

ScienceDirect

Access through your institution

Purchase PDF

Applied Surface Science

Volume 456, 31 October 2018, Pages 445-456

Full Length Article

Effect of nitrogen flow ratio on microstructure, mechanical and tribological properties of $TiWSiN_x$ thin film deposited by magnetron co-sputtering

H.A. Macías ^a, L. Yate ^b, L.E. Coy ^c, J.J. Olaya ^a △ , W. Aperador ^d

Show more ∨

https://doi.org/10.1016/j.apsusc.2018.06.129

Get rights and content

Highlights

- Thin films of TiWSiN_x (4.8% \leq X \leq 33.3%) deposited by mean of reactive magnetron co-sputtering.
- Low nitrogen content favors amorphous coatings with low hardness and low wear resistance.
- High nitrogen content favors a FCC-NaCl structure composed of W_2N and/or TiN immersed in amorphous Si_3N_4 .
- An increase in nitrogen results in an increase in compressive residual stress and improvement in the mechanical and tribological properties.

Abstract

We investigate the deposition of TiWSiN_x thin films by means of the method of reactive magnetron co-sputtering, setting the nitrogen flow ratios $N2/(Ar+N_2)$ at 4.8%, 9.1%,16.7 and 33.3%. The crystallographic structure of the films was established through X-ray diffraction (XRD), the morphology and topography were evaluated through scanning electron microscopy (SEM) and atomic force microscopy (AFM), the chemical composition was evaluated through Xray diffraction and X-ray photoelectron spectroscopy, the mechanical properties were evaluated by nanoindentation, and the wear resistance was studied via nanowear and pin-on-disk. It was found that films deposited between 4.8% and 16.7% nitrogen flow ratio exhibited an amorphous phase. As the nitrogen was increased, the films evolved into a mixture of amorphous Si₃N₄ and crystalline TiWN phase. Moreover, the film morphology changed to fine columnar as the nitrogen flow ratio increased. As a general observation, the hardness, resistance to plastic deformation (H^3/E^2) , and residual stress of the samples increased as the nitrogen flow ratio increased. The maximum hardness, resistance to plastic deformation, and residual stress were 22±0.4 GPa, 213±20 MPa, and 1.4±0.01, respectively. The lowest nanowear volume $(0.47 \,\mu\text{m}^3)$ and wear rate $(11\pm810^{-9}\,\text{mm}^3/\text{N}\,\text{mm})$ were obtained for films deposited at high nitrogen flow ratios. The lowest friction coefficient (0.15) was recorded for films deposited at 16.7% nitrogen flow ratio.

Next

Keywords

Co-sputtering; Mechanical properties; TiWSiN_x films; Wear

Recommended articles Citing articles (11)

View full text

© 2018 Elsevier B.V. All rights reserved.

