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ABSTRACT 
The energy efficiency of the hafnium carbide and tantalum carbide membranes (electrolyte) deposited through the 
PVD technique was determined from the systems simulation under operating conditions of parallel plates connected 
in series. Bipolar plates are used for two purposes: to conduct electrical current between the cells, and the other is to 
distribute hydrogen and oxygen. Thus, bipolar plates are used for two functions: one is to conduct electrical current 
between the cells, and the other is to distribute hydrogen and oxygen. We have developed two bipolar plate patterns, 
which include serpentine patterns and the bio-inspired flow field pattern. The coatings (serpentine) characterization 
was carried out using surface characterization techniques such as atomic force microscopy and structural identification 
by X-ray diffraction, allowing the analysis of the coating structure to determine the efficiency of carbide-based 
cathodes for hydrogen production from electrochemical impedance spectroscopy.  
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INTRODUCTION 
Hydrogen can operate in a closed cycle based on abundant and essential substances such as water or 
oxygen.1 The hydrogen economy emerges from this idea because renewable energies are pretty complicated 
to transport.2 The costs of the adverse effects and waste produced by these energies on the environment 
must be considered.3 Energy companies have highlighted the versatility and viability of projects that include 
hydrogen as an energy source.4 The water electrolysis is the most effective alternative to obtaining hydrogen 
without producing gases that contribute to the greenhouse effect.5 Keeping in mind that hydrolysis is 
performed with different types of electrolyzers to obtain hydrogen, these developments are focused on 
comparing the efficiency between them and optimizing the development of new cathodes and the materials.6  
Studies are currently being conducted on carbide-type coatings for hydrogen production to replace high-
cost materials with cheaper coatings that maintain physical, chemical, and electrocatalytic properties, 
advantages that have made coatings stand out today. Hafnium carbide (HfC) gained importance in the latest 
developments because it was found that this refractory ceramic can withstand scorching temperatures.7 
Proton exchange membrane fuel cells (PEMFC) represent an alternative source of energy for transportation 
systems due to the absence of both air and noise pollutants, in addition to its high energy efficiency reaching 
an average of 0.5 W/cm2 for a single cell.8 An essential element in a fuel cell’s performance is the channel 
flow pattern since it helps to evacuate the water generated during the electrochemical reaction and distribute 
the gases uniformly in the Membrane Electrode Assembly.9,10 
In this research, the analysis of hafnium carbide and tantalum carbide layers deposited on exchange 
membranes is performed. Initially, a microstructural characterization is made using atomic force 
microscopy techniques and a structural identification by X-ray diffraction, allowing the coating structure's 
analysis. Then, the efficiency of carbide-based cathodes for hydrogen production will be determined by 
electrochemical impedance spectroscopy and simulated by computational fluid dynamics (CFD). 
                                      

EXPERIMENTAL 
Tantalum carbide TaC and hafnium carbide HfC layers were deposited on Nafion® composite membrane 
substrates by the non-reactive magnetron sputtering technique using an AJA-ATC 1800 system with a base 
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pressure of 10-7 Pa. Individual 2-inch diameter targets with a purity of 99.999% for the carbon (C) and 
99.95% for the Tantalum (Ta) and Hafnium (Hf) targets are used for the deposition of the thin films, in a 
confocal configuration at a pressure of 0.4 Pa of argon. 
To improve the carbide films’ adherence, a metallic layer of Ta or Hf, either in the coating realized of about 
30 nm of thickness, was deposited applying a power r.f. of 150 W to each target of Ta and Hf. Finally, TaC 
and HfC films with different compositions and thickness around 1 µm are deposited 70 W and 100 W for 
Ta and Hf targets, respectively, and maintaining the d.c. power to the carbon target fixed at 450 W. 
The traditional British Bragg-Brentano geometry testing has been developed in a Panalytical Empyrean 
Diffractometer with a 240 mm incidence beam radius. The copper tube line presents a Kα1 of 1.540598 Å. 
The implemented potential difference was 40 kV with a current of 35 mA. The scanning range was from 
10° to 100°. The step size assigned for this experiment was 0.04°, with a time count of 2 seconds for a total 
of 2125 points. A nickel filter is implemented in the incident beam to attenuate the Kβ, a 1° divergence 
grid, a 2° anti-dispersion grid, and a 0.04 rad soler grid. A receiving grid of 1Ú4°, an anti-dispersion grid of 
1Ú2°, and a grid of 0.04 rad in the diffracted beam. The interpretation of the results was developed in the 
HighScore software with the PANalytical ICSD database. 
The cells’ performance was evaluated experimentally, using the electrochemical impedance technique 
(EIS). An electrochemical method was used to measure potential, time, and current, resulting in a series of 
impedance values for each frequency studied. EIS allows the efficient and assessed performance under 
practical conditions or denominated real; during the test, the cells always had a flow of hydrogen and 
oxygen symmetrically. The test temperature was 25 °C. This technique has been selected because it can 
relate physical, chemical, and mechanical properties with the electrical properties of materials and 
characterize their behavior and predict their life, assisting in improving these materials' manufacturing 
processes. In addition, EIS is a non-destructive technique, which can be used under hydrogen cell operating 
conditions. Impedance values were carried out by varying the frequency from 0.1 Hz to 30 kHz, with a data 
density of 5 points per decade. The applied alternate potential presents a sinusoidal behavior whose 
amplitude was 10 mV over the half-cell potential. After each experiment, the impedance data were plotted 
as Bode diagrams. From these plots with a high frequency, the total system impedance values are obtained. 
After the wear tests, the surface characterization implements a Nanosurf Flex-Axiom system atomic force 
microscope to analyze thin film surface topography. The measurement was performed in 46.2 μm x 46.2 
μm using contact mode with aluminum-coated silicon tips. The measurements were made in three zones.  
The simulation of the two types of patterns has been carried out to contrast the experimental results. In this 
case, the serpentine pattern is used to compare the proposed bio-inspired model. In Fig.-1, the two patterns 
used in the different simulations are illustrated. 
 

  
(a) (b) 

Fig.-1: (a) Serpentine Flow Pattern (b) Bio-inspired Flow Pattern 
 

 

The serpentine channel has precisely one channel, requiring the remaining water’s expulsion and the 
impurities present. However, the fluid must travel a long way, resulting in a pressure loss between the flow 
entrance and exit, generating a non-uniform distribution in the gas diffusion layer (GDL). The bio-inspired 
pattern seeks to improve energy efficiency without producing higher pressure losses than with the 
serpentine pattern.11,12 Additionally, the use of hafnium carbide and tantalum carbide deposited as a variant 
for the membrane (electrolyte) is also proposed to generate a higher power density. The simulation has been 
performed utilizing computational fluid dynamics (CFD) using the COMSOL Multiphysics® Modeling 
Software. All components of a fuel cell are taken into account for the simulation.13 
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RESULTS AND DISCUSSION 
Figure-2 shows the HfC and TaC coatings characterization results by X-ray diffraction (XRD), which were 
deposited on a Nafion® composite membrane. Nowadays, the coatings are made to leave a weak layer, but 
it maintains their characteristics. XRD obtained the crystallographic structure of HfC, and TaC coatings, 
Fig.-2(a) and Fig.-2(b) show respectively the X-ray pattern, the crystallographic structure of the HfC 
coating illustrated in Fig.-2(a), showed the presence of HfC with an agreement at 33.571°, and a cubic 
structure with a crystalline plane (111), and at 70.25° with a cubic structure and an orientation at (222). 
Figure-2(b) shows the diffractogram for the TaC sample. The crystalline phases were identified: at 40.48 ° 
tetragonal phase to the plane (020), and at 34.87°, 59.01° and 69.33° cubic structure according to crystalline 
planes (111), (022), and (113), respectively. These results are in agreement with other investigations.26 

  
(a) (b) 

Fig.-2: X-ray Diffraction Patterns for the Thin Films of (a) HfC and (b) TaC. 
 

The micrographs obtained by atomic force microscopy are observed in Fig.-3(a) and Fig.-3(b), which shows 
the surface characterization of the hafnium carbide sample in whom the characterized surface showed the 
topographic heterogeneity.14 It is possible to observe a value of 645 nm, coating relating the average 
roughness and corresponding to the thin film. In observing the different zones, no surface affectation is 
appreciated, so in the oxide-reduction processes, an adequate chemical reaction will be obtained, generating 
a suitable device as an essential part of the cell. Concerning the micrography corresponding to tantalum 
carbide, a value of 30.3 nm is obtained, it is a smoother surface, and the area allows indicating that the 
energy distribution is homogeneous. The TaC coating presented the most uncomplicated response in terms 
of the surface because this is a stronger bond. That is why it presents a more compact system about HfC.14 
In Fig.-4, the Nyquist diagrams are displayed. For the cells where the thin films of HfC and TaC are in the 
form of a membrane, four resistances are observed, and three constant phase elements, these parameters 
were calculated from the equivalent circuit in Fig.-5. The values of each element are detailed in Table-1. 
Rp is the concentration of the ions present in the cell. Its value is low because the evaluation temperature 
has been 25°C. R1 is related to the proton membrane and the electrical resistance of the plates. R2 is 
associated with the load transfer resistance at the anode and concerns hydrogen's transfer resistance or 
oxidation reaction. R3 is associated with the load transfer resistance at the cathode, where oxygen reduction 
is performed.15,16 

  
(a) (b) 

Fig.-3: Atomic Force Microscopy Images of (a) HfC and (b) TaC Coatings 
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Fig.-4: Nyquist Diagram of HfC and TaC Coatings 

 
The carbide-based cathode efficiency for hydrogen production is obtained through the equivalent circuit 
parameters, so it was determined that the TaC generates a higher performance compared to the HfC. These 
results are obtained by connecting the cell to a gaseous flux, so the membranes have a permanent ionic 
passage and a hydration process is generated. Where it is obtained, there is less permeability for the TaC 
membrane since the resistance value of the proton membrane is increased with the HfC.17 The resistances' 
superior values directly correlate with the topography obtained by atomic force microscopy, with a diffusion 
layer process, which generates a better passage of electric current.18,19 
 

 
Fig.-5: Equivalent Circuit 

 
Table-1: Parameter Values for Equivalent Circuit Elements for HfC and TaC Coatings 

 Rp R1 R2 R3 CPE1 n1 CPE2 n1 CPE3 n3 
HfC 0.0032 0.21 2.32 42.32 0.0721 0.72 0.7982 0.82 0.8231 0.85 
TaC 0.0021 0.14 1.87 15.21 0.0325 0.83 0.7023 0.94 0.7821 0.95 

 
Simulation 
Computer Models 
Flux through the fuel cell is assumed to be laminar, stable, and incompressible. The temperature remains 
constant, i.e., isothermal. The Brinkman equations determine the gas diffusion layer flow and mass transport 
(Eq.-1 and Ed.-2). In the flow pattern (Fig.-1), the fluid is represented by the equations of Navier-Stokes 
(Eq. 3 

−∇ ∗ (∇u + (∇u) ) − 𝑢 + ∇p − F = 0               (1) 

∇ ∗ u = 0       (2) 

+ 𝑢 ∗ ∇u = −
∇
+ 𝑣∇ 𝑢     (3) 
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Where ρ is density (kg/m3), η is dynamic viscosity (kg/(ms)), u is velocity vector (m/s), p is pressure (Pa), 
ε is porosity, k is permeability (m2). F refers to the influence of gravity small effects that are not taken into 
account for this case.  
 
Frontier Conditions 
Four boundary conditions have been generated for each simulation.  

1. Cell component conditions where Brinkman’s (Eq.-1 and Eq.-2) and Navier Stokes’ (Eq.-3) 
equations are applied for fluids in porous media  

2. Input conditions in which the type of fluid (oxygen and hydrogen) and its velocity are defined.  
3. Output conditions with atmospheric pressure as output pressure.  
4. Wall boundary conditions, in which there is the condition of no sliding. 

The membrane has a thickness of 100 µm, and the GDL has a thickness of 50 µm. The other parameters of 
the simulation can be seen in Table-2. 

Table-2: Variables for the Simulation. 
Unit Value Description 
𝜺 0.4 GDL Porosity 

k (m2) 1.18e-11 GDL Permeability 
σ (S/m) 222 Electrical conductivity of GDL. 

wH2 0.74 Mass fraction of hydrogen 
wH2O 0.03 Waterbody fraction 
wO2 0.23 Oxygen mass fraction 

Vin (m/s) 0.5 Input rate 
T (K) (°C) 80 - 353 Fuel cell temperature 

V (v) 0.9 Cell voltage 
 
The simulation provides current density distribution, fluid distribution throughout the flow channel, and 
pressure decreases for the serpentine pattern and the bio-inspired flow and changes the electrolyte between 
Nafion, HfC, and TaC. Fluid (Fig.-6 and Fig.-7a) and pressure drops (Fig.-6 and Fig.-7b) change between 
two proposed patterns but do not show a notable variation with changing of the electrolyte. 
The pattern with serpentine and Nafion as the electrolyte is the base point for analysis. According to Fig.-
8, a maximum of 5.7x103 A/m2 is obtained, equivalent to 0.513 W/cm2, considering a voltage of 0.9 V, a 
value consistent with that indicated previously.20 The bioinspired pattern has a slight increase in pressure 
losses due to decreased fluid velocity and pattern. This decrease is a consequence of the more extended 
channel in the bioinspired model. Additionally, higher current density values are evident. Figure-8 shows 
that the magnitude of the current density improves by 8.1% using Nafion as an electrolyte concerning 4.5% 
due to pressure loss. 

  
(a) (b) 

Fig.-6: Results of the Serpentine Structure (a) Distribution of the Fluid in the Flow Channel, (b) Pressure 
Losses 

The primary improvement is obtained by changing the membrane, where the pressure drops are 
maintained, but there is a considerable increase in current density for both flow patterns. The same 
pressure losses are maintained for hafnium carbide, but they generate 10.9% and 10.6% higher 
current density for the serpentine and bio-inspired pattern. Fig.-9(b) shows a 7.8% more current 
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density than the serpentine pattern. The TaC was the best performing electrolyte with 15.4% higher 
energy efficiency for the serpentine and 15.3% higher for the bio-inspired pattern, as seen in Fig.-
10. 

.   
(a) (b) 

Fig.-7: Bio-inspired Pattern. (a) Distribution of the Fluid in the Flow Channel, (b) Pressure Losses. 
 

  
(a) (b) 

Fig.-8: Current density using Nafion as the electrolyte. (a) Serpentine. (b) Bio-inspired pattern. 
 

  
(a) (b) 

Fig.-9: The Current Density with HfC as the Electrolyte. (a) Serpentine. (b) Bio-inspired Pattern 
Overall, the bio-inspired pattern and new membrane materials reflect a significant improvement in fuel cell 
energy efficiency.20 Some modifications to the bio-inspired flow can be made to reduce pressure losses, 
including parallel pathways for more uniform distribution. Fig.-11 provides a visualization of the data 
obtained from the simulation.20 
 

                             
(a) (b) 

Fig.-10: The Current Density with TaC as the Electrolyte. (a) Serpentine. (b) Bio-inspired Pattern 
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Fig.-11: Current Density in Different Fuel Cell Configurations 

 

CONCLUSION 
Hafnium carbide and tantalum carbide coatings demonstrated their potential use as electrodes in hydrogen 
production due to their efficient electrocatalytic activity. The micrographs obtained by atomic force 
microscopy are observed, which shows the surface characterization of the hafnium carbide sample in whom 
the characterized surface showed the topographic heterogeneity. For the cells where the thin films of HfC 
and TaC are in the form of a membrane, four resistances are observed, and three constant phase elements, 
these parameters were calculated from the equivalent circuit. The carbide-based cathode efficiency for 
hydrogen production is obtained through the equivalent circuit parameters, so it was determined that the 
TaC generates a higher performance compared to the HfC. 
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