la Eficiencia Hidráulica de la Red de Distribución de Agua 
Potable en la Zona Rinconada-Juliaca por el Método de la Sectorización (Puno: Universidad Nacional del 
Altiplano) 

[5] Saldarriaga J, Ochoa S, Moreno M, Romero N, Cortése Ó 2010 Renovación priorizada de redes de 
distribución utilizando el concepto de potencia unitaria Revista de Ingeniería 0(31) 7 

[6] Prasad T, Tanyimboh T 2008 Entropy based design of "Anytown" water distribution network Water 
Distribution Systems Analysis Conference (South Africa: Environmental and Water Resources Institute) 

[7] Creaco E, Franchini M, Todini E 2014 The combined use of resilience and loop diameter uniformiy as a 
good indirect measure of network reliability Urban Water Journal 3(2) 167 

[8] Creaco E, Fortunato A, Franchini M, Mazzola M 2014 Comparison between entropy and resilience as 
indirect measures of reliability in the framework of water distribution network design Procedia Engineering 
70 379 

[9] Krueger E H, Borchardt D, Jawitz J W, Rao P S C 2020 Balancing security, resilience, and sustainability 
of urban water supply systems in a desirable operating space Environmental Research Letters 15(3) 
035007:1 

[10] Alperovits E, Shamir U 1977 Design of optimal water distribution system Water Resources Research 13(6) 
885 

[11] Sanvicente S H, Frausto S J 2003 Optimización de los diámetros de las tuberías de una red de distribución 
de agua mediante algoritmos de recocido simulado Ingeniería Hidráulica en México 18(1) 105 

[12] Xu C, Goulter I 1999 Reliability based optimal design of water distribution networks Journal of Water 
Resources Planning and Management 125(6) 352 

[13] Saldarriaga J, Lopez L, Paez D, Luna D, Gonzáles S 2017 Diseño optimizado de redes de distribución de 
agua potable (programa redes) Seminario Iberoamericano de Redes de Agua y Drenaje (Bogotá: 
Universidad de los Andes) 

[14] Todini E 2000 Looped water distribution networks design using a resilience index based heuristic approach 
Urban Water 2(2) 115 

[15] Ministerio de Vivienda Ciudad y Territorio 2017 Reglamento Técnico para el Sector de Agua Potable y 
Saneamiento Básico – RAS, Resolución 0330 (Colombia: Ministerio de Vivienda, Ciudad y Territorio) 

[16] Empresas Públicas de Medellín (EPM) 2013 Normas de Diseño de Sistemas de Acueducto de EPM 
(Medellín: Empresas Públicas de Medellín) 

[17] Rossman L A 2000 EPANET 2 User’s manual, EPA/600/R-00/057 (Cincinnati: National Risk Management 
Research Laboratory) 

[18] Prasad T, Park N 2004 Multiobjective genetic algorithms for design of water distribution networks Journal 
of Water Resources Planning and Management 130(1) 73 


