
Received: 10 May 2017 | Accepted: 21 September 2017

DOI: 10.1002/cae.21885

RESEARCH ARTICLE

SEED: A software tool and an active-learning strategy for data
structures courses

Marco Adarme1 | Daladier Jabba Molinares2

1 Faculty of Engineer, Department of
Systems e Informatics, Universidad
Francisco de Paula Santander, Cúcuta,
Norte de Santander, Colombia

2Department of Systems Engineering,
Universidad del Norte, Barranquilla,
Atlántico, Colombia

Correspondence
Marco Adarme, Faculty of Engineer,
Department of Systems e Informatics,
Universidad Francisco de Paula Santander,
Cúcuta, Norte de Santander, Colombia.
Email: madarme@ufps.edu.co

Funding information
Universidad Francisco de Paula Santander

Abstract

SEED is a software tool designed for Java consisting of a class library and a set of

simulators to facilitate learning of the main data structures. The educational

component is based on an active case-solving methodology accompanied by a

pedagogical strategy. This strategy allows for the development of a multilayer-

model-programming work for the construction of basic and advanced applications in

real domains and for integration of its use, development and operation assessment

with data structures. The evaluation results of SEED as a pedagogical mediator in the

issue of binary trees is presented. The evaluation indicates that students prefer to use

SEED due to its simplicity and attractive GUIs which facilitate data structures

learning.

KEYWORDS

animation, class library, data structures

1 | INTRODUCTION

To efficiently solve algorithmic problems requires heuristic
resolution strategies based on low consumption of critical
computing resources (memory&processing) [8]. For this reason,
data structures are among the pillars of efficient-applications
development [15], and are essential to the optimization of
computational resources. Structuring the data for problem solving
is an advantage when some information is required. Data can be
organized in hierarchical sets so that accessing and processing are
as efficient as possible, and optimizing efficiency does not result
in design problems or complex coding.

From the beginning of the learning to program, students
acquire skills to solve a problem in a given domain and learn to
use basic containers (structures). They also take already
created components fromdifferent languages anduse theirAPI
in which the implemented operations are insert, delete, update,
and query. The issue of data structures has become a
compulsory subject in all academic programs related to

computing, and has been highlighted as an important approach
in curriculum 2013 [23] which comprises a guide to creating
content for training courses and programs in the area of
information technology and computing. This curriculum
emphasizes the study of data structures alongside algorithms
and complexity (AL) as well as the importance of being able to
use containers and how to implement these data structures in
order to solve problems in the field of artificial intelligence,
databases and distributed systems, among others. These
solutions require efficient processing and data storage.

Currently, the information from all these data structures
may not be located in one place, instead it is scattered in many
information resources such as books, digital documents, and
internet resources that do not allow for managing just a single
concept. Additionally, contextualization of these data
structures in real domain problems seems to be scarce.
Documented sources are focused on the implementation of
the structure in very specific programming languages; its
explanations are given through abstract models representing

Comput Appl Eng Educ. 2017;1–12. wileyonlinelibrary.com/cae © 2017 Wiley Periodicals, Inc. | 1

http://orcid.org/0000-0002-2121-1208


memory management based on rectangles or circles, resulting
in a conceptually accurate but ambiguous representation for
students who conceive the utilization and usage of external
structures to performance a formal application. As a result,
when and which data structures must be used for the
development of an application are confusing.

SEED has been created as a solution to address the need
for learning strategies for the use of data structures and their
implementation. This software platform includes a class
library, which models data structure developed in Java
programming language, a documentary resource based on the
use of structures in real domain contexts, and pedagogical
mediators illustrating the basic primitives of the structures, as
well as new implementations developed by the student. For
this, SEED is based on the following aims:

� To create an open source component in JAVA for the
management and implementation of data structures.

� To develop a working model for the construction of basic
and advanced applications in real domains that integrate the
use and creation of operations on data structures.

� To develop pedagogical mediators for the manipulation of
structures, their basic primitives and new features.

� To provide a system based on conceptual model classes and
extended documentation resources using basic design
patterns.

SEED was created and used in third-semester Data
Structures and fourth-semester Analysis of Algorithms
courses, both developed at Francisco de Paula Santander
University (Cucuta, Colombia).

2 | RELATED WORK

The implementation of digital resources and libraries in the
area of data structures is not something new; however, the
detailed analysis of common features of different approaches
leads to a better understanding of the topic. Examples of
common technological solutions integrated into software to
facilitate student learning in the area of data structures include
resources such as virtual learning objects, educational
mediators, simulators, abstract models, and code visualiza-
tion of individual structures. To better understand related
work and the context in which SEED was conceptualized and
developed, we first present an overview of systems that
integrate resource visualization and code management
software, documentation, class libraries, as well as resources
that offer some didactic interaction for learning about data
structures.

The Standard Template Library (STL) is an outstanding
example of a class library resource and is described in more
detail in the CPP Reference guide [5] and by Musser, Derge,

and Saini in their STL tutorial [18]. STL is a collection of
generic data structures and algorithms written in C++. STL
has been adopted by the C++ ANSI standardization
committee, which means that it is supported as a language
extension for all compilers. This makes STL a great tool for
studying and learning different data structures. Similarly, the
Aleph-w [13] project of Los Andes University(Mérida-
Venezuela) is a library for data structure management in C
and C++ with a component for managing frontend graphics
that allows for operationwith different types of data structures
and computational geometry problems.

Data Structure Visualization [9], from the University of
San Francisco (USA), is part of the field of didactic
visualizations and comprises a series of HTML5 animations
with responsive features that can be displayed on any device
in standard browsers. Typical computational geometry
algorithms and dynamic programming are also included in
Aleph-w and the code is open source with clearly defined
interfaces, allowing developers to extend the functionality of
the frontend.

Another system, CSTutor [4], is an educational software
based on the concept of a canvas. In this approach, the student
builds a conceptual model of a type of data structure, and the
system is capable of transforming it into a C++ source code.
CSTutor also works in reverse, building a model from C++
source code. This approach highlights the use of conceptual
models that describe the operation of the structure. The
CSTutor frontend is IDE-type constructed so that the student
can easily integrate the generated code into other applications.
Although not a recent project, DSTools [1] stands out as an
example for its incorporation of views over applet and
documentary support as well as its three-layer architecture.
These features result in a basic tool for programming with
data structures that allows for graphical debugging and
evaluation. The multiple architectural levels in DSTools offer
the possibility of easily adding operations on the system,
incorporating the concept of modularity, and allowing for
delegation and reuse of its class library, an idea that has been
exploited for the preliminary design of SEED.

Cupi2collections [24] is a purely academic Java class
library with documentary support and some Digital coaches
(mediators) that illustrate the implementation of abstract data
structures and formal algorithms. This project is part of
CUPI2 [25] which includes a pedagogical approach to
teaching programming based on problem solving. Cupi2col-
lections main aim is to be a development basis for other
structures incorporating the concept of generics and simile
parameterization for collections of data structures presented
in formal Java libraries (java.util.Collections). Its lead design
level are coupling mechanisms easily identifiable through the
development of interfaces. It has a hierarchy of data structures
that can incorporate mixed containers without difficulty; this
design idea is the baseline for creating the SEED classes.

2 | ADARME AND JABBA MOLINARES



Other projects involve the use of applets to illustrate
animationsor simple interactionsof abstractmodels, an example
being the Java applet Center Center [17], a website containing
applets that demonstrate the operation of simple data structures
and some fundamental operations. This website consists of
animations for sorting and searching algorithms, and it contains
the source code and description of each one. The problem in this
web page is related to the difficulty in the identification of
structures as reusable components. In some cases, authors have
developed applets of some data structures in which the process
of the implemented operations can be observed in either C++or
Java. In Ref. [3,22], however, only some source codes are
completely available, which makes it impossible to work by
developing with structures as components.

These published examples describe digital resources for
the study of structures as a starting point for building SEED.
Now, this research will be focused on three common elements
of the analyzed projects: documentation regarding the
behavior of data structures, the construction of a class library
and a set of simulators for each of the chosen structures, and
common data structures that are included in the syllabus of
Data Structures and Analysis of Algorithms subjects will be
reviewed and the common framework of implementation of
the projects discussed.

The common data structures implemented are sequence
20%, linked list 80%, doubly linked list 30%, circular linked
list 10%, doubly circular linked list 10% list, queue 90%,
priority queue 20%, bi-queue 30%, cyclic queue 10%, stack
80%, binary tree 70%, binary search tree 80%, tree apo 10%,
AVL tree 50%, red-black tree 30%, heap 20%, Treap 10%,
10% splay tree, N-ario tree 10%, 10% 1-2-3 tree, 2-3 tree 20%,
10% 2-4 tree, B tree 20%, B+ tree 10%, 74 multitrees 10%
quad-tree 10%, 30% graph, and Hash Table 40%. A total of
twenty (20) structures are implemented; however, these
percentages do not take into account the special implementa-
tions, for example, those that provide linear structures with
some kind of system or mixed structures. Table 1 shows
evaluation items of different projects reviewed with the
purpose of showing the strengths and weaknesses of each one,
as an innovative development strategy for SEED.

The projectwith themost implemented structures is STL, and
it has become a standard for major implementations on C++. Its
advantage lies in separating the native implementation of the
structurewithoperationsthroughtheuseofgeneric templates[18].
Nevertheless, Aleph-w andCupi2Collections offer a class library
with a considerable number of developed structures. In regard to
teaching tool technologies, the use of Applets stands out.
However, some developers use HTML5, and although this view-
layer technology is rarely used it would currently be the most
recommended for its browser compatibility. Only three (3)
projects offer the libraries as a reusable component, and the others
just implement their structures as teaching resources.

Taking into account the explicit work of the literature
review, SEED is novel in that it offers the combination of a
documentary support with a reusable component in any
application domain and a graphical tool to evaluate the
behavior of structures. Likewise, in the area of academic
training for students, its implementation architecture provides
a simple view of the real work in a multi-layer environment in
which the delegation of operations between the frontend and
backend are clearly differentiated.

3 | SEED DESCRIPTION

3.1 | Didactic method

The main purpose of SEED is to allow the student to
understand and develop algorithms based on multiprogram-
ming in which he/she can separate the logic of the central
exercise (problem situation) from data abstraction and
implementation of its operations based on the principles of
reuse operations, encapsulation and delegation of operations
in an object oriented environment. For this, the student will
have four (4) sequential work roles, as shown in Figure 1.

The description of the roles is shown below:

1. Data organizational model analyst (AD): At this point, the
student analyzes the appropriate structure to solve a real
problem and identifies the operations to be implemented
and the interactions between them.

TABLE 1 Comparison of data structures in different projects

1 2 3 4 5 6 7 8 9

Percentage of implemented data structures 100 90 70 80 70 80 80 60 50

Programming language C++ C++ Java Java Java C++ Java Java JavaC++ C++

Documentary resource Yes Yes Yes No Yes Yes Yes Yes Yes

Library class as software component Yes Yes No No No Yes No No No

Frontend technology – – Applet Html5 Html5 Applet Applet Applet Applet

(1) STL, (2) Aleph, (3) DSV, (4) CsTutor, (5) DsTool, (6) Cupi2Collections, (7) Java Applets Center, (8) EdaApplets, and (9) Interactive tutorial data structures.

ADARME AND JABBA MOLINARES | 3



2. Structure developer (DE): The student develops operations
based on the data structures already created. He under-
stands the use of interfaces and creates new operations.

3. Structure evaluator (EE): Through SEED pedagogical
mediators, the student tests the functionality of the created
operation, identifies the layered model of the application,
and recognizes the delegation between classes of the
frontend developed by him.

4. Solution developer (SD): He/she uses the created and
evaluated operations in a real domain of work. The student
separates the business logic of his/her problem from the
implementation of the structure and the corresponding
execution, and he/she separates elements within the
frontend.

The equation, AD+DE+ EE+DS= Software Solution,
represents the solution. It is strategically composed by four
bodies of knowledge as defined in curricula 2013 [22], which
suggests that each course contain multiple areas that should
converge not only in the theoretical and laboratory practices,
but also in the objectives (targets) to be achieved. These four
areas are Software Development Fundamentals (SDF),
Discrete Structures (DS), Algorithms and Complexity
(AL), and Programing Languages (PL). Table 2 shows the
relationship between the teaching work and the area of
knowledge that is integrated.

Table 2 shows that the SD role integrates the four bodies
of knowledge as previously mentioned. The main idea of
workingwith SEED is tomanage the problem of construction,
the data-organization understanding and the application
domain in each of the data structures, and also the cross-
learning understanding of software development through
principles and formal object-oriented techniques. As a
prerequisite to each content, theoretical sessions should be
integrated in order to provide the basis for abstract data types

and their main algorithms. Practical sessions include the use
of educational mediators provided by SEED and the use of its
library in a real problem of formal solution, which aims to
consolidate theoretical topics learned and the addition of new
operations on the structure and to provide a technological
challenge relating to the programming language (addition of a
graphical component, reporting, etc.). These four problems
are the core of active learning through problems and projects
based on the methodology proposed by the Cupi2 project in
which students are motivated with the resolution of problems
that reflect real-world challenges.

3.2 | Class library

A class library is a set of object classes, made up of special
entities such as classes and interfaces (templates), that
includes a well-defined interface for their use [12]. The
behavior of the classes and interfaces contained in a class
library are well-defined and can be reused by different
programs [10]. Class libraries may contain classes or
interfaces specifically written to function as managers of
primary and secondary storage or as elements of frontend and
database connections, among others. As a class library
contains pre-written, the developer does not have to worry
about their implementation and they are an important support
tool in solving a programming challenge.

3.2.1 | Analysis and design

Data structures are implemented under the concept of
container classes and is based on the design concept in
which the structure corresponds to the specification of a set of
data and the relations among them [13,18]. In this approach, a
specific object class corresponds to a meta level related to the
container and in the medium level to turn into a structural
composition relation, in which the existence of the contained
class (class part) depends on the container class [19]. The
class part cannot be shared by other objects, and deleting the
container class results in the erasing of its part. Figure 2 shows
a typical conceptual model about the construction of each
structure within SEED. Each data structure corresponds to a
formal taxonomy based on theoretical concepts [6]. SEED
takes this conceptualization and designs top-level classes
(parent classes) as the starting point for its framework.
Figure 3 shows a class-parent conceptual diagram in which
the different containers are grouped.

FIGURE 1 Student roles—SEED

TABLE 2 Student Rol-SEED versus body knowledge

Student Rol-SEED Body knowledge

AD DS, AL

DE DS,AL,PL

EE DS,PL

SD DS,AL,PL,SDF

FIGURE 2 SEED—conceptual class diagram

4 | ADARME AND JABBA MOLINARES



Clustering was designed so that the student can
intrinsically identify the application domain concept of
each structure. However, the class library is open-ended,
and its interface-based reusing mechanisms can easily be
changed and operated on another hierarchy. The use of
interface allows for the declaration of a set of operations and
attributes for classes in order to implement its functional
logic. Its main objective is to organize programming and
standardize the signing of operations among classes in the
same context [14].

The library models two sets of data structures, dynamic
and static, respectively. The implementation of static
behavior linear structures can be found in the literature.
However, for purposes of ease on the learning process, a
concept model based on the class diagram in Figure 3 is
created. The static denomination is used only for structures of
one-dimensional arrays, and the multidimensional abstrac-
tions are represented as arrays of arrays with the structure
sequence encapsulating this behavior. Figure 4 shows the
implemented dynamic structures; its hierarchy and group of
top-level classes (called parent class in a generalized
inheritance relationship) correspond to a types of data
structures [6].

Having explained the previous conceptual model, the
diagram in Figure 2 is redefined in inheritance relationships in
generalized and specific behaviors.The first is used to share
the same attributes (for example, queue class− priority queue
class) so that the attributes are factored and placed in a top
level class (parent class). The second is for classes classes [7]
sharing similar operations (methods), and its logic is
implemented by inherited classes. The advantage of using
inheritance relationships is that it is easier to reuse code since
the attributes and methods do not need to be rewritten and the
conceptual hierarchical level between classes is maintained.
Figure 5 shows an example section of a conceptual diagram of
the SEED tree structure. The following section describes the

implementation techniques that were used in Java. The
implementation is explained with emphasis on partnerships
and heritage that were found in SEED class modeling domain.

FIGURE 3 SEED—conceptual parent class diagram

FIGURE 4 SEED—types of data structures

FIGURE 5 Conceptual example diagram of the SEED tree
structure

ADARME AND JABBA MOLINARES | 5



3.2.2 | Implementation

The development of the class library is based on the use of
object-oriented design patterns in Java. These patterns
contribute to easily reusable classes with a structural cohesion
that provides extensibility and flexibility [26] when imple-
menting new operations or structures.

Classes are developed using the Container pattern [20].
Objects of the same type are created in this pattern, and
interfaces are available to add, check, delete, and update
elements, among other functions. These classes encapsulate
such operations, and the structure can be observed as a single
entity, usually called collections, in Java. Each Container
associates a class with the iterator pattern whose function is to
explore the structure and get each of its elements without
exposing its internal composition [2,26]. In the case of
nonlinear structures, the iterator implements algorithms of
particular paths related to the applied structure. An example is
binary trees that are traversed in inorder, preorder, or
postorder.

The items stored in each container are defined as generic
type “T” data [18] a common specification in Java or .Net
environments, and they declare a data type to be specified at
the time the class is instantiated by using mechanisms of
reflection [1]. The concept is also known as “parameteriza-
tion” as the data type is passed as a parameter to the class to be
instantiated. The advantage lies in the standardization of types
minimizing the risk of errors at compiling time [21].
Additionally, it works as a recycling mechanism since no
behavior code for common elements in the structures would
be rewritten, which is commonly seen in the literature where
elements of a single type are generally defined as
“integer” [11,12,15,16]. Similarly, the reusing allows the
created structures to be easily used in any application.

By redefining the diagram on Figure 2, the container is
explained in its structural part as a type of generic data
associated with an iterator class. Additionally, for the purpose
of standardizing the operations on the Java platform and using
related-language statements to traverse collections, the

iterator and iterable interface and java package (java.
langjava.util), are implemented, respectively. This basically
defines the contract of use: hasNext(), next(), and remove. In
general, the student would eventually create code for these
operations within their specific iterator. Figure 6 shows the
general class diagram for any data structure. The main
package that contains all structures is called “SEED” each
container belongs to a class represented by the LabelADT
class and corresponds to the specification given in Figure 3,
for instance labelADT can be Tree, List, and the others. The
Data-Structure class represents the data structure to be
treated. However, these can also be derived from another one.
For example, in the treatment of trees presented in Figure 5
and the part-class that represents a “node” containing as
attribute the information that is stored, called “element,”
which is a generic data type declared with the character “T.”
The class My Iterator corresponds to the class that contains
the logic path of the structure that implements the standard
Java iterators as already mentioned.

3.3 | Pedagogical mediator

The SEED-working model involves the implementation and
testing of structures implemented through any Java IDE.
NetBeans IDE is preferably taken as a working basis,
depending on the context of application of this research,
without limiting the activities at the functionality level of
other environments. The mediator constitutes a pedagogical
and didactic strategy that allows strengthening of the
knowledge of each structures behavior with abstract well-
defined models through a software simulator. As the
simulator automatically develops algorithm animations
created in the base structure, this software avoids conven-
tional processes where tests of each algorithm are performed
through slides or freehand drawings on blackboards.

The set of simulators implemented in the project, SEED,
corresponds to each of the structures previously developed in
the classes library. According to the requirements for

FIGURE 6 SEED—general class diagram for any data structure

6 | ADARME AND JABBA MOLINARES



graphical representation of each structure, additional compo-
nents have been used to facilitate student interaction with the
graphical simulator. This set of simulators has been
developed using a common software architecture (MVC),
which makes it possible to separate the presentation layer
structures that have functionality from the data that will be
presented in the layer. This is done through an intermediate
layer having a more appropriate data interface to be displayed
for the student. SEED aims to provide an environment to
encourage learning where students see the interaction of data
structures with different operations that are implemented. The
Metamodel package sample diagram of each simulator (see
Figure 7) uses the logical architecture ofMVC design pattern,
encapsulating in each package the management functionality
of the structure, the view, and the controller.

The implementation of the set of simulators in SEED is
based on starting from a common base for all Simulators, “a
structure,” that seeks to reduce the implementation complex-
ity in each of them. Thus, the only difference between the
simulators is in the data structures for graphical simulation
and the graphical presentation of the data structures to the
user.

Unlike CsTutor [4] in which the student draws the
structure and type based on a modal-window code, SEED can
work separately from the structure of the pedagogical
mediator. The independence of this component offers the
advantage of being easily coupled for use in any real
application domain. This fulfills one of the objectives pursued
in SEED that not only will the student learn how to implement

operations on the structure, but will also apply their behavior
and organization to an actual work case. The mediator is
therefore a tool to test the concepts discussed in the
classroom, which remain a fundamental part in the proposed
teaching process. The importance of SEED lies in strength-
ening work concepts on an architectural model of software
based on MVC, allowing for interaction of delegation and
Oriented Object design principles, and finally in appropriat-
ing the data set as a fundamental element for the good design
of efficient programs.

Each GUI mediator was developed in JavaFX, and the
interaction consists of creating a button on the simulator to
call the controller operation that then calls the operation
delegated to the working structure. Assuming that all the
simulators will be implemented from the package structure
mentioned in Figure 7, the solutions implemented to draw
each of the structures using adequate Javafx components
remain to be specified. The visualization of each structure
gives the student a pleasant and easy interaction in order to
strengthen the understanding of the behavior of each one.
Thus, a method is implemented with the same signature for
each simulator and structures, which allows the drawing and
animation of their behavior. This method will be brought to
the simulator view after calling the implemented operation by
the student, for example the “pintar” TDAmethod on the GUI
TDA class (see Figure 7). This animations encapsulation level
and graphical representation allow students not to worry
about the management of sophisticated animation algorithms
or GUIs, but to focus on the operation that should be

FIGURE 7 SEED simulator-metamodel package diagram

ADARME AND JABBA MOLINARES | 7



implement or studied about the structure. Figure 8 presents an
example of the GUI simulator composed of a drawing area of
the structure with a set of buttons, implemented operations,
and a space in order to add more Javafx graphics-based
components. Each time the student implements an operation,
the structure is shown as an animated insertion or deletion of
data. If the implemented operation generates some kind of
exception, the simulator, for example in the event that any
reference of a node fails, presents this result, and a sequential
path is not successfully completed.

4 | EVALUATION

To evaluate SEED, two experimental groups were designed.
The first group assessed the technical and operational aspects
of the class library and its mediator, and the second group
assessed the learning effectiveness in exams. During the
second semester of 2015, the experiments were conducted
with students enrolled in data structures courses. A total of 65
students participated, with 31 students using the SEED
platform and 34 students serving as a control group following
the traditional methodology. For the study design, a mixed
approach was applied such that students were chosen for the
section class to which they belonged. The binary trees topic
and its variants were chosen as an object of study.

Traditional methodology was defined as that in which the
teacher spends most of the time in the master class teaching
the concept of the structure, its main operations and its basic
implementation in Java with NetBeans with lab time limited
to a maximum of two hours. Each student developed his own
TDA and made test environments through basic console
environments or GUIs with simple inputs, outputs, and text

mode. Students who worked with SEED had the same hourly
intensity, but followed the previously described SEED
learning methodology.

The research study sought to test two hypothesis (Hyp)
taken from the experience of the evaluation presented in
Ref. [4]:

� Hyp1: Students prefer to work with educational features
and tools of SEED than traditional methodology.

� Hyp2: Students obtain higher scores on their tests with the
use of SEED.

4.1 | Design of experiment and procedure

The subject under study was binary trees and included the
subtopics:

� Standard Tree (general)
� Binary search tree
� AVL

The SEED platform included a didactic teaching (see
section 3.1), and its method was generally composed by: a
1 hr master class, 2 hr of laboratory, and 6 hr of independent
work. The sub-themes were developed in about 2 weeks per
subtopic, as allowed by the course syllabus. The laboratories
included interaction with the simulator and the development
of methods on the SEED class hierarchy. Each subtopic was
evaluated with a laboratory comprising generally of the
implementation of methods and the implementation of testing
in the simulator through a case study. At the end of each
laboratory, students were asked to complete the following
survey using a Likert scale, which rates the degree of

FIGURE 8 A screenshot of linked list simulator

8 | ADARME AND JABBA MOLINARES



difficulty for operations within the collections and the
simulator (1 = very difficult, 2 = hard, 3 = acceptable,
4 = easy, 5 = very easy):
Q1. Rate the use of SEED to understand and assimilate

concepts of binary tree structure data.
Q2. Rate the use of attributes and methods to identify which

attributes were located on the binary tree class (SEED
Collections).

Q3. Rate the development of methods based on collections
presented at SEED.

Q4. Rate the linking to and integration of collection of classes
with the class simulator.

Q5. Rate the use of methods called to animate the tree-
structure behavior functionality.

Q6. Rate the integration of SEED with NetBeans IDE.

For each of the tests, the student worked with SEED with
pre-set scenarios, for example, Figure 9 shows the SEED
workspace, options 1 and 2 correspond to the actions buttons
for the binary tree algorithms, the buttons grouped in option 2
can be customized by the student, if so desired, to incorporate
new algorithms and test them through the animation API
created in SEED.In the test it was requested to insert a dataset,
this was done in order to verify the correct use of SEED and
that the student could answer questions 1-5, mentioned
previously.

The question 6 was evaluated by analyzing the use of
Netbeans with SEED. Figure 10 shows the integration of its
components with an IDE is one of the purposes of SEED, for
this reason the students must integrate the SEED in Netbeans
components. The student has the assignment to identify the
multi-layer system presented in the SEED architecture, and

the student must finally choose the package and classes to
implement new algorithms.

In conclusion, a final evaluation was done using the same
exercise for the two groups and results were compared.

5 | RESULTS

Each subtopic was developed in three lab sessions. At the end
of each session, the results obtained from the corresponding
instrument were collected through an electronic survey.
These results are presented in Table 3 as percentages based on
the level of acceptance depending on the range of satisfaction.
For example 30% of students believed that the use of SEED
for structures learning was relevant to their academic process
and easy to use. This result was likely due in large part
because there was not a pedagogical support tool for the data
structure courses. Likewise, the responses for implementation
of methods, classroom management and the view-layer
simulator integration ease of use, were 26%, 29%, and 33%,
respectively. A large percentage of students considered
methods to invoke animations difficult to use. This may be
because simulators make use of the JavaFX technology for
their graphics components, and although the operations are
encapsulated, to perform native interpretation methods can be
complex, and eventually students considered SEED integra-
tion with NetBeans IDE to be acceptable.

To quantify the effectiveness of SEED compared to a
traditional methodology, results from a final exam are
compared between the two study groups. Table 4 summarizes
the results of the final evaluation as a percentage of students in
each group receiving deficient, acceptable, and satisfactory

FIGURE 9 A screenshot of binary tree simulator

ADARME AND JABBA MOLINARES | 9



scores. Scoring on the final examwas based on a scoring scale
from 1 to 5 according to the following levels of performance:

� Ranging from 1 to 2.9 as a deficient score.
� 3 as an acceptable score
� Ranging from 3.1 to 5 as a satisfactory score

The results show that 42% of students who utilized the
SEED approach obtained an acceptable score in the final
test (Table 4) while only 36% of students taught with the
traditional methodology obtained acceptable scores. How-
ever, this difference between acceptable scores in the
SEED and the control group was not significant. A possible
explanation could be that students who utilized SEED had
the option to use a range of algorithms already created in
the platform, resulting in easier implementation during the
test. While the difference in “acceptable” scores was only
minor between groups, a more significant difference was
observed in the percentage of students receiving “defi-
cient” scores; 13% fewer students received “deficient”
scores in the SEED group compared to the control group. It
should be noted that in this experiment, SEED management
was applied for only a short period in the class. The next
step in this research would be to apply the software tool
during the entire semester by integrating SEED into the
class syllabus.

6 | DISCUSSION

The results presented in the previous section support Hyp1,
that students prefer to work with the proposed methodology
SEED in contrast with conventional tools and environments.
In fact, working with existing structures facilitates under-
standing of each of the collections-behavior.

Although SEED was only tested on a part of the course, it
was intended as a research strategy applied to learning about
binary trees because they include a set of algorithms
warranting cases work with other auxiliary structures. This
content forced students to analyze the class hierarchy
presented in the library and was, therefore, well suited for
the implementation of SEED.

On the other hand, even though handling the library with
simulators is comfortable, the technology used for animations
is complex. Including SEED as educational support for only
one of the topics in the class did not represent a problem for
the course. However, students did claim that the use of a
didactic and easy mechanism is necessary in order to see the
structures functionality.

Concerning Hyp2, the results show that the implementa-
tion of SEED helps to reduce the failure rate on a particular
issue as happens with the binary trees. The success rate
(defined as “acceptable”and “satisfactory” performance
groups) between the SEED and control groups demonstrates

FIGURE 10 A screenshot of SEED in netbeans components

TABLE 3 Evaluation questions

Likert scale Q1 (%) Q2 (%) Q3 (%) Q4 (%) Q5 (%) Q6 (%)

1 13 16 13 17 13 21

2 20 3 19 13 10 10

3 20 32 10 10 39 28

4 17 23 29 27 16 17

5 30 26 29 33 23 24

10 | ADARME AND JABBA MOLINARES



a very small margin of difference. While performance on the
evaluation was not drastically different, it is worth
highlighting that students during SEED lab sessions remained
attentive because the simulator animations were presented
through basic methods that had already been implemented in
the SEED class library. At the time of testing, students with
SEED dynamics work had analyzed a larger number of
implemented code in the library.

7 | CONCLUSION

This article presented a tool and a pedagogical strategy, called
SEED, proposed for teaching and learning data structures
intended for use in engineering and systems-related courses.
First, a literature review of current state of the art approaches
related to the theme was presented showing the main
academic contributions of each approach and evaluating
program characteristics that were taken into account when
constructing SEED. Then, the SEED educational component
was described in detail consisting of three parts: (1) teaching
strategies and learning, (2) the class library, and (3) the
development and implementation of simulators.

The results of the evaluation show that the software
solution and proposed strategies could help as a teaching
mediator for teaching/learning the concepts of data structures.
Similarly, students who used SEED in their classes showed
greater effectiveness in understanding the handling of data
structures and their relationship when applied to a real case.
Programming SEED simulators allowed students to have a
multilayer environment that helped facilitate understanding
of conventional software development.

Although there are a number of academic implementations
for this purpose, SEED provides an easy-to-use API in Java
programming language and graphical interfaces made with a
high level of usability with a didactic-pedagogical strategy that
simulates quick manual operation of each one of the data
structures. The proposed strategy includes the dynamics
expressed by active learning styles where the student can
see exactly what the abstract modeling of each structuremeans
in relation to each of their behaviors or functionalities.

ACKNOWLEDGMENTS

The first author expresses his deep thanks to the Universidad
Francisco de Paula Santander (Cúcuta Colombia) for their

academic and financial support. He also expresses his deep
thanks to the Universidad Del Norte (Barranquilla Colombia)
for their academic support.

ORCID

Marco Adarme http://orcid.org/0000-0002-2121-1208

REFERENCES

1. M. Adarme, Reflexión computacional un enfoque desde C++.
Cúcuta-Colombia: ECOE EDICIONES (2013).

2. AllAppLabs.com, JAVA DESIGN PATTERNS, 2014. [Online].
Available online at: http://www.allappforum.com/java design
patterns/iterator pattern.htm

3. L. Almeida, F. Blanco, and V. Moreno, “EDApplets: Una
Herramienta Web para la Enseñanza de Estructuras de datos y
Técnicas Algorítmitcas Almeida F., Blanco V., Moreno L. M.”
X Jornadas de Enseñanza Universitaria de la Informática, 2003,
pp. 1–8.

4. S. Buchanan and J. J. Laviola Jr. CSTutor: a sketch-based tool for
visualizing data structures, Trans. Comput. Educ. 14 (2014),
3:1–3:28, [Online]. http://doi.acm.org/10.1145/2535909

5. Comunidad C++, “CPP Reference” (2015). [Online]. Available
online at: http://es.cppreference.com/w/cpp/container

6. T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms, MIT Press, Cambridge, MA, 2009.

7. A. Dennis, B. H. Wixom, and D. Tegarden, Systems analysis and
design: An object-oriented approach with UML. John Wiley &
Sons, New York, NY, 2015.

8. A. Duch, Análisis de Algoritmos, U. P. de Barcelona, Ed.,
Barcelona, 2007.

9. D. Galles, Data Structure Visualizations, San Fracisco, USA, 2011.
[Online]. Available online at: https://www.cs.usfca.edu/galles/
visualization

10. N. S. Gill, Importance of software component characterization for
better software reusability, ACM SIGSOFT Software Engineering
Notes, 31 (2006), 1–3.

11. M. T. Goodrich and R. Tamassia,Data structures and algorithms in
Java. Wiley, Hoboken, NJ, 2008.

12. T. Groussard, Java 7: los fundamentos del lenguaje Java. Ediciones
ENI, Cornellà de Llobregat (Espagne), 2012.

13. L. R. León, “ALEPH-w,” 2012. [Online]. Available online at:
http://www.webdelprofesor.ula.ve/ingenieria/lrleon/aleph/html/
index.html

14. T. Lindholm, F. Yellin, G. Bracha, andA. Buckley, The Java virtual
machine specification. Pearson Education, 2014.

15. L. J. A. Y. I. Z. Martínez, Programación en C, C++, Java y UML,
McGraw-Hill, Mex́ico D.F., 2014.

16. W.McAllister,Data structures and algorithms using Java. Jones &
Bartlett, New York, 2010.

17. R. Mukundan, “Java Applets Centre—Data Structures,” 2006.
[Online]. Available online at: http://www.cosc.canterbury.ac.nz/
mukundan/dsal/appldsal.html

18. D. R. Musser, G. J. Derge, and A. Saini, STL tutorial and reference
guide: C++ programming with the standard template library.
Addison-Wesley Professional, Reading, MA, 2009.

TABLE 4 Performance percentage—final exam

Performance Seed group (%) Control group (%)

Satisfactory 31 24

Acceptable 42 36

Deficient 27 40

ADARME AND JABBA MOLINARES | 11

http://orcid.org/0000-0002-2121-1208
http://www.allappforum.com/java design patterns/iterator pattern.htm
http://www.allappforum.com/java design patterns/iterator pattern.htm
http://doi.acm.org/10.1145/2535909
http://es.cppreference.com/w/cpp/container
https://www.cs.usfca.edu/galles/visualization
https://www.cs.usfca.edu/galles/visualization
http://www.webdelprofesor.ula.ve/ingenieria/lrleon/aleph/html/index.html
http://www.webdelprofesor.ula.ve/ingenieria/lrleon/aleph/html/index.html
http://www.cosc.canterbury.ac.nz/mukundan/dsal/appldsal.html
http://www.cosc.canterbury.ac.nz/mukundan/dsal/appldsal.html


19. A. G. Parada, E. Siegert, and L. B. de Brisolara, Generating Java code
fromUMLclass andsequencediagrams, in2011BrazilianSymposium
on Computing System Engineering. IEEE, 2011, pp. 99–101.

20. A. Schatten, “Container Pattern,” 2013. [Online]. Available
online at: http://best-practice-softwareengineering.ifs.tuwien.ac.
at/patterns/container.html

21. J. F. V. Serrano, A. P. Abril, F. G. Bellas, and Á. S. Calle,
Diseñar y programar, todo es empezar: Una introducción a la
programación orientada a objetos usando UML y Java.
Dykinson, 2010.

22. F. Tejada Maldonado and Santalla Adriana, “Tutorial Interactivo
Estructura de Datos,” 2011. [Online]. Available online at: http://
osiris.ucb.edu.bo/inf104/index html/

23. The Joint Task Force on Computing Curricula (Association for
Computing Machinery IEEE-Computer Society), Computer Sci-
ence Curricula 2013: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science, 2013. [Online]. Available
online at: http://ai.stanford.edu/users/sahami/CS2013/strawman
draft/cs2013-strawman.pdf

24. UNIANDES, “Proyecto Cupi2Collections,” 2012. [Online]. Avail-
able online at: http://cupi2.uniandes.edu.co/sitio/index.php/cursos/
estructurasde-datos/cupi2collections/

25. J. A. Villalobos and N. A. Calderón, Proyecto Cupi2: un enfoque
multidimensional frente al problema de enseñar y aprender a
programar, Revista Investigaciones UNAD, 8 (2009), 45–64.

26. M. Yener and A. Theedom, Professional Java EE design patterns.
John Wiley & Sons, Wiley, Oxford, UK, 2014.

M. ADARME is PHD student in System
Engineering and Computer Science
from Universidad del Norte, Barran-
quilla, Colombia and is assistant pro-
fessor and researcher at Universidad
Francisco de Paula Santander, Cúcuta,
Norte de Santander, Colombia.

D. JABBAMOLINARES received the PHD
degree in Computer Science and Engi-
neering from the University South
Florida and is assistant professor and
Director of Research,Development and
Innovationat theUniversidaddelNorte,
Barranquilla, Colombia.

How to cite this article: Adarme M, Jabba
Molinares D. SEED: A software tool and an active-
learning strategy for data structures courses. Comput
Appl Eng Educ. 2017;1–12.
https://doi.org/10.1002/cae.21885

12 | ADARME AND JABBA MOLINARES

http://best-practice-softwareengineering.ifs.tuwien.ac.at/patterns/container.html
http://best-practice-softwareengineering.ifs.tuwien.ac.at/patterns/container.html
http://osiris.ucb.edu.bo/inf104/index html/
http://osiris.ucb.edu.bo/inf104/index html/
http://ai.stanford.edu/users/sahami/CS2013/strawmandraft/cs2013-strawman.pdf
http://ai.stanford.edu/users/sahami/CS2013/strawmandraft/cs2013-strawman.pdf
http://cupi2.uniandes.edu.co/sitio/index.php/cursos/estructurasde-datos/cupi2collections/
http://cupi2.uniandes.edu.co/sitio/index.php/cursos/estructurasde-datos/cupi2collections/
https://doi.org/10.1002/cae.21885
https://doi.org/10.1002/cae.21885

