

GESTIÓN DE RECURSOS Y SERVICIOS BIBLIOTECARIOS

Código FO-SB-12/v0

ESQUEMA HOJA DE RESUMEN

Página 1/1

RESUMEN TRABAJO DE GRADO

AUTOR(ES):

NOMBRE(S): DICK FERNANDO **APELLIDOS**: JAIMES RIOS

NOMBRE(S): RICARDO ALFONSO APELLIDOS: BUENO MARTINEZ

FACULTAD: INGENIERIA

PLAN DE ESTUDIOS: INGENIERÍA ELECTROMECÁNICA

DIRECTOR:

NOMBRE(S): FRANCISCO ERNESTO **APELLIDOS**: MORENO GARCÍA

TÍTULO DEL TRABAJO (TESIS): ESTUDIO EXPERIMENTAL DE UNA BOMBA DE CALOR INCORPORANDO MATERIAL PCM

RESUMEN

Este trabajo presenta la primera fase relacionada al diseño, construcción y caracterización de un sistema bomba de calor empleando un intercambiador condensador hibrido con un colector solar. Su estudio experimental se apoya a partir de un análisis termodinámico trabajando con un compresor hermético marca Samsung de 0,874 kW con fluido de trabajo R22. Se expone la base teórica, las pautas de diseño, los cálculos realizados, la construcción del intercambiador-condensador y como es la tendencia de estudio al emplear materiales con cambio de fase (PCM). Se exponen los diferentes tipos de colector y el colector seleccionado que trabajará híbridamente con el intercambiador condensador, con topología concéntrica y a contraflujo de este proyecto, el cual es un colector plano con un área de captación de aproximadamente 1,3 m2. Se determinó la longitud del intercambiador y las condiciones de trabajo a utilizar cuyo objetivo es calentar agua residencial en el orden de los 50°C a un flujo de 60 kg/h, a partir del aprovechamiento de la energía vía solar y la proporcionada por la bomba de calor diseñada. Dando a conocer por último los resultados experimentales, conclusiones y recomendaciones.

PALABRAS CLAVE: bomba de calor, intercambiador, colector solar,

PCM CARACTERÍSTICAS:

PÁGINAS: 82 PLANOS: ____ ILUSTRACIONES: ____ CD ROOM: 1

Elaboró		Revisó		Aprobó	
Equipo Operativo del Proceso		Comité de Calidad		Comité de Calidad	
Fecha	24/10/2014	Fecha	05/12/2014	Fecha	05/12/2014

COPIA NO CONTROLADA

ESTUDIO EXPERIMENTAL DE UNA BOMBA DE CALOR INCORPORANDO MATERIAL PCM

DICK FERNANDO JAIMES RIOS RICARDO ALFONSO BUENO MARTINEZ

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PLAN DE ESTUDIO DE INGENIERÍA ELECTROMECÁNICA SAN JOSÉ DE CÚCUTA

ESTUDIO EXPERIMENTAL DE UNA BOMBA DE CALOR INCORPORANDO MATERIAL PCM

DICK FERNANDO JAIMES RIOS RICARDO ALFONSO BUENO MARTINEZ

Trabajo de grado presentado como requisito para optar al titulo de:

Ingeniero Electromecánico

Director:

FRANCISCO ERNESTO MORENO GARCÍA

Ingeniero Electrónico

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIO DE INGENIERÍA ELECTROMECÁNICA

SAN JOSÉ DE CÚCUTA

NIT. 890500622 - 6

FACULTAD DE INGENIERIAS ACTA DE SUSTENTACIÓN PROYECTO DE GRADO MODALIDAD INVESTIGACIÓN

FECHA: 18 de Agosto de 2017

HORA: 2:00 P.M

LUGAR: Sala 3 del CREAD

PLAN DE ESTUDIOS: INGENIERÍA ELECTROMECÁNICA

TITULO DEL TRABAJO DE GRADO: ESTUDIO EXPERIMENTAL DE UNA BOMBA

DE CALOR INCORPORANDO MATERIAL PCM".

JURADOS: Esp. NORBEY CHINCHILLA HERRERA

Msc JOHNNY OMAR MEDINA DURAN Msc EDWIN FABIAN MENDOZA M.

DIRECTOR: PhD FRANCISCO E. MORENO GARCIA

LAUREADA

NOMBRE DEL ESTUDIANTE:	<u>CÓDIGO</u>	CALIFICACION
DICK FERNANDO JAIMES RIOS	1090628	5.0
RICARDO ALFONSO BUENO MARTINEZ	1090384	5.0

FIRMA DE LOS JURADOS:

VOBO. COORDINADOR COMITÉ CURRICULAR

Avenida Gran Colombia No. 12E-96 Barrio Colsag Teléfono (057)(7) 5776655 - www.ufps.edu.co oficinadeprensa@ufps.edu.co San José de Cúcuta - Colombia

Crearta mediante decreto 323 de 1970

Agradecimientos

Primeramente agradecemos a Dios por darnos la oportunidad de realizar este proyecto. A nuestro asesor PhD. Francisco Ernesto Moreno por brindarnos la confianza de trabajar con él y compartir sus conocimientos con nosotros. A nuestros padres por todo el apoyo en las diferentes situaciones de nuestras vidas. A nuestra alma mater y profesores que hicieron parte en nuestra formación profesional. A nuestros familiares y amigos.

Dedicatoria

Dedico este gran logro primeramente a Dios porque él es quien tiene el control de todo y permite que las cosas sucedan, supliéndome todo lo que he necesitado dándome fuerzas y sabiduría a lo largo de este proceso. A mis padres Hermógenes Jaimes y Ana Rosa Rios que han sido un pilar fundamental e importante y ejemplo en mi formación ayudándome tanto económico, emocional como espiritualmente. A mi novia Natalia Contreras por ser una parte importante en mi vida; dándome amor, apoyo y comprensión cuando lo he necesitado. A mi familia y amigos por el apoyo y cariño recibido.

Dick F. Jaimes Rios

Dedico esta tesis primera y mayormente a Dios por darme todo lo que soy y lo que tengo, la fortaleza, y aptitudes para poder finalizar mi carrera. A mis padres quienes me dieron la vida y me enseñaron todo lo fundamental para vivir con la frente siempre en alto, aunque ya no estén conmigo en presencia siempre estarán en los concejos y amor que recibí de ellos. A mi novia por el gran apoyo que siempre me brindo y la compañía que tanto necesite en los momentos difíciles. A mi familia y amigos por el cariño y las palabras de ánimo.

Ricardo A. Bueno Martínez

Contenido

	pág.
Introducción	16
1. Problema	18
1.1 Título	18
1.2 Descripción de Problema	18
1.2.1 Formulación del problema	18
1.3 Justificación del Proyecto	18
1.3.1 Beneficios tecnológicos	19
1.3.2 Beneficios económicos	20
1.3.3 Beneficios institucionales y socio-empresariales	20
1.3.4 Beneficios ecológicos	20
1.4 Alcances	21
1.4.1 Tipo de proyecto	21
1.4.2 Impacto esperado	21
1.4.3 Usuarios directos e indirectos	21
1.4.4 Usuarios directos	21
1.5 Limitaciones y delimitaciones	22
1.5.1 Limitaciones	22
1.5.2 Delimitaciones	22
1.6 Objetivos	23
1.6.1 Objetivo general	23
1.6.2 Objetivos específicos	23
2. Marco Referencial	24

2	.1 Antecedentes	24
2	2.2 Marco Teórico	27
	2.2.1 Bomba de calor	27
	2.2.1.1 Funcionamiento	27
	2.2.1.2 Partes de la bomba de calor	29
	2.2.2 Material con cambio de fase (PCM)	31
	2.2.2.1 Tipos de materiales de cambio de fase	32
	2.2.3 Radiación solar	35
	2.2.3.1 Tipos de radiación	36
	2.2.4 Colectores solares	38
	2.2.4.1 Tipos de colectores solares para calentar agua	38
	2.2.4.2 Colectores de placa plana con cubierta	39
2	.3 Marco Legal	40
2	.4 Hipótesis	41
	2.4.1 Problema	41
	2.4.2 Hipótesis de investigación	41
	2.4.2 Hipótesis nula	41
3. D	riseño Metodológico	42
3	.1 Tipo de Investigación	42
3	.2 Universo, Población y Muestra	42
	3.2.1 Universo	42
	3.2.2 Población	42
	3.2.3 Muestra	42
3	.3 Metodología	42

4. Desarrollo del Proyecto	45
4.1 Diseño	45
4.1.1 Diseño del intercambiador-condensador	45
4.1.2 Diseño de Acondicionamiento de sensores	55
4.2 Simulaciones y Construcción	56
4.3 Adquisicion de los Sensores	60
4.4 Diagrama P&ID del Sistema	61
4.5 Pruebas	62
5. Análisis	58
6. Conclusiones	75
7. Recomendaciones	76
Referencias Bibliográficas	77
Anexos	80