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A B S T R A C T   

Crude oil and its derivatives have high application in different industries, and unforeseen spills or over- 
exploitation generate a significant threat in ecosystems, causing negative impacts on soil, water, and air. 
There are microorganisms capable of metabolizing hydrocarbons through the bioremediation process with 
biosurfactant production, but large-scale culturing and technification are still a significant challenge due to their 
high costs and optimization stage requirement. An unstructured kinetic model provides crucial information 
regarding improvements and process optimization at the first stages. Thereof prediction of bioprocess kinetic 
behavior is expected from mathematical expressions. Considering the above, biosurfactants’ bioprocess modeling 
tends to be an essential tool to increasingly focus on the efficiency and profitability of oil industries. That is why 
biosurfactant kinetics production from Bacillus subtilis is investigated in this research, implementing a mathe
matical model. Previous studies refereed experimental data to integrate into Monod, Contois, Haldane, Moser, 
Powell, Tessier, Aiba-Edward, Luong, Yano-Koga, and Chen-Hashimoto equations. Therefore, a nonlinear 
regression parameterization procedure is applied using the Matlab Fmincon Function. The best accuracy found 
between experimental and simulated data was achieved using the Chen-Hashimoto kinetic model with μmax, kd 
and ks values of 2.3239 d− 1, 0.3748 d− 1 and 1.1619 g/L, respectively. This research suggests that biosurfactant 
production occurs under anaerobic conditions where hydrolysis controls microbial growth. These research re
sults are a promising aim related to industrial biotechnology since computational modeling is essential for 
process efficiency from a technical and economic perspective.   

1. Introduction 

Crude oil and its derivatives have high application in different in
dustries. However, an unforeseen spill or over-exploitation generates a 
significant threat to ecosystems, causing negative impacts on soil, water, 
and air. Hydrocarbons’ exposure to the environment causes carcino
genic and mutagenic effects, endangering humans and animals (Devi
anto et al., 2020; Ray et al., 2020; Sharma and Pandey, 2020). More than 
18.000 crude oil barrels were spilled in Colombia due to illegal oil 
extraction from 2000 to 2017, causing severe environmental damage 
(Guerrero, 2018). In Specific regions such as the North of Santander, 
these problems have caused a shortage of water sources of 80%, 
exceeding the capacity of ecosystems to recover (Velásquez, 2016). 

Microorganisms can metabolize hydrocarbons through the biore
mediation process (Xue et al., 2019). The latter is reached by using them 
to elaborate organic amphiphilic molecules produced as a survival 
response during their growth in ecosystems contaminated with 

hydrocarbons (Borges et al., 2019). Biosurfactants are metabolites 
associated with growth, allowing the hydrophobic solubilization by 
emulsifying oil chains, generating their degradation in an environmen
tally friendly way (Câmara et al., 2020; Sharma and Pandey, 2020). In 
adverse environmental conditions, various microorganisms produce 
them as an adaptation and survival mechanism. They have low toxicity, 
high biodegradability, and specificity, characteristics for which they are 
considered the most economically sought-after biotechnological com
pounds in the 21st century (Singh et al., 2018). Due to their ability to act 
in hydrocarbon-contaminated environments, has broad applicability in 
bioremediation (Ahmad et al., 2021). 

According to their different hydrophilic groups, they can classify 
Biosurfactants into glycolipids, lipopeptides and polymeric surfactants. 
Among them, lipopeptides and glycolipids are the most commonly used 
in microbial oil recovery (MEOR) (Liu et al., 2021). The main strains 
responsible for producing them are Paenibacillus sp., Aeribacillus sp., 
Bacillus sp., Agrobacterium sp., and Pseudomonas sp. (Ray et al., 2020) 
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Based on the above, biosurfactants can be obtained from crude oil 
microbial degradation. However, its technification and large-scale pro
duction are still a significant challenge due to its high costs and the 
optimization stage requirement. Nevertheless, kinetic models provide 
valuable information for improving and optimizing processes since their 
knowledge builds the basis for performing a bio-product’s kinetic 
behavior predictions. 

The latency phase plays a fundamental role in the growth curve of a 
microorganism. In this adaptation phase, the enzymes necessary for the 
synthesis of essential metabolites are produced so that the microor
ganisms can grow and adapt to a new environment (Buckley et al., 
2015). Thus, the latency phase plays a fundamental role in microbial 
growth by supplying the cell’s needs against the toxic substrate. Like
wise, the growth phase is a crucial parameter for biosurfactant pro
duction, and the maximum growth rate measures it umax (Gupta et al., 
2020). The latter is typically determined by implementing different ki
netic models such as the Monod, Haldane, Moser, Contois, Powell, and 
Teissier models (Mahsa et al., 2015). However, kinetic parameter esti
mation for crude oil applications requires extensive experimentation 
and time to determine its influence on mathematical modeling. For these 
reasons, biosurfactant production modeling could be an essential tool to 
achieve the basis for bioprocess optimization’s efficiency and profit
ability. Motivated by the latter, this work’s main objective consisted of 
the design of a mathematical model that would allow predicting the 
evolution of cell growth, biosurfactant, and crude oil degradation from 
previous experimental data (Sharma and Pandey, 2020). Particular 
emphasis is on a procedure incorporating different kinetic models to 
reduce the error between simulated data and experimental values, 
considering a nonlinearly constrained optimization technique using the 
Matlab Fmincon function. 

2. Biosurfactant production modeling framework 

Experimental data for biosurfactant production from crude oil is 
referred from (Sharma and Pandey, 2020) in this research. In mentioned 
work, Bacillus subtilis RSL-2 was isolated from crude oil-contaminated 
sludge and was chosen due to its excellent surface-active properties 
and the lowest surface tension reduction. Based on the latter, Bacillus 
subtilis RSL-2 can generate a lipopeptide-type biosurfactant from a 
culturing medium composed of 1.5 g/L crude oil as a carbon source and 
1.5% yeast extract. 

The proposed mathematical expressions for building the framework 
modeling are based on a batch-type reactor. First, the dynamic growth of 
the X cells of Bacillus subtilis RSL-2 is modeled considering Eq. (1): 

dX
dt

= μXw − kdXd (1) 

μ represents the microbial growth rate, kd is the specific cell death 
velocity, w and d are constants with initial conditional values of 1 and 0, 
respectively. However, when the fermentation time is more significant 
than three days (t >= 3), cell growth is negligible and governed by cell 
death (based on the reported experimental data). Therefore w = 0 and d 
= 1. These constants were added to the mathematical model based on 
Biomass (X) experimental data that decreased significantly due to the 
rapid cell death. 

The impact of the crude oil concentration on microbial growth and 
biosurfactant formation is simulated by Eq. (2): 

dS
dt

= − (qs +ms)X (2) 

The oil uptake rate is governed by the dynamic Bacillus subtilis 
concentration and the oil degradation rate. The latter includes the 
sequential biodegradation of aliphatic, mono-aromatic hydrocarbons, 
cycloalkanes, asphaltenes, and resins (Ritesh et al., 2021). Thus 
qs represents the specific oil degradation rate and is determined by Eq. 
(3): 

qs =
μ

Yxs
(3) 

Yxs is the biomass yield from the substrate, ms is a maintenance 
constant that considers intracellular reactions with a proposed value of 
0.02. Finally, the biosurfactant concentration produced by Bacillus 
subtilis at dynamic state is modeled by Eq. (4): 

dP
dt

= qpX (4) 

Where qprepresents the specific product formation rate and is 
calculated by the expression: 

qp = Yxpμ + mp (5) 

Here Yxp means the biomass yield to the biosurfactant, and mp is the 
specific product formation rate due to maintenance with a proposed 
value of 0.0011. The crude oil biodegradation is modeled using first- 
order kinetics (Bhattacharya et al., 2018). However, different kinetic 
models (Table 1) describe the conversion process at the microbial level. 
Therefore, different kinetic expressions were evaluated in this research 
to carry out an exhaustive investigation that allows predicting the bio
surfactant production from crude oil satisfactorily. The applicability and 
essential characteristics of each model are described in the results 
section. 

The simulations were carried out with Matlab R2017b software. The 
Runge-Kutta 45 method was used to numerically solve the proposed 
mathematical model to simulate biosurfactants’ production from crude 
oil. The parametrization through nonlinear restricted optimization was 
determined by its implementation in the Matlab software using the 
Fmincon function to minimize the error between the experimental data 
obtained from the references mentioned above and the data simulated 
by the mathematical modeling proposed in this research. 

In this way, the function to minimize J is expressed by Eq. (16): 

J =

∫tf

0

(ymsd(t) − y(p, t)T W(t)(ymsd(t) − y(p, t))dt (16) 

Restricted to: 

f
(

dX
dt
, x, y, p, v, t

)

= 0 (17)  

x(t0) = x0 (18) 

Table 1 
Kinetic models used for biosurfactant simulations (Manheim et al., 2019).  

Kinetic models 

Contois Model μ = μmax
S

ksX + S 
(6) 

Haldane Model μ = μmax
S

ks + S + K1S2 (7) 

Monod Model μ = μmax
S

ks + S 
(8) 

Moser Model μ = μmax
Sn

ks + Sn (9) 

Powell Model μ = μmax
S

(ks + L) + S 
(10) 

Teissier Model μ = μmax1 − exp
(
− S
ks

)

(11) 

Luong Model 
μ =

Sμmax
ks + S

1 −

(
S

Smax

)n 
(12) 

Aiba-Edward Model μ = μmax
S

ks + S
exp

(
− S
Ki

)

(13) 

Yano-Koga Model 

μ = μmax

⎡

⎢
⎢
⎢
⎣

S

S + ks +

(
S2

ksi

)(

1 +
S
K

)

⎤

⎥
⎥
⎥
⎦

(14) 

Chen-Hashimoto Model μ =
μmax S

KS0 + (1 − K)S
− b (15)  
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h(x, y, p, v) = 0 (19)  

g(x, y, p, v) ≤ 0 (20)  

pL ≤ p ≤ pU (21) 

Where p is the vector of kinetic constants for the mathematical model 
that simulates microbial growth, substrate uptake, and biosurfactant 
production, ymsd are the experimental data of the process, and y(p, t) are 
the simulated results, W is a weighting diagonal matrix, x are the state 
variables (in this case, biomass, substrate, and product), x0 are the state 
variables’ initial conditionals, v is a vector of non-estimated parameters, 
f is the equality constraints of the algebraic and differential equations 
that describe the system dynamics, h, and g are the possible equality and 
inequality constraints that express the additional requirements for sys
tem performance. Finally, pLand pU act as kinetic parameter limiters 
(Moles et al., 2013). 

3. Results and discussions 

The bioprocess modeling is a critical stage during industrialization 
and technification as a starting point for optimizing efficiency and 
profitability. Based on the above, this research is focused on a frame
work modeling for predicting the evolution of cell growth, bio
surfactant, and crude oil degradation from previous experimental data 
(Sharma and Pandey, 2020). Particular emphasis is concentrated on a 
procedure incorporating different kinetic models to reduce the error 
between simulated data and experimental values, considering a 
nonlinear constrained optimization. 

According to the results based on the experimental and simulated 
data, it takes about three days (exponential phase) to reach the 
maximum concentration of Bacillus subtilis cells with an average growth 
rate of 19 d− 1. After this stage of cell growth, biomass begins its phase of 
cell death. In this research, restrictions are proposed for cell growth in 
the framework modeling shown in Eq. (1) with conditions w and d as 
explained before (initial conditional values of 1 and 0, respectively). 
However, when the fermentation time is longer than three days (t>= 3), 
cell growth is negligible (w = 0) and governed by maintenance reactions 
and cell death (d = 1). Therefore, according to the results obtained, the 
biosurfactant production from crude oil is mainly achieved during the 
exponential growth phase with average values of 3.1 g/L at three days of 
fermentation. 

Interestingly, the biosurfactant production is still appreciated after 
this time, suggesting that the mentioned metabolite could be indirectly 
associated with cell growth metabolism. Considering these findings, the 
term mpwas included in Eq. (5) to incorporate the biosurfactant pro
duction due to maintenance. Based on the above, it is evident that crude 
oil biodegradation rate is also influenced by the substrate used for cell 
maintenance. In such a way, the term "ms" was added in Eq. (2) to 
simulate cell maintenance effects during crude oil uptake by Bacillus 
subtilis cells. Finally, the cells reach a crude oil biodegradation rate of 
55%, according to reported simulated data obtained through simulation. 
All simulations were parameterized using the nonlinear restricted opti
mization technique with the Matlab Fmincon function. Besides, ten 

kinetic models were proposed to obtain the maximum growth velocity 
(μmax) and reduce the error (Fval) between the experimental and simu
lated data. The results can be seen in Table 2. 

The Monod kinetic model (Manheim et al., 2019; Monod, 1949) 
simulated in Fig. 1(a) is one of the most widely used expressions in 
bioprocess modeling due to its versatility and simplicity regarding 
computational implementation. In this study, the specific microbial 
growth rate μmax and the saturation constant ks using the Monod model, 
respectively, determined at 19.99 d-1 and 9.995 g/L. Likewise, the error 
was minimized to a final value of 5.919 using the Fmincon function. 

The latter indicates that error was obtained almost four times higher 
than the best estimates (Chen-Hashimoto Model). Discrepancies reached 
can be explained considering the physical meaning of the model since it 
is characterized by relating microbial growth and the limiting substrate 
with the process’s global kinetics without including any additional effect 
during the fermentation process (Mahsa et al., 2015). Therefore, during 
crude oil biodegradation, the participation of chemical species affecting 
microbial growth speed is evident. Unfortunately, the Monod model 
does not capture these aspects. 

There are other variations to the Monod equation that have been 
used in bioprocesses. Thus, the Moser model (Manheim et al., 2019) 
considers the potential interactions between the enzyme-substrate 
binding sites by integrating a parameter n in the Monod model. Addi
tionally, the mentioned model has been used in microbial mutants, 
where the intracellular composition is independent of time (Mahsa et al., 
2015). In this research, a value of 19.99 d− 1 was obtained for μmax and a 
constant n of 5.631, with a minimized error of 2.18. The latter results are 
close to the Contois model’s estimates (see Fig. 1(b)). 

Previous studies (Bhattacharya et al., 2018) have shown the impor
tance of the enzymatic mechanisms of saturation, affinity, and interac
tion in biodegradation reactions. In this way, the Moser model captures 
the effects above, and probably the global production of biosurfactants is 
regulated by enzymatic interaction and affinity phenomena. Further
more, the above is supported by the simulated data found in this 
research. 

In addition to the different enzymatic mechanisms studied in the 
Moser model, mass transfer in a crude oil biodegradation process can be 
crucial in determining the degree of bio-conversion. Based on the latter, 
the rheology of crude oil, biofilm formation, and material transport to 
the cell’s interior could limit the microbial growth kinetics. Considering 
the above, Powell’s model (Fig. 1(c)) was included in this research to 
identify the possible effects of mass transfer on biosurfactant production 
kinetics. According to the results obtained, a value of 1.3372 d− 1 was 
calculated for μmax and 0.6686 g/L for ks with a constant L of 0.3084. 

Powell’s model does not consider inhibition effects (Mahsa et al., 
2015; Muloiwa et al., 2020), and its degree of prediction in bio
surfactants’ formation could be limited. Alternatively, the Teissier 
Model (Manheim et al., 2019; Tessier, 1942) shown in Fig. 1(d) de
scribes the microbial growth kinetics as an exponential substrate con
centration function. It has been used in applications involving growth 
deficiency due to incorporating hormones in microbial cultures (Mahsa 
et al., 2015; Muloiwa et al., 2020). The value of μmax and ks determined 
in this investigation presented 19.99 d− 1 and 9.995 g/L, respectively. 

The error generated (Fval = 6.602) showed a behavior similar to that 

Table 2 
Summary of best performing model parameter values.  

Parameter Model 
Monod Moser Powell Teissier Haldane Contois Aiba-Edward Luong Yano-Koga Chen-Hashimoto 

μmax (d
− 1) 19.999 19.999 1.3372 19.999 18.180 19.999 0.5558 1.4505 19.999 2.3239 

kd (d− 1) 0.3730 0.3558 0.4111 0.3920 0.3986 0.3712 0.3969 0.3989 0.3845 0.3748 
Ypx (g/g) 0.4770 0.6195 0.6684 0.6770 0.5533 0.5039 0.6988 0.6904 0.6406 0.5382 
Yxs (g/g) 3.3780 11.158 5.3366 3.7930 6.5380 7.9050 0.49824 5.0505 5.6973 15.7913 
S0 (g/L) 1.7090 1.2000 1.2000 1.5530 1.2000 1.4654 1.2000 1.2000 1.2000 1.1286 
ks (g/L) 9.9950 9.9950 0.6686 9.9950 9.0900 9.9990 0.2779 0.7252 0.9950 1.1619 
Fval (error) 5.919 2.18 6.4532 6.602 11.47 1.977 6.5781 6.9402 11.1204 1.2133  
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Fig. 1. Comparison of experimental (marks) and simulated data (solid lines) for biosurfactant fermentation. (a) Monod kinetic model; (b) Moser kinetic model; (c) 
Powell kinetic model; (d) Teissier kinetic model; (e) Haldane kinetic model; (f) Contois kinetic model; (g) Aiba-Edward kinetic model; (h) Luong kinetic model; (i) 
Yano-Koga kinetic model and (j) Chen-Hashimoto kinetic model. 
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obtained with the Monod model, Powell model, and Aiba-Edward 
model, exceeding the degree of discrepancy almost five times obtained 
using the Chen-Hashimoto model. The differences found could also be 
attributed to the lack of term that considers inhibition effects. Based on 
the results at this research stage, the study of modeling with expressions 
involving the inhibition of the kinetics of biosurfactant production was 
proposed. For this reason, the Haldane substrate inhibition model, the 
Contois inhibition model, the Aiba-Edward model, the Luong model, the 
Yano-Koga model, and the Chen-Hashimoto model by cell concentration 
were evaluated. 

The Haldane model (Manheim et al., 2019) is widely used in 
batch-type processes to identify the microorganism capacity adaptation 
and inhibitory substrates’ presence in the medium (Ibrahim et al., 2020; 
Ray et al., 2020). Regarding biosurfactant production from crude oil, it 
is very likely that various molecules of aromatic compounds may induce 
an inhibitory effect on the biosurfactant formation from Bacillus subtilis 
cells. In this research, the values of μmax, ks and k1 were estimated at 
18.18 d− 1, 9.09 g/L, and 0.0134 g/L, respectively. This model obtained 
the highest error of all the simulations considered, 11.47 (see Fig. 1(e)). 

Considering the simulated results, inhibition effects per substrate are 
insufficient to satisfactorily predict the production kinetics of bio
surfactants from crude oil. In addition, the Contois Model (Contois, 
1959; Manheim et al., 2019) shown in Fig. 1(f) includes changes in 
population density that affect the specific microbial growth rate. Thus, it 
is achieved by including the term cell concentration in a dynamic state. 

The Contois model has also been widely studied in organic com
pounds’ anaerobic and biodegradation processes in wastewater, where 
hydrolysis controls the microbial growth rate (Borges et al., 2019; 
Velásquez, 2016). According to the results, the second-highest accurate 
model was obtained from the Contois expression, determining an error 
minimization with a value of 1.977. Likewise, the values of μmax and ks 
were 19.99 d− 1 and 9.999 g/L, respectively. 

An essential characteristic of the Contois model is that the cell 
growth rate depends on the substrate concentration and biomass 
generated at a dynamic state. In such a way, the inhibition effects are 
captured at high biomass concentrations. This phenomenon may be 
present in the biosurfactant kinetics from crude oil since high Bacillus 
subtilis concentration can compete with the available surface area for 
substrate uptake by other cells and the mass transfer limitations through 
the cell membrane. Results simulated in this research agree with find
ings reported by (Bahmani et al., 2020). Therefore, it is concluded that 
the Contois model can accurately describe the biodegradation of oily 
sludge when using Aneurinibacillus migulanus and Bacillus toyonensis 
strains. 

The Aiba-Edward kinetic model shown in Fig. 1(g) relates product 
inhibition to the culture’s growth rate by introducing an exponential 
constant; this constant takes into account the presence of the toxic 
substrate concentration in the bioreactor (Soler and Alcázar, 2020). In 
the simulation of this model, values of 0.5558 d− 1, 0.2779 g/L, and 10.8 
were obtained for μmax, ks and Ki, respectively. In addition, an Fval of 
6.5781 was evidenced. 

The model described above is widely used to predict bio
accumulation kinetics in the presence of inhibition (Muloiwa et al., 
2020). Due to the high error value, five times higher than the 
Chen-Hashimoto model, it is inferred that there is no bioaccumulation of 
toxic substrate in the bioreactor; however, greater accuracy is denoted in 
the simulated biomass data and experimental data because this model 
can describe the lag and death phase. 

Substrate inhibition on the growth of microorganisms by substrate 
stimulation at low concentrations as well as substrate inhibition at high 
concentrations (Dahalan and Hassan, 2019) is mediated by the Luong 
Model (see Fig. 1(h)). The simulation of this model allowed obtaining 
values for μmax and ks of 1.4505 d− 1 and 0.7252 g/L, respectively. 
Likewise, this model presents the ability to predict the maximum value 
of the substrate concentration at which growth is wholly inhibited using 
the Smax parameter of equation (12). In this study Smax took the value of 

14.86 g/L and an Fval of 6.9402. This model is also implemented for the 
m-cresol degradation by a Batch culture immersed in wastewater with 
Smax of 0.9 g/L and a kinetic rate μmax of 0.64 (Saravanan et al., 2009) 

In Fig. 1(i), the simulation of the Yano-Koga model is shown. This 
model evaluates the dynamic behavior of continuous fermentation, 
taking into account growth inhibition at high substrate concentration 
(Saravanan et al., 2012). In the simulation carried out, the values ob
tained for μmax and ks were 19.99 d− 1 and 9.999 g/L, respectively. 
Likewise, a substrate inhibitory constant of 14.7 g/L was observed. This 
model obtained the second-highest error of all those used, with Fval 
11.12. 

Finally, the Chen-Hashimoto model observed in Fig. 1(j) is widely 
used in anaerobic digestion processes and considers that the substrate 
concentration in the effluent (S) is related to the substrate concentration 
in the feed (S0) (Martín et al., 1992). In addition, it evaluates organic 
matter degradation processes taking into account substrate utilization 
(Fernández, 2008). The lowest error between simulated and experi
mental data was obtained employing this kinetic model, achieving 
values of de 2.32 d− 1, 1.16 g/L, 1.13 g/L y 1.21 for μmax, ks, S0 and Fval. 

The Fmincon function minimizes the error between the experimental 
and the simulated data. The Fval term is calculated in each simulation 
and is responsible for providing information about the optimization 
process. Therefore, values close to zero are always desired. The Yano- 
Koga and Haldane models obtained the highest simulated errors in 
this research work. Due to this, it is inferred that the substrate concen
tration does not limit the growth rate of the microorganism. At the same 
time, the models that showed lower Fval values were the Chen- 
Hashimoto Model, Contois Model, and Moser Model, being considered 
the best for optimizing the lipopeptide-type biosurfactant produced by 
Bacillus subtilis RSL-2. The three kinetic models that presented the 
lowest error have been used in biodegradation processes under anaer
obic conditions with the implementation of enzymatic machinery. 
Therefore, from the error calculated by the Fmincon function, it is 
inferred that the biosurfactant production by Bacillus subtilis RSL-2 is 
carried out under anaerobic conditions where hydrolysis controls mi
crobial growth, besides being regulated by interaction phenomena and 
enzyme affinity. 

4. Conclusions 

In this research, the kinetics of biosurfactant production from crude 
oil was modeled and simulated by evaluating different kinetic expres
sions, and the results were compared with experimental data obtained in 
previous work. Furthermore, the observed and simulated data error was 
implemented using a nonlinearly constrained optimization technique. 
Considering the results found in this research, different scenarios pre
dicted by the kinetic models allowed elucidating the primary basis of the 
mechanism of action for biosurfactants production using crude oil. That 
is why enzymatic interactions regulate biosurfactant production under 
anaerobic conditions where hydrolysis and biomass concentration con
trol microbial growth. Therefore, the results obtained in this study are a 
reasonable hope for biosurfactant production from bioremediation 
processes. Furthermore, these research results are a promising target in 
industrial biotechnology as computational modeling is an essential tool 
for process efficiency from a technical and economic point of view. 
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