
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Sinplafut: A microservices – based application for
soccer training
To cite this article: F H Vera-Rivera et al 2019 J. Phys.: Conf. Ser. 1388 012026

View the article online for updates and enhancements.

You may also like
Dynamic Priority based Weighted
Scheduling Algorithm in Microservice
System
Yan Xu and Yanlei Shang

-

Application and Practice of Microservice
Architecture in Multidimensional Electronic
Channel Construction
Hao Zhang, Ying Xu, Wenjie Cao et al.

-

Application of microservice in electric
power unified modeling platform
Qiang Yang, Shanyi Xie, Shu Huang et al.

-

This content was downloaded from IP address 190.8.208.80 on 30/11/2021 at 22:11

https://doi.org/10.1088/1742-6596/1388/1/012026
/article/10.1088/1757-899X/490/4/042048
/article/10.1088/1757-899X/490/4/042048
/article/10.1088/1757-899X/490/4/042048
/article/10.1088/1742-6596/1168/2/022023
/article/10.1088/1742-6596/1168/2/022023
/article/10.1088/1742-6596/1168/2/022023
/article/10.1088/1742-6596/1314/1/012054
/article/10.1088/1742-6596/1314/1/012054
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvxqokXyuq88GhBr0cSgw-aW3teoTHQFyy80Klv0QT-fedpR5jT_EooUCak65gIRiEkyPXVx8SpcEjD2aqkNBxHp15D3Fbk9uKhKxxEjwLc7EDJfRIL8ALNOBlEIX3pdFVnCUojzj4Ed5_faK6-4JBjYgTDTCWbVTqSt73yd62lJxHumhmNCeXXGbuA7o8hnBPvcce80p8yFFCRcNn5GXKi3M5ihEpfMzSTyPqPFjgOVPMeRb5_0jN1mItOp7pYFU8EQdGdYqaqQXKVRn1EgGKRHxPs2nFs7p0&sig=Cg0ArKJSzMRu1JG1P-FP&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/241/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DDLAds%26utm_campaign%3D241AbstractSubmit

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

5th International Week of Science, Technology & Innovation

Journal of Physics: Conference Series 1388 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1388/1/012026

1

Sinplafut: A microservices – based application for soccer
training

F H Vera-Rivera1,2, J L Vera-Rivera3,4, and C M Gaona-Cuevas2
1 Grupo de Investigación y Desarrollo de Ingeniería de Software, Universidad Francisco
de Paula Santander, San José de Cúcuta, Colombia
2 Grupo de Estudios Doctorales en Informática, Universidad del Valle, Cali, Colombia
3 Grupo de Investigación en Deporte de Rendimiento, Universidad del Valle, Cali,
Colombia
4 Fundación of Researchers in Science and Technology of Materials, Colombia

E-mail: fredyhumbertovera@ufps.edu.co, fredy.vera@correounivalle.edu.co

Abstract: Microservices are an architectural style of service-oriented applications that allow the
application to be divided into independent and autonomous units, which can be individually
developed, tested, deployed (mainly in the cloud), scaled and monitored. The application then
becomes a composition and integration of small distributed systems. In this paper, a case study
is presented, where the Information system for the planning of soccer training, is developed,
following the architectural style of microservices. It presents the architecture defined for the
information system and its implementation using DevOps practices, among them, continuous
delivery, continuous deployment and automated tests. The level of granularity of each
microservice is evaluated using domain-driven design and the definition of delimited contexts.
Defining the optimal size of microservices is fundamental, directly affecting performance,
maintainability, storage, transactions, distributed queries, use and consumption of network and
computational resources. On the other hand, the development of the information system allows
improving the planning of soccer training using modern sports training techniques. System for
the planning of soccer training can be used by soccer teams, clubs, physical trainers, coaches and
technical directors both amateur and professional, as a software as a service application.

1. Introduction
Software as a SaaS service is a service delivery model of cloud computing that provides on-demand
applications through the Internet. Examples of SaaS providers include Salesforce.com, Rackspace, SAP
Business ByDesign, Google apps, and others [1]. The applications work in the cloud, on demand, you
pay for use under the service modality, for your access a browser or specialized client is required through
the internet. The software service is paid monthly and paid for what the user hires and consumes. The
advantages for users and clients of using software as a service are mainly: they require low investments
to use the applications and in specialized hardware, they avoid the problems of support and maintenance,
short learning curves, software always updated and by subscription [2].

Quality attributes are fundamental and propose challenges for SaaS applications. Availability,
performance, automatic scaling, automated testing, continuous integration and continuous deployment,
security and fault tolerance are essential features that every SaaS application must handle. The
microservices architecture helps reduce the complexity of managing and operating these features. The
development of applications based on microservices allows permanent, faster and automated updates

5th International Week of Science, Technology & Innovation

Journal of Physics: Conference Series 1388 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1388/1/012026

2

using the practices of DevOps (Dev: Developers - Ops: Operations), achieving shorter, automated and
quality deliveries. The microservice systems require a more sophisticated DevOps infrastructure, which
generally requires the construction of a pipeline of continuous implementation and continuous
deployment that guarantees the quality of the microservices and faster production. The use of cloud
technologies, especially containers, allows the construction of those pipes. The architectural style of
microservices changes the way applications are created, tested, implemented and maintained.
Microservices facilitate the migration of applications to the cloud infrastructure, which allows automatic
scaling, load balancing and fault tolerance. By using microservices, a large application can be
implemented as a set of small applications (microservices) that can be developed, deployed, expanded,
managed and monitored independently. Agility, cost reduction and granular scalability entail some
challenges such as the complexity of managing distributed systems [3].

The constructions of SaaS applications using microservices pose research challenges and discussion
topics, for example, the use of multitenant architectures with microservices. A software application as a
multi-tenant service satisfies the needs of multiple user groups, organizations or departments, allows the
instances of the application to be shared by multiple clients; these instances can be configured and
adapted to meet the requirements of specific clients [4].

This work details the development of the information system for the planning of the soccer training
(Sinplafut), a SaaS type application that allows to realize the planning of the sessions training in the
soccer using modern techniques of the sport training. Sinplafut can be used by soccer teams, clubs,
physical trainers, coaches and technical directors both amateur and professional level. Sinplafut
developed following the approaches made in [5], where a process of development of microservices –
based applications is proposed and an overview of Sinplafut is made. The continuous deployment
automation method proposed in [6] was also used. This paper is organized as follows. Section 2 presents
the methods used in this research work, section 3 presents the characterization of the development
process of microservices – based applications and the way it was used in the development of Sinplafut,
then in section 4 the case study is presented, finally in section 5 we summarize the conclusion of this
work.

2. Methods
The methodology of this research work is based on the approaches of Wohlin, et al, who propose the
guidelines for experimentation in Software Engineering. The area of software engineering involves
development, operation, and maintenance of software and related artifacts. Research on software
engineering is to a large extent aimed at investigating how development, operation, and maintenance
are conducted by software engineers and other stakeholders under different conditions. Individuals,
groups and organizations, carry out software development, and social and political questions are of
importance for this development. The case studies are fundamental and appropriate in this research
process [7].

Figure 1. Research model.

Case study in software engineering is: an empirical enquiry that draws on multiple sources of

evidence to investigate one instance (or a small number of instances) of a contemporary software
engineering phenomenon within its reallife context, especially when the boundary between phenomenon
and context cannot be clearly specified [8]. In this work we want to evaluate the process of development

5th International Week of Science, Technology & Innovation

Journal of Physics: Conference Series 1388 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1388/1/012026

3

of microservices – based applications proposed in [5], the case study consists in implementing Sinplafut,
a SaaS application following this development process. Once the case study is completed, the
development process is evaluated, improvements are proposed and conclusions are given. The Figure 1
shows the research model carried out in this work.

3. Characterization of the development process of microservices-based applications
The process is divided into two fundamental parts, first the development of each microservice and
second, the development of applications that use those microservices. The process is presented in the
Figure 2. Some adaptations were made to the process presented in [5]; here we included the tools that
allow the services discovery and the tools that allow managing the sidecars. The sidecar is an auxiliary
process that runs next to the application; it runs next to each microservice, in order to provide additional
features such as fault tolerance, registration, discovery and orchestration, avoiding coupling [9].

We can highlight that the microservices architecture helps to reduce the complexity of managing and
operating the quality characteristics necessary for SaaS applications, such as: automatic scaling,
automated testing, continuous integration and continuous deployment, security and fault tolerance.

In the process of developing applications based on microservices, permanent, faster and automated
updates are required using DevOps practices. Applications based on microservices require a more
sophisticated DevOps infrastructure, which generally requires the construction of a pipeline of
continuous implementation and continuous deployment that guarantees the quality of the microservices
and faster production. The use of cloud technologies, especially containers, allows the construction of
said pipelines.

DevOps (Dev: Developers - Ops: Operations) is a term that emerges with the collision of two new
trends, agile infrastructure or agile operations, and collaboration between development and operations
personnel throughout all stages of the life cycle of development [10]. DevOps is about fast, flexible
development and provisioning business processes. It efficiently integrates development, delivery, and
operations, thus facilitating a lean, fluid connection of these traditionally separated silos [11].

Each microservice is developed independently of the others, the development can be done in parallel,
each microservice by an independent development team, keeping in mind the dependencies between
each of them, in this way the development of an application can be perform in less time. There are still
research challenges at this point, J. Soldani et al, claim that having many autonomous teams that develop
services deployed independently can be a double-edged sword. On the one hand, each team can make
local decisions without having to negotiate with other teams and there is an increased risk that teams
will not see the big picture, that is, they will understand if their local decisions are justifiable and
coherent in the context of the general architecture and the commercial objectives of the application [12].

Another important point in the process of developing applications based on microservices is the
identification and discovery of microservices. In a microservices application, the set of running service
instances changes dynamically, including network locations. Consequently, in order for a client to make
a request to a service, it must use a service-discovery mechanism. A key part of service discovery is the
service registry. The service registry is a database of available service instances. The service registry
provides a management API and a query API. Service instances are registered with and deregistered
from the service registry using the management API, this API is responsible for ensuring that the
registered microservices are available and without errors. The query API is used by system components
to discover available service instance [13]. The tools that allow managing the service-discovery are:
Etcd, Consul, Nerve and Synapse.

Finally, the integration and composition of the application allows, from the user stories or functional
requirements of the application to be built, identify, integrate and/or adapt the microservices that will be
part of the application. We do not know way to represent the user stories or the requirements of an
application as a set of microservices that interact and communicate with each other to comply with the
logic of the business, for this reason they are working on the proposal of a new practice agile called
"service backlog" that allows this. With this practice you can model, compose and evaluate (in terms of
granularity, dependencies and performance) the microservices that will be part of an application.

5th International Week of Science, Technology & Innovation

Journal of Physics: Conference Series 1388 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1388/1/012026

4

Figure 2. Main features of the development process of application with microservice [5].

4. Case Study: Develop Sinplafut a microservices – based SaaS application
Sinplafut is the information system allows improving and expediting the planning of football training
using modern sports training techniques. Sinplafut can be used by football teams, clubs, physical
trainers, coaches and technical directors both amateur and professional, as a software as a service
application. With Sinplafut you can manage your profile, each player's card, physiological information
and injuries. You can create and configure your macro-cycles, month-cycles, micro-cycles and training
sessions, using pre-established methods and tests. Furthermore, it allows to register the data of
competitions and you can realize analyzes and controls on each player.

The development of Sinplafut begins with the specification of the functional requirements as user
stories, prioritized and detailed in a "product backlog", for the management of the development and
following the Agile Scrum methodology the Taiga tool was used, Taiga is a project management
platform for startups and agile developers and designers, it takes control of the progress of the
development of the application.

Having identified and prioritized the functional requirements, the granularity of the microservices
that will be part of Sinplafut was defined, following the principle proposed by Evans "A delimited
context must be defined for each domain concept that will be exposed as a service" [14]. When the
implementation began, the Sinplafut development team did not have microservices already
implemented; therefore each microservice must be developed from scratch. Table 1 shows this result,
detailing the microservices and user stories assigned. This assignment was made to trial and error, at the
discretion of the development team, at this time there is no known or published any model, method or
tool that allows us to define under some criteria the optimal granularity of microservices. This point is
a subject of open research and much discussion; this is confirmed by Lewis et al, stating that the problem
of granularity is the lack of agreement on the correct size of microservices. The fact that they are labeled
as "microservices" shows that there is the possibility of establishing a set of patterns to help with design
decisions when dividing a domain into microservices and sizing each service [15].

5th International Week of Science, Technology & Innovation

Journal of Physics: Conference Series 1388 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1388/1/012026

5

Table 1. Microservices – requirements relations.

User story Microservice
1. Sport club management

EquipoApp

2. Management of club teams
3. Management of Team’s players
4. Management of coaching staff
5. Management of the training plan

PlanEntrenamientoApp

6. Management of the month-cycles
7. Management of the micro-cycles
8. Management of training sessions
9. Management of sports training methods
10. Generate the schedule of training sessions
11. Web site of Sinplafut, Front-End SinplafutApp
12. Sports test management TestDeportivosApp
13. User management and security SeguridadApp

The main idea is to develop each microservice individually and independently of the others, therefore

it is necessary to create a code repository for version control for each microservice, in the same way a
platform of continuous integration, automated testing and continuous deployment is required, continue
to be managed individually for each microservice. Figure 3 shows the development platform
implemented for each microservice. In Sinplafut, 5 pipelines of continuous integration, continuous
deployment and automated tests were created.

Figure 3. The development platform implemented for each microservice: With continuous
integration, continuous deployment, automated test, it uses Docker and AWS EC2.

The microservices were implemented in Django (Front-End) and Rest framework. Each microservice
was implemented, tested and deployed using the devops practices and a deployment pipeline in
Bitbucked. Bitbucket pipeline allows writing scripts inside Docker containers where you can install and
run tools to perform testing and deployment. With the continuous deployment pipeline, fast and quality
deliveries are guaranteed, tested both in a testing and production environment, reducing the time to
market.

Figure 4 shows the implementation architecture of each microservice. The use of sidecars can be
seen with the SmartStack tool developed by Airbnb which uses the Apache Zookeeper registry together
with Nerve and Synapse for service discovery and fault tolerance. Nerve is handled of verifying that
each microservice is online and working correctly, in this case it registers in ZooKeeper the port and the
microservice status, and otherwise it deletes it from zookeeper and marks it as not available. API
gateway is the single-entry point for all clients. It is also capable of exposing different APIs to different
clients. All requests from clients are first directed to an API gateway. Then the API gateway routes them
to their corresponding microservice. It also performs basic request validation and response caching. [16].

The monitoring allows to maintain a centralized control of the microservices and to be able to prevent
failures and falls of the application. CAdvisor in a tool implemented by Google, which allows to monitor

5th International Week of Science, Technology & Innovation

Journal of Physics: Conference Series 1388 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1388/1/012026

6

the EC2 instance where the containers and each one of the microservice containers are displayed. The
use of CPU, Ram Memory and the available disk capacity can be displayed. Prometheus is a more
specialized tool for monitoring, allows creating alerts and metrics for microservices that are part of an
application. As future work, we intend to create a scorecard with different alerts and metrics with the
use of Prometheus for Sinplafut.

Figure 4. Microservices dependences diagram of Sinplafut. A microservice is an
independent application.

5. Conclusions
In this article a case study was presented where Sinplafut is implemented a SaaS application following
the development process of applications based on microservices proposed in section 3, it was observed
that the definition of the process facilitates the implementation of the microservices because the
developers have an initial and detailed guide of the phases, methods, tools and good practices that can
be used during the construction of applications based on microservices. In order for the proposed process
to be complete, we want to propose and detail design and development patterns that allow developers to
speed up the construction of microservices.

The development of applications based on microservices is complex, involving the use of a large
number of tools necessary for its development, deployment, monitoring and maintenance. It is required
to manage a more complex and distributed infrastructure than that managed in a monolithic application.
The configuration management tools are essential and can reduce the complexity of the provisioning
and deployment of containers and microservices. The use of containers in development, testing and
production environments allows reducing errors caused by differences in configurations, libraries,
versions and dependencies, achieving the immutable server concept.

Once the entire technological platform necessary for the development of each microservice has been
supplied, the benefits are amplified considerably, the time to market is reduced, and the quality of this
increase is guaranteed by means of the continuous integration, the deployment pipeline, and the
automated testing. The application based on microservices is tolerant to failures, if a microservice fails
the entire application is not affected. The management of computational resources is done individually
according to the needs of each microservice, in the same way that scaling is done according to the needs
of each microservice.

5th International Week of Science, Technology & Innovation

Journal of Physics: Conference Series 1388 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1388/1/012026

7

References
[1] Zhang Q, Cheng L and Boutaba R 2010 Cloud computing: state-of-the-art and research challenges. J

Internet Serv Appl. 1(1) 7–18
[2] Gaona Cuevas CM 2017 El modelo software como servicio (Cali: Universidad del Valle)
[3] Villamizar M, Garcés O, Castro H, Verano M, Salamanca L, Casallas R and Gil S 2015 10th Computing

Colombian Conference (Bogotá) (Colombia: Sociedad Colombiana de Computación and IEEE Computer
Society) pp 583–590

[4] Furda A, Fidge C, Zimmermann O, Kelly W and Barros A 2018 Migrating enterprise legacy source code
to microservices: on multitenancy, statefulness, and data consistency IEEE Software 35(3) 63–72

[5] Vera-Rivera F H 2018 J. Phys.: Confer. Ser. 1126 012017
[6] Vera-Rivera F H 2018 Método de automatización del despliegue continuo en la nube para la

implementación de microservicios Proc. XXI Conf. Iberoamericana de Ingenieria del Software CIBSE
(Bogotá) (Colombia: Universidad de los Andes)

[7] Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B and Wesslén A 2012 Experimentation in software
engineering (New York: Springer Heidelber)

[8] Runeson P, Höst M, Rainer A and Regnell B 2012 Case study research in software engineerign (New
Jersey: Wiley)

[9] Calçado P 2017 Pattern: Service Mesh consulted on:
http://philcalcado.com/2017/08/03/pattern_service_mesh.html

[10] Mueller E, Wickett J, Gaekwad K and Karayanev P 2017 What Is DevOps? The agile admin Consulted on:
https://theagileadmin.com/what-is-devops/

[11] Ebert C, Gallardo G, Hernantes J and Serrano N 2016 DevOps IEEE Software 33(3) 94–100
[12] Soldani J, Tamburri D A and Van Den Heuvel W J 2018 The pains and gains of microservices: a systematic

grey literature review Journal of Systems and Software 146 215–232
[13] Bakshi K 2017 Microservices-based software architecture and approaches IEEE Aerosp Conf Proc. (Big

Sky, MT) (United States of America: IEEE) pp 1-7
[14] Evans E 2004 Domain-driven design (Boston: Addison Wesley)
[15] Lewis J, Tilkov S, Jamshidi P, Pahl C and Mendonça N C 2018 Microservices the journey so far and

challenges ahead IEEE Software 3(35) 24-35
[16] Jayawardana Y, Fernando R, Jayawardena G, Weerasooriya D, Perera I 2018 A Full Stack Microservices

Framework with Business Modelling Proc. 18th Int. Conf. Adv. ICTer 2018 (Colombo) (Srilanka: IEEE) p
78-85

