

GESTIÓN DE RECURSOS Y SERVICIOS BIBLIOTECARIOS

Código

FO-SB-12/v0

ESQUEMA HOJA DE RESUMEN

Página

1/211

RESUMEN TRABAJO DE GRADO

AUTORES:			
NOMBRE(S): EDUARDO DAVID	APELLIDOS: REYES CARVAJAL		
FACULTAD: INGENIERÍA			
PROGRAMA ACADÉMICOS: INGENIERÍA MECÁNICA .			
DIRECTOR:			
NOMBRE(S): JESÚS BETHSAID	APELLIDOS: PEDROZA ROJAS		
·	LOS DE UNA MÁQUINA PARA GRAFAR EL		
CII INDRO Y I AS TAPAS DE SII ENCIADO	RES DE AUTOMOTORES		

RESUMEN. Se recolectó y clasificó información obtenida en conversaciones personales, con las empresas cuya actividad económica está directamente relacionada con la fabricación, venta e instalación de sistemas de escape y silenciadores de automotores, para conocer la situación actual de esta industria en la ciudad de Cúcuta y las necesidades que pueda satisfacer el diseño de maquinaria para la fabricación de este tipo de autopartes.

Se propuso el diseño de un prototipo de máquina grafadora, para unir las tapas al cuerpo de cierto tipo de silenciadores de automotores, por medio del proceso de doble cierre de sus rebordes. Fueron realizadas pruebas con resortes helicoidales a compresión para medir la fuerza necesaria en el proceso de grafado de los rebordes de los que están compuestos las tapas y cuerpos de los silenciadores.

PALABRAS CLAVES Grafadora, Diseño, Máquina, Silenciadores CARACTERÌSTICAS

PÁGINAS: __211__ PLANOS: ___ ILUSTRACIONES: ____ CD ROOM: __1___

	Elaboró	Revisó		Aprobó	
Ec	quipo Operativo del Proceso	Comité de Calidad		Comité de Calidad	
Fecha	24/10/2014	Fecha	05/12/2014	Fecha	05/12/2014

DISEÑO Y CÁLCULOS DE UNA MÁQUINA PARA GRAFAR EL CILINDRO Y LAS TAPAS DE SILENCIADORES DE AUTOMOTORES

EDUARDO DAVID REYES CARVAJAL

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS DE INGENIERÍA MECÁNICA SAN JOSÉ DE CÚCUTA 2017

DISEÑO Y CÁLCULOS DE UNA MÁQUINA PARA GRAFAR EL CILINDRO Y LAS TAPAS DE SILENCIADORES DE AUTOMOTORE

EDUARDO DAVID	REVES	CARVAIAI	
	INE LEO		

Trabajo de grado presentado como requisito para optar el título de Ingeniero Mecánico

Director JESÚS BETHSAID PEDROZA ROJAS Ingeniero Civil

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS DE INGENIERÍA MECÁNICA SAN JOSÉ DE CÚCUTA 2017

www.ufps.edu.co

ACTA DE SUSTENTACIÓN DE UN TRABAJO DE GRADO

FECHA:

CÚCUTA, 10 DE NOVIEMBRE DEL 2017

HORA:

03:30 P.m.

LUGAR:

EDIFICIO SEMIPESADOS 202

PLAN DE ESTUDIOS:

INGENIERÍA MECÁNICA

Título de la Tesis: "DISEÑO Y CÁLCULOS DE UNA MÁQUINA PARA GRAFAR EL CILINDRO Y LAS TAPAS DE SILENCIADORES DE AUTOMOTORES"

Jurados:

Ing. JORGE GRANADOS GRANADOS Ing. CARLOS ACEVEDO PEÑALOZA Esp. JUAN CARLOS RAMIREZ BERMÚDEZ

Director:

ING. JESUS BETHSAID PEDROZA ROJAS

Nombre de los estudiantes

Código

Calificación

EDUARDO DAVID REYES CARVAJAL

0123317

Letra Número Cuatro, Tres

4.3

APROBADA

ing. JORGE GRANADOS GRANADOS

Ing. CARLO AEÑALOZA

ESP. JUAN COREOS RAMIREZ BERMÚDEZ

Vo.Bo GONZALO DE LA CRUZ ROMERO G.

Coordinador Comité Curricular

Ingeniería Mecánica

Av. Gran Colombia No. 12E-96 Colsag

Teléfono: 5776655 Cúcuta - Colombia A Dios primeramente, porque el "principio de la sabiduría, es el temor de Dios", y fue Él, quien puso en mí, las capacidades y destrezas que me caracterizan. A mis padres Johnny Benjamín e Islen Carvajal por su incondicional ejemplo, oraciones y consejos que han sido de vital apoyo en este logro académico.

A mi tía Rocío Moore y mi Abuela Aura María Cañizares, por su apoyo desde la distancia y su ejemplo de superación y trabajo arduo. A todos los familiares y amigos que de alguna manera participaron y fueron de ayuda en la consecución de este logro.

Eduardo David

Agradecimientos

El autor expresa sus agradecimientos a:

Al Ingeniero, Jesús B. Pedroza, por su respaldo y acompañamiento en el desarrollo de este proyecto de grado.

Al señor Yesid Paredes, por su valiosa colaboración y conocimientos compartidos que fueron básicos para el proyecto de investigación.

A mi amigo Manuel Gerardo Oviedo y su esposa por el apoyo y consejos. A los compañeros Saddy Lamus y Edison Gelves que fueron de vital apoyo en la finalización del proyecto.

Al Ingeniero Ricardo León Carvajal y la Ingeniera Sandra Patricia Molina, por la confianza y el apoyo brindado.

Eduardo David

Contenido

	pág.
Introducción	17
1. Problema	19
1.1 Título	19
1.2 Planteamiento del problema	19
1.3 Formulación del problema	20
1.4 Justificación	20
1.5 Objetivos	22
1.5.1 Objetivo general	22
1.5.2 Objetivos específicos	22
1.6 Delimitaciones	23
1.6.1 Delimitación temporal	23
1.6.2 Delimitación espacial	23
1.6.3 Delimitación conceptual	23
2. Marco referencial	25
2.1 Antecedentes	25
2.2 Marco teórico	26
2.3 Teorías de diseño mecánico.	29
2.4 Geometría, elipse.	36
2.5 Ley de robert hooke.	38
2.5.1 Resortes helicoidales de compresión. HCS	39
2.5.2 Longitud de los resortes.	40
2.5.3 Pandeo de los resortes de compresión	41

	2.6 Seguidor de la leva	50
	2.7 Levas de cara plana con seguidor de rodillo	51
	2.8 Tornillos de potencia	54
	2.8.1 Eficiencia del tornillo	56
	2.8.2 Autobloqueante	57
	2.8.3 Resistencia del núcleo del tornillo	58
	2.8.4 Presión por aplastamiento	59
	2.8.5 Esfuerzo de flexión	60
	2.8.6 Longitud mínima de la tuerca	61
	2.9 Actuador hidráulico.	64
	2.10 Rodillo de grafado	68
	2.10.1 Rodillos de primera operación	69
	2.11 Marco Conceptual	74
	2.12 Marco legal	76
	2.13 Marco contextual	78
	2.13.1 Encuesta realizada en el sector de los silenciadores en la ciudad de Cúcuta	81
	2.13.2 Empresas que solo instalan y comercializan silenciadores en la ciudad de Cúcuta	84
3	. Diseño metodologico	85
	3.1 Tipo de investigación	85
	3.2 Fuentes de información	85
	3.2.1 Fuentes de información primaria	85
	3.2.2 Fuentes de información secundaria	85
	3.3 Tecnicas de recoleccion de la información	86
	3.4 Analisis de informacion	86

4	Resultados	88
	4.1 Principales empresas en la industria de silenciadores de automotor en la ciudad de Cúcuta.	88
	4.2 Clasificación de las empresas.	89
	4.3 Fabricación de Silenciadores en la ciudad de Cúcuta	89
	4.4 Silenciadores a grafar.	90
	4.5 Dimensiones principales de los silenciadores.	92
	4.5.1 Silenciador circular	94
	4.5.2 Silenciador Elíptico 1	95
	4.5.3 Silenciador Elíptico 2	97
	4.5.4 Silenciador Elíptico 3	98
	4.6 Prueba para determinar la fuerza de grafado mediante dinamómetro	100
	4.6.1 Prueba de resorte a compresión, realizado en el laboratorio de resistencia de materiales de la U.F.P.S, el día 29 de mayo de 2015.	104
	4.7 Diseño del Sistema de posicionamiento del seguidor.	109
	4.7.1 Cálculo de resorte helicoidal a la compresión para cargas a la fatiga.	110
	4.8 Diseño del sistema guía cursor.	119
	4.8.1 Cálculos para el sistema guía cursor	119
	4.9 Rodillo de Grafado	122
	4.10 Diseño del sistema leva-seguidor	125
	4.10.1 Selección del seguidor de leva	127
	4.10.2 Diseño de las levas de cara plana con seguidor de rodillo	128
	4.10.3 Carrera del seguidor	133
	4.10.4 Precarga de los resortes y plato de compresión	133
	4.10.5 Resistencia del núcleo del tornillo	135
	4.10.6 Esfuerzo de flexión	137

4.10.7 Longitud mínima de la tuerca	139
4.10.8 Esfuerzo por pandeo	139
4.10.9 Plato de compresión	141
4.11 Selección del sistema de accionamiento del rodillo	142
4.12 Diseño de la estructura.	144
4.13 Cálculos de la soldadura de la estructura	146
5. Sistema motriz.	158
5.1 Cálculo de la potencia del motor	158
5.2 Selección del motorreductor.	162
5.2.1 Cálculo del torque del motor:	162
5.2.2 Selección del motorreductor	165
5.3 Acople motorreductor – leva	168
5.4 Simulación del acople motorreductor-leva	170
6. Conclusiones	172
7. Recomendaciones	173
Referencias bibliográficas	174
Anexos	178