Journal of Physics: Conference Series

PAPER « OPEN ACCESS You may also like

A Mutual Debt Cut Algorithm for a Group

How do software architects perceive technical debt ocoues

S Fatouros, P Papadopoulos, N L

in Colombian industry? An analysis of technical Matiadou e al.
debt causes * Chaniges and coroorate aebt coste pased

on engineering management
Hui Wu and Jiewu Hu
To cite this article: B Pérez et al 2020 J. Phys.: Conf. Ser. 1513 012003
- Calculation method of multi-regional power

arid investment capacity based on debt-to-
asset ratio

Yanchao Lu, Yudong Wang, Jiale Yang et
al.
View the article online for updates and enhancements.

Recent citations

- Technical debt payment and prevention

through the lenses of software architects
Boris Pérez et al

- Developing a theory based on the causes
of technical debt injection into software
projects in Colombia
B Perez et al

@ The Electrochemical Society
Advancing solid state & electrochemical science & technology

May 29 - June 2, 2022 Vancouver « BC « Canada
Extended abstract submission deadline: Dec 17, 2021

Connect. Engage. Champion. Empower. Acclerate.
Move science forward

This content was downloaded from IP address 190.8.208.80 on 30/11/2021 at 16:08

https://doi.org/10.1088/1742-6596/1513/1/012003
/article/10.1088/1757-899X/459/1/012004
/article/10.1088/1757-899X/459/1/012004
/article/10.1088/1757-899X/688/5/055039
/article/10.1088/1757-899X/688/5/055039
/article/10.1088/1757-899X/688/5/055039
/article/10.1088/1755-1315/267/4/042127
/article/10.1088/1755-1315/267/4/042127
/article/10.1088/1755-1315/267/4/042127
https://doi.org/10.1016/j.infsof.2021.106692
https://doi.org/10.1016/j.infsof.2021.106692
http://iopscience.iop.org/1742-6596/1587/1/012022
http://iopscience.iop.org/1742-6596/1587/1/012022
http://iopscience.iop.org/1742-6596/1587/1/012022
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstPUOiGLd3-zQSXyKpjmtJDlSGgIbrrUb1YqCpK_JA4zlAZOk5ELe0hJK0yRoD3zwTKn5kPt8hbnkcaIvMo5UzBrnx2lbTKVUmvPAjZ3qKE8NY5CY_lsLPf1lZssI6UzE1SdU3rAcpsdm564ECspVnzH1kVGZud3gFFsVhZiTCPxo7u4FgIieURkfIUdJiP_x_BX6cp61sWwS_VhVFoo7SeqlIYosCK9osrdIksTNBBKHydibHQf1JJTfYbYkMgfMS7di4j3V_D8hddB4cGR2rnY3v0m02YbbA&sig=Cg0ArKJSzLK1-bdsZrd-&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/241/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DDLAds%26utm_campaign%3D241AbstractSubmit

VI CIATIC IOP Publishing
Journal of Physics: Conference Series 1513 (2020) 012003 doi:10.1088/1742-6596/1513/1/012003

How do software architects perceive technical debt in
Colombian industry? An analysis of technical debt

causes

B Pérez'?, D Correal?, and F H Vera-Riveral?

! Grupo de Investigacién en Inteligencia Artificial, Universidad Francisco de Paula Santander,
San José de Cicuta, Colombia

2 Grupo de Investigacién en Tecnologias de Informacién y Construccién de Software,
Universidad de los Andes, Bogotd, Colombia

3 Materials Science and Technology Research Group, Foundation of Researchers in Science
and Technology of Materials, Colombia

E-mail: borisperezg@ufps.edu.co, fredyhumbertovera@ufps.edu.co

Abstract. Technical debt is a metaphor used to describe technical decisions that can give the
company a benefit in the short term but possibly hurting the overall quality of the software
in the long term. Architectural decisions are considered one of the most common sources of
technical debt, therefore, it becomes relevant to understand what causes lead to technical debt
from the point of view of software architects. To accomplish this task, we used a survey research
method to collect and analyze a corpus of 28 software architects from Colombia, as a part of the
InsighTD project. Results showed that inappropriate planning is the most cited technical debt
cause by software architects. However, results differ when comparison against engineers and
manager are performed. Innacurate time estimate and producing more without quality were
the most selected causes of technical debt according to engineers and managers. To improve this
comparison, the rank-biased overlapping technique was used. As more elements were compared,
more similar were these lists of causes among all three roles.

1. Introduction
Software companies usually work under tight schedules and deadlines to release software to
customers in faster cycles, therefore, increasing the pressure for the development teams to deliver
working features to their customers [1]. Technical debt (TD) is a metaphor used in software
development to describe technical decisions that can give the company a benefit in the short
term [2,3] but possibly hurting the overall quality of the software and the productivity of the
development team in the long term. According to Ernst, et al. in [4], architectural decisions are
the most common source of TD, therefore, it becomes crucial to understand how TD is perceived
by software architects, the causes reported by them and the practices to deal with TD.
Despite the attention surrounding TD by both the industry and academia [5,6], there is still
a lack of empirical evidence about TD causes and payment-related practices used by software
architects in real-life software development teams [7,8]. This information could help software
practitioners in selecting the best possible strategy to keep their software systems healthy, and
therefore, to use that knowledge to improve the existing processes and tools.
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1

VI CIATIC IOP Publishing
Journal of Physics: Conference Series 1513 (2020) 012003 doi:10.1088/1742-6596/1513/1/012003

This study focuses on the acknowledgment of causes leading to TD occurrence and the
practices used on TD payment from the point of view of software architects in real-life software
systems projects. To achieve this, we performed an industrial survey with 28 software architects
from Colombia. These answers were compared against answers from management roles (project
manager, business analyst, etc) and engineering roles (developer, tester, etc). The contributions
of this work are two-fold. First, this study presents a list of the top seven causes (inappropriate
planning being the most cited) leading to TD occurrence in software projects. And second, a
numerical comparison of similarity between the list of causes cited by software architects against
management and engineer groups is provided in this study.

Accordingly, the paper is organized as follow, in section 2 we present a description of the
InsighTD project history. In section 3, we present the survey design, whose results are presented
in section 4. Implications for researchers and practitioners are presented in section 5. Finally,
in section 6, we present threats to validity, and in section 7 we conclude the paper.

2. InsighTD project

InsighTD is a globally distributed family of industrial surveys initiated in 2017 and planned
cooperatively among TD researchers from around the world. To date, researchers from 11
countries (Brazil, Chile, Colombia, Costa Rica, Finland, India, Italy, Norway, Saudi Arabia,
Serbia, and the United States) have joined the project. The project aims to organize an open
and generalizable set of empirical data on the state of practice and industry trends in the TD
area.

Rios, et al. [9] discussed the basic survey design and the preliminary results of the first round
of InsighTD, and complemented this discussion, focusing specifically on the causes and effects
of TD in agile software projects. In that paper, the authors focused on the discussion on the top
10 causes and effects of TD. Pérez, et al. [10] focused on how practitioners react to the presence
of debt in the Chilean software industry. More recently, Freire, et al. [11] investigated preventive
actions that can be used to curb the occurrence of TD and the impediments that hamper the
use of those actions.

Thus, although significant analysis has already been conducted over the available InsighTD
data, much still remains to be studied. In particular, a noticeably absent and important
perspective is the one from the architect’s point of view.

3. Study design

This research was designed with the goal of characterizing comprehensively the current
knowledge on causes leading to TD occurrence and the current state of practices related to
TD payment. Based on our research goal, we derived the following two research questions (RQ)
guiding our study and the reporting of the results:

RQ1: From a software architect’s point of view, what causes lead software development
teams to incur TD?

RQ2: Is there any difference of causes leading to TD injection among software architects,
engineers and managers?

Data gathering was done using an online questionnaire (Google Forms) to increase the number
of possible participants. Invitations were sent online to software practitioners and the survey
was anonymous. Survey questions were defined within the InsighTD replication package and
was made up of 28 questions, previously described in [9]. Table 1 presents the subset of the
survey’s questions related to the context of this work.

Demographics questions (Q1 to Q8) ask participants about, for example, the size of his/her
company, size of the system (in terms of LOC) he/she is working on, number of people involved

VI CIATIC
Journal of Physics: Conference Series

IOP Publishing
doi:10.1088/1742-6596/1513/1/012003

1513(2020) 012003

in that project, participant’s role, and her/his level of experience in that role. Questions Q9
to Q15 seek information about how familiar the respondent is with the TD concept. Questions
Q16 to Q19 support the identification of the causes that lead development teams to insert debt
items into their projects. Questions Q20 and Q21 look to identify effects of the presence of TD
in software projects. Finally, Questions Q22 to Q28, were used to provide an understanding on
how TD has been managed in practice, in particular with respect to prevention, repayment, and
monitoring. The full questionnaire was previously presented in [9]. In the context of this work,

we considered for analysis the characterization (Q1-Q8) and causes of TD (Q16-19).

Table 1. Subset of the survey questions.

No. Question Type

Q1 What is the size of your company? Closed (SC)

Q2 In which country you are currently working? Closed (SC)

Q3 What is the size of the system being developed in that project? (LOC) Closed (SC)

Q4 What is the total number of people of this project? Closed (SC)

Q5 What is the age of this system up to now or to when your involvement Closed (SC)
ended?

Q6 To which project role are you assigned in this project? Closed (SC)

Q7 How do you rate your experience in this role (at the time)? Closed (SC)

Q8 Which of the following most closely describes the development process Closed (SC)
model you follow on this project?

Q9 How familiar you are with the concept of Technical Debt? Closed (SC)

Q10 In your words, how would you define TD? Open

Q11 How close to the above TD definition is your understanding about TD? Closed (SC)

Q12 Are there any parts of the definition above from McConnell that you Open
disagree with?

Q13 Please give an example of TD that had a significant impact on the Open
project that you have chosen to tell us about:

Q14 Why did you select this example? Open

Q15 About this example, how representative it is? Closed (SC)

Q16 What was the immediate, or precipitating, cause of the example of TD Open
you just described?

Q17 What other cause or factor contributed to the immediate cause you Open
described above?

Q18 What other motives or reasons or causes contributed either directly or Open

indirectly to the occurrence of the TD example?

The validation of the questionnaire comprised an internal validation, an external validation,
and a pilot study [9]. To reach the target population (software practitioners) we utilized the
social media platform LinkedIn along with industry-affiliated member groups, mailing lists, and
industry partners, as invitation channels. LinkedIn gave us direct access to a large number of
professionals with whom we did not have previous contact.

The survey instrument is composed of a mix of closed and open questions. For closed-ended
questions, we used descriptive statistics to get a better understanding of the data. Answers for
open-ended questions were codified using a code schema provided with the InsighTD replication
package. We initially applied manual open coding resulting in a set of codes. The process was
performed iteratively revising and unifying codes at each cycle of analysis until reaching the
state of saturation, i.e., a point where no new codes were identified.

VI CIATIC IOP Publishing
Journal of Physics: Conference Series 1513 (2020) 012003 doi:10.1088/1742-6596/1513/1/012003

Data analysis was done focusing on architects and comparing its results against management
and engineer groups. We are aware that software architects could be part of the engineer group,
however, considering the focus of this study, it was decided to have software architects as a
distinct group.

4. Results

In total, 132 practitioners answered the survey. After filtering answers according to their role,
we found 28 (21.2%) participants classified as software architects, 37 (28%) as managers and 67
(50.8%), as presented in Figure 1.

ENGINEER

MANAGEMENT

ARCHITECT

Figure 1. Practicitioners distribution by role.

Participants are well distributed among small (28.6%), medium (46.4.1%), and large (25%)
companies. Related to the size of development teams, most (28.6%) reported working in teams of
5-9 people and teams of 10-20 people (28.6%). Regarding the age of the system developed in the
project, most indicated age 1 to 2 years (46.4%). There are also a significant number of systems
represented from 2 to 5 years (21.4%). Most respondents identified themselves as proficient
(39.3%), followed by expert (28.6%), and competent (21.4%). In general, the questionnaire was
answered by professionals with experience in their functions.

4.1. Main causes of technical debt occurrence (RQ1)

Figure 2 presents the seven most commonly cited causes that lead development teams to incur
debt in their projects from the point of view of software architects, as informed by Q16-18.
These seven causes correspond to 43.2% of all cited causes. From this Figure, we can observe
that “innappropriate planning” is the most cited cause (9.9%), followed by “producing more
without quality” and “inaccurate time estimate” and “inappropriate test” all with 6.2%. From
this list of causes, it is possible to say that management issues are the main cause of technical
debt. Only “producing more without quality” and “lack of knowledge on development tools”
can be linked to technical issues.

Other causes not listed in Figure 2 are also linked to technical issues, such as “lack of
experience” and “bad design”. In general, software architects relies the responsibility of TD
injection on bad management practices. Other cause is related to the development process and
lack of a well defined process. One important thing to note is that only one software architect
stated “problems in architecture” as a cause of technical debt. This could have an impact
on how these causes are perceive by software architects. Another causes are linked to the
human aspect of the software projects, such as ”lack of knowledge, customer not listening to the
project team” and “lack of awareness of customer needs”. Other causes could be associated to
problems in how documentation is handle, for example, “outdated/incomplete documentation”,
“discontinued component” and “normative changes”. These problems in documentation usually
are a consequence of having time pressure or deadlines [12].

VI CIATIC

IOP Publishing

Journal of Physics: Conference Series

1513 (2020) 012003

doi:10.1088/1742-6596/1513/1/012003

9.9%
6.2% 6.2% 6.2%
I I I 4.9% 4.9% 4.9%

INAPPROPRIATE PRODUCING

PLANNING MORE WITHOUT TIME ESTIMATE

QuAalTy

INACCURATE INAPPROFPRIATE
/POORLY KNOWLEDGE ON
PLANNED / DEVELOPMENT

POORLY TOOLS
EXECUTED TEST

LACK OF

PRESSURE ~ NOT EFFECTIVE
PROJECT
MANAGEMENT

Figure 2. Top seven causes leading to TD occurrence by software

architects.

4.2. Comparison of technical debt causes among software architects, engineers and managers

(RQ2)

As part of this research, it is also important to measure quantitatively how similar the cited
causes of TD among the three groups are (engineers, management and architects). We used
a similarity measure for indefinite rankings called Rank-Biased Overlap (RBO) [13]. RBO is

defined by Equation (1).

RBO(Sa Tap) = (1 - p) Zpd_l : Ada (1)
d=1

where S and T are the ranked lists; p is the probability of looking for overlap at depth d
+ 1 after having examined element at d. The smaller the p value, the more top-weighted the
metric. Ay is the agreement between S and T at depth d, i.e. the proportion of S and T that
are overlapped. Figure 3 depicts the RBO comparison among the list of causes of the three
groups (one line for each pair of groups). By increasing the p value, this comparison aims to
explore how similar these causes are per group at the top of their rankings and at the bottom
of their rankings. Comparison went from p = 0.5 (top 2 elements approx.) to p = 0.97 (top 33

elements approx.).

----- MANAGEMENT-ARCHITECT
--»-- MANAGEMENT-ENGINEER

0.6] = encneer arcect
0.5
0.4
0.3
02| - —
01 v
0.5

e
* - <
x x.x“‘"x
"
e
e

. .

0.7 0.8

Figure 3. RBO of TD Causes.

0.9

VI CIATIC IOP Publishing
Journal of Physics: Conference Series 1513 (2020) 012003 doi:10.1088/1742-6596/1513/1/012003

From Figure 3 it is possible to establish that the three lists begin by being very different,
and as more elements are compared, the lists begin to show similarities. For p = 0.5, the
Management-Architect pair showed the highest similarity (RBO = 0.21), whilst Management-
Engineer exhibited the lowest RBO (0.09). With increasing depth (p), the similarity between
the pairs of groups tended to increase. All three list ended having the same similarity. This
is particularly interesting about these lists. Also, engineer-architect pair have some special
behavior, considering its increasing almost like a linear trend. It is important to note that only
the first ten or fifteen elements need to be compared, the rest of the causes listed are one-time
cited. Considering this, it is possible to establish that the engineer-architect pair is the most
similar of all.

5. Implications to researchers and practitioners

As presented in previous section, “inappropriate planning” was the most cited cause leading
to TD occurrence. However, it is important to note that “inappropriate planning” could be
considered as a consequence of something else, such as: lack of qualified professionals or even
deadlines imposed by the client. As presented in Figure 2, most of the causes were non-
technical, meaning that problems are caused mostly by management or external aspects of
software development.

Software practitioners can benefit from the results of this study by using the list of the
most cited TD causes presented in industry in Colombia as a guide to support initial efforts to
understand their debt and to pay it off from their software projects. Also, software practitioners
could review the causes associated with the presence of TD and map their situation to these
causes, allowing to define a roadmap in order to support the payment of the debt in the context
of their software projects [14].

For researchers, our results support future research by providing insights into software
practitioners’ perspectives on causes leading to TD occurrence. Finally, the global family of
surveys not only allows researchers to reproduce the results and their interpretation, but also
allows practitioners to evaluate their own TD situation against overall industrial trends.

6. Threats to validity

There are threats to validity in this work that we attempt to mitigate and remove entirely when
possible. First, regarding construct validity, to prevent hypothesis guessing and evaluation
apprehension [15], we explain in the invitation to the survey the goal of the study and request
that interviewees reply to questions by relying on their own background. Second, regarding
conclusion validity, to avoid potential coding process dependencies on the researcher’s subjective
criteria, the coding activity was performed individually by two researchers, and then, discussed
until an agreement was reached.

Regarding external validity, although the results can not be generalized, the population
provides representative results from the perspective of the software industry. Finally, the lack
of control over the participants is another threat to validity of this study, since it could happen
that only developers interested in the TD area answer the survey. This might bias the results
towards a more positive view of TD knowledge. However, a small number of the participants
indicated that they were not familiar with the concept of TD, which means that this wouldn’t
be a significant bias.

7. Conclusions

The contributions of this work are two-fold. First, we presented a list of the top seven causes
(inappropriate planning being the most cited) leading to TD occurrence in software projects.
And second, we compared the lists of td causes of the roles (engineering and management) to

VI CIATIC IOP Publishing
Journal of Physics: Conference Series 1513 (2020) 012003 doi:10.1088/1742-6596/1513/1/012003

understand how similar or different are. This contribution was done from the point of view of
28 software architects from Colombia.

We found that “nappropriate planning” is the most cited causes of TD occurrence in software
projects. From the seven most cited causes of TD, we can conclude that non technical issues
are important causes of TD for software architects. We also found similarities between causes
described by software architects and engineers.

The next steps of this research include: (i) a deeper analysis (including demographics
variables) to identify possible patterns of TD payment related practices, (ii) investigation of
how or if types of debt influence them, (iii) running other possible analyses including others
reactions to TD, such as monitoring practices and preventative actions.

References

[1] Yli-Huumo J, Maglyas A and Smolander K 2016 Journal of Systems and Software 120 195

[2] Kruchten P, Nord R L and Ozkaya I 2012 IEEE Software 29(6) 18

[3] Verdecchia R 2018 Architectural technical debt identification: Moving forward IEEE International
Conference on Software Architecture Companion (ICSA-C) (Seattle: IEEE) p 43

[4] Ernst N A, Bellomo S, Ozkaya I, Nord R L and Gorton I 2015 Measure it? manage it? ignore it?
software practitioners and technical debt Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015) (New York: Association for Computing Machinery) p 50

[6] Seaman C and Guo Y 2011 Measuring and monitoring technical debt Advances in Computers vol 82 (San
Diego: Elsevier) p 25

[6] Power K 2013 Understanding the impact of technical debt on the capacity and velocity of teams and
organizations: Viewing team and organization capacity as a portfolio of real options 4th International
Workshop on Managing Technical Debt (MTD) (San Francisco: IEEE) p 28

[7] Li Z, Avgeriou P and Liang P 2015 Journal of Systems and Software 101 193

[8] Rios N, de Mendonga Neto M G and Spinola R O 2018 Information and Software Technology 102 117

[9] Rios N, Spinola R O, Mendonga M and Seaman C 2018 The most common causes and effects of technical
debt: First results from a global family of industrial surveys 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement 39 (Oulu: Association for Computing Machinery)

[10] Pérez B, Brito J P, Astudillo H, Correal D, Rios N, Spinola R O, Mendonga M and Seaman C 2019 Familiarity,
causes and reactions of software practitioners to the presence of technical debt: A replicated study in
the chilean software industry 38th International Conference of the Chilean Computer Science Society
(Concepcion: IEEE)

[11] Freire S, Mendonga M, Falessi D, Seaman C, Izurieta C and Spinola R O 2020 Actions and impediments for
technical debt prevention: Results from a global family of industrial surveys To Appear in the Proceedings of
the 85th ACM/SIGAPP Symposium on Applied Computing (Brno: Association for Computing Machinery)

[12] Pérez B, Correal D and Astudillo H 2019 A proposed model-driven approach to manage architectural technical
debt life cycle IEEE/ACM International Conference on Technical Debt (TechDebt) (Montreal: IEEE) p 73

[13] Webber W, Moffat A and Zobel J 2010 ACM Trans. Inf. Syst. 28(4)

[14] Martini A, Sikander E and Madlani N 2018 Information and Software Technology 93 264

[15] Wohlin C, Runeson P, Hst M, Ohlsson M C, Regnell B and Wessln A 2012 Ezperimentation in Software
Engineering (Berlin: Springer-Verlag)

