

RESUMEN TRABAJO DE GRADO

AUTOR:

NOMBRE: FREDDY ALEXANDER APELLIDOS: ALVAREZ PRADA

FACULTAD: INGENIERÍAS

PLAN DE ESTUDIOS: INGENIERÍA MECÁNICA

DIRECTOR:

NOMBRE: JESUS BETHSAID APELLIDOS: PEDROZA ROJAS

TÍTULO DEL TRABAJO (TESIS): DISEÑO DE UNA MÁQUINA DOBLADORA DE

PERFILES DE ACERO PARA LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

RESUMEN

El presente trabajo de grado contiene el diseño de una máquina dobladora de perfiles de acero, el cual contempla el cálculo de cada uno de los elementos que la componen y las simulaciones en el software ANSYS de cada uno de estos. Estas simulaciones arrojan el análisis de las deformaciones, el esfuerzo de Von-Mises y los factores de seguridad.

La máquina se modelo en el software Soliworks, se elaboraron los planos de los elementos diseñados y se realizó el presupuesto.

PALABRAS CLAVE: Diseño, simulación, esfuerzos, deformación.

CARACTERISTICAS:

PÁGINAS: 310 PLANOS: 15 ILUSTRACIONES: 85 CD ROOM: 1

	Elaboró		Revisó		Aprobó
Equipo Operativo del Proceso		Comité de Calidad		Comité de Calidad	
Fecha	24/10/2014	Fecha	05/12/2014	Fecha	05/12/2014

DISEÑO DE UNA MÁQUINA DOBLADORA DE PERFILES DE ACERO PARA LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FREDDY ALEXANDER ALVAREZ PRADA

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍAS PLAN DE ESTUDIOS DE INGENIERÍA MECÁNICA CÚCUTA

2016

DISEÑO DE UNA MÁQUINA DOBLADORA DE PERFILES DE ACERO PARA LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FREDDY ALEXANDER ALVAREZ PRADA

Presentado como requisito de grado para optar al título de:

INGENIERO MECÁNICO

Director

JESUS BETHSAID PEDROZA ROJAS

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
FACULTAD DE INGENIERÍAS
PLAN DE ESTUDIOS DE INGENIERÍA MECÁNICA
CÚCUTA

2016

www.ufps.edu.co

ACTA DE SUSTENTACIÓN DE UN TRABAJO DE GRADO

FECHA:

CÚCUTA, 24 DE FEBRERO DEL 2016

HORA:

10:00 a.m.

LUGAR:

EDIFICIO CREAD SALA 3 UFPS.

PLAN DE ESTUDIOS: INGENIERIA MECANICA

Título de la Tesis: "DISEÑO DE UNA MAQUINA DOBLADORA DE PERFILES DE ACERO PARA LA UNIVERSIDAD FRANCISCO DE PAULA SANTANDER".

Jurados:

Ing. JORGE GRANADOS GRANADOS. Ing. CARLOS ACEVEDO PEÑALOZA. Esp. JUAN CARLOS RAMIREZ BERMUDEZ

Director:

ING. JESUS BETHSAID PEDROZA ROJAS

Nombre del estudiante

Código

Calificación

FREDDY ALVAREZ PRADA

1120840

Número

Letra Cuatro, Cinco

MERITORIA

JORGE GRANADOS GRANADOS

PEÑALOZA

ESP. JUAN CARLOS RAMIREZ BERMUDEZ

Vo.Bo GONZALO DE LA CRUZ ROMERO GARCIA

Coordinador Comité Curricular

Ingeniería Mecánica

DEDICATORIA

Dedico este trabajo a Dios quien me ha guiado siempre por el camino del bien, me ha dado las fuerzas necesarias para seguir adelante y enfrentar con firmeza las adversidades que se presentan para superarlas

A mis padres por su apoyo, dedicación y confianza en todos los momentos de mi vida, por su constancia en impulsarme a cumplir mis metas, por estar conmigo siempre y por procurar en mí una persona de bien.

A mis hermanas que son mi vida, por estar conmigo, por apoyarme, aconsejarme y creer en mí siempre.

A mis tías que me han apoyado en todo momento y han sido parte fundamental en mi vida aconsejándome y guiándome para hacer las cosas bien.

A mi abuela que ha sido el pilar del hogar de mi padre, quien con su fortaleza y carácter me ha enseñado que hay que perseverar en la vida para lograr lo que se quiere.

A toda mi familia porque son lo más importante para mí y su apoyo a sido parte fundamental en mi realización profesional.

AGRADECIMIENTOS

A dios por todo lo que me dado y por darme la fuerza para lograr culminar esta meta tan importante para mi vida.

A mis padres por su perseverancia, constancia y consejos, los cuales han sido una guía importante para lograr todos mis objetivos en la vida.

A mis hermanas por su dedicación, apoyo, por motivarme a seguir adelante, por su amor y por estar conmigo siempre.

A mi director de tesis, el Ingeniero Jesús Pedroza por su amistad y paciencia, por su guía en mis momentos de duda, por su apoyo y por sus consejos para culminar satisfactoriamente esta meta.

A todos los que de una u otra forma hicieron parte de este paso de gran importancia para mi vida.

Contenido

	pág.
Introducción	16
1. Problema	17
1.1 Titulo	17
1.2 Planteamiento del problema	17
1.3 Formulación del problema	18
1.4 Justificación	18
1.5 Objetivos	19
1.5.1 Objetivo general	19
1.5.2 Objetivos Específicos	19
1.6 Alcance y limitaciones	20
1.6.1 Alcance	20
1.6.2 Limitación	20
1.6.3 Delimitaciones	20
2. Marco teórico o referencial	21
2.1 Antecedentes en la solución del problema	21
2.1.1 Máquina dobladora de tubo redondo de acero con costura de hasta 19 mm de	21
diámetro y 1.5 mm de grosor controlada por un microcontrolador.	
2.1.2 Diseño y construcción de una máquina hidráulica dobladora de tubería redond	da 21
2.1.3 Calculo, diseño y construcción de una dobladora hidráulica de tubos	22
(Universidad Francisco de Paula Santander).	
2.1.4 Cálculo, diseño y construcción de una dobladora de lámina manual	22

2.2 Marco teorico	23
2.2.1 Diseño ejes y arboles	23
2.2.2 Acero	25
2.2.3 Curvado	33
2.2.4 Curvado de perfiles y tubos de acero	41
2.3 Marco conceptual	50
2.3.1 Rodamientos	50
2.3.2 Esfuerzo máximo	50
2.3.3 Punto de fluencia	50
2.3.4 Modulo de elasticidad	51
2.3.5 Limite de proporcionalidad	51
2.3.6 Coeficiente de seguridad	51
2.3.7 Fragilidad	51
2.3.8 Ductilidad	51
2.3.9 Plasticidad	52
2.3.10 Rigidez	52
2.3.11 Dureza	52
2.3.12 Tornillo prisionero	52
2.3.13 Tornillos de transmisión de potencia	52
2.3.14 Transmisión por cadena	52
2.3.15 Engranes	54
2.4 Marco legal	55

3. Diseño metodológico	56
3.1 Tipo de investigación	56
3.2 Fuentes de información	56
3.2.1 Fuentes de información primaria.	56
3.2.2 Fuentes de información secundaria	56
3.3 Tecnicas y procedimientos para recolección de información	57
3.4 Análisis de información	57
4. Diseño de la máquina dobladora de periles de acero	58
4.1 Parámetros de diseño de la maquina dobladora de perfiles de acero	58
4.2 Características de los perfiles de acero	60
4.3 Cálculo de la fuerza necesaria para doblar un perfil	62
4.4 Selección del sistema hidráulico	69
4.4.1 Selección del cilindro hidráulico	69
4.4.2 Selección De La Bomba Hidráulica	70
4.5 Cálculos para la selección del motorreductor	72
4.5.1 Calculo de la fuerza de rozamiento debido a la fuerza que ejerce el	72
cilindro hidráulico	
4.5.2 Calculo De La Inercia De Los Elementos	73
4.5.3 Calculo Del Torque	74
4.5.3.1 Calculo del torque en los rodillos debido al doblado del perfil	74
4.5.3.2 Calculo del torque para vencer la inercia de los elementos	75
4.5.3.3 Calculo del torque total	76
4.5.4 Calculo de la potencia para doblar los perfiles de acero	77

4.5.4.1 Calculo de la potencia necesaria para vencer la inercia de los elementos	77
4.5.4.2 Calculo de la potencia para llevar a cabo el doblado de los perfiles	78
4.5.4.3 Calculo de la potencia total	78
4.5.5 Selección Del Motor reductor	79
4.6 Sistema de transmisión	79
4.6.1 Diseño geométrico de los engranes	81
4.6.1.1 Geometría de los engranes	82
4.6.2 Carga en los engranes	84
4.6.3 Material de los engranes	86
4.6.4 Cálculo de factores de seguridad por flexión y por desgaste, según la	93
norma AGMA para los engranes	
4.7 Diseño de los ejes	109
4.7.1 Peso de los elementos que soportara el eje	109
4.7.2 Cargas y fuerzas que soportan los ejes	111
4.7.3 Diseño de los ejes inferiores	113
4.7.3.1 Análisis a carga estática	114
4.7.3.2 Material para el eje	118
4.7.3.3 Análisis a carga dinámica	120
4.7.3.4 Selección de rodamientos	127
4.7.3.5 Soporte para los rodamientos	129
4.7.4 Diseño del eje del piñón	130
4.7.4.1 Análisis a carga estática	131
4.7.4.2 Material para el eje	134

4.7.4.3 Análisis a carga dinámica	136
4.7.4.4 Selección de rodamientos	142
4.7.4.5 Soporte para los rodamientos	144
4.7.5 Diseño del eje del rodillo superior	145
4.7.5.1 Análisis a carga estática	146
4.7.5.2 Material para el eje	149
4.7.5.3 Análisis a carga dinámica	150
4.7.5.4 Selección de los rodamientos	154
4.7.5.5 Soporte de los rodamientos	156
4.7.6 Selección del sistema de fijación	157
4.7.6.1 Eje de los rodillos inferiores	157
4.7.6.2 Eje del rodillo superior	160
4.7.6.3 Eje motriz	161
4.7.7 Diseño de la horquilla	164
4.7.8 Diseño de la estructura metálica	165
4.7.9 Ecuaciones para definir la curvatura del perfil	166
4.7.10 Peso de los elementos de la máquina	167
5. Análisis de resultados	168
5.1 Eje inferior	168
5.1.1 Esfuerzos de von-mises	168
5.1.2 Deformación	169
5.1.3 Factor de seguridad	170
5.2 Eje superior	171

5.2.1 Esfuerzos de von-mises	171
5.2.2 Deformación	172
5.2.3 Factor de seguridad	173
5.3 Eje motriz	174
5.3.1 Esfuerzos de von-mises	174
5.3.2 Deformación	175
5.3.3 Factor de seguridad	176
5.4 Diente del piñón	177
5.4.1 Esfuerzos de von-mises	177
5.4.2 Deformación	178
5.4.3 Factor de seguridad	179
5.5 Horquilla	180
5.5.1 Esfuerzo de von-mises	180
5.5.2 Deformación	181
5.5.3 Factor de seguridad	182
5.6 Estructura metálica	183
5.6.1 Distribución de fuerzas en la estructura	183
5.6.2 Deformación	184
5.6.3 Factores de seguridad	185
6. Esquema final de la máquina	186
7. Costos	190
8. Conclusiones	191
9. Recomendaciones	192

Referencias bibliografias	193
Anexos	196