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Abstract. This paper analyzes the impact of the Thomson effect on the performance of 
thermoelectric modules. For this, different mathematical models are carried out that involves 
the relationship between temperature and the seebeck coefficient. These mathematical 
models are based on the equations that describe thermoelectric effects and are solved using 
finite element methods. Through linear and polynomial functions of the seebeck coefficient, 
the different behaviors that can occur in the Thomson coefficient and their effect on the power 
and efficiency of thermoelectric modules are analyzed. The results show that by not 
considering the Thomson effect, there is a variation of 31% and 32% in the power and 
efficiency of the thermoelectric module when the temperature conditions change, which 
makes it difficult to estimate the performance of the module. This problem can be solved by 
considering the Thomson effect since it predicts an approximately constant value of electrical 
power and efficiency for a wide temperature range. For the analyzed conditions, power and 
efficiency of 5.25 W and 13%, respectively, were observed. The proposed methodology 
allows an adequate estimation to determine the performance of the modules. Therefore, it 
could be implemented to search for materials that provide better thermoelectric 
characteristics. 

1. Introduction 
Today the energy demand is increasing as a consequence of the economic growth and consumption 
habits of modern society. Due to this situation, there has been an interest in looking for new ways to 
improve energy processes. One of the options to increase the efficiency of these processes is the recovery 
of residual heat, which is originated from a waste of thermal energy. By recovering and subsequently 
using this type of energy, it is possible to achieve significant percentages of energy savings [1]. 

Thermoelectric modules (TEMs) are devices with the ability to recover wasted thermal energy [2]. 
TEMs are composed of p-type and n-type semiconductors electrically connected in series. When a 
temperature difference occurs between the two TEM surfaces, the direct conversion of thermal energy 
into useful electrical energy is possible. The use of TEMs for the recovery of residual energy has 
generated significant interest due to the advantages that these devices have. These include its low 
complexity [3], high reliability [4], zero contaminants [5], and low maintenance [6]. 

The analysis of the dimensionless figure of merit allows the evaluation of the conversion efficiency 
of the TEMs. Despite the various advantages, TEMs generally operate at low efficiency, which has 
limited their massive use [1]. Due to the above, research has been carried out to look for an increase in 
the efficiency of TEMs, which has focused on the temperature difference of their ends [7], geometric 
variations [8], electrical and thermal resistances [9], the influence of heat flow [10], among others. 
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However, the analysis of these variables is generally carried out under ideal assumptions on the 
thermoelectric properties of the materials that make up the TEMs. For a more detailed study, it is 
necessary to consider the effect of temperature on the characteristic properties of TEMs. One of the main 
thermoelectric effects to consider is the Thomson effect, which arises from the strong dependence of the 
Seebeck coefficient on temperature [11]. Different studies investigated the Thomson effect assuming a 
constant Thomson coefficient. The results demonstrate a considerable impact on the efficiency of TEMs 
due to this effect [12]. To quantify the Thomson effect in the analysis of the performance of the TEMs, 
Yamashita et al. [13] studied the change in thermoelectric properties, assuming a linear behavior with 
temperature. Kim et al. [14] reduced general formulas are taking into account a cumulative dependence 
on temperature. The above in order to determine the maximum power and energy conversion efficiency 
of the TEMs. Other studies have focused on the Thomson effect under different operating conditions, 
involving the temperature difference present on the surfaces of the TEMs, various electric currents, and 
load resistances [15]. 

Previous research shows that the Thomson effect must be considered to assess the actual efficiency 
that TEMs can achieve. However, most of the research available in the literature describes the influence 
of the Thomson effect assuming simplified mathematical models, which can cause significant errors in 
the real estimation of the power and efficiency of thermoelectric modules. Due to the above, the present 
study aims to build mathematical models that allow relating the thermoelectric properties of TEMs as a 
function of temperature, which allows the effect of temperature on TEM performance to be directly 
considered. The equations used in the model are solved using the finite element method. Finally, the 
model is used to calculate the power and efficiency estimates of the TEM. 

2. Methodology 
Figure 1 shows the configuration of the thermoelectric generator (TEG) and the geometric dimensions 
of the TEM. 

 
Figure 1. Thermoelectric module diagram. 

 
The TEG is made up of the thermoelectric module and the electrical resistance (Rload). The TEM is 

formed by semiconductors (type p and type n), which are electrically connected in series by copper 
strips. These strips are subjected to a hot temperature (Th) and a cold temperature (Tc), which are 
generated by the flow of the heat source (Qin) and the flow of heat extracted by the cooling system 
(Qout). The connection made between the TEM and the electrical resistance causes the appearance of 
an electric current (I) and a voltage (V), which are used to calculate the power and efficiency of the 
TEM. To describe the electrical and thermal properties of TEM mathematically, such as heat flow (Q), 
electric charge, electric current density (J), dielectric medium (D), and scalar electric potential (E), the 
following equations are used [16,17]. The heat flow rate (Q) is determined by Equation (1). 
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∇ ∙ Q + ρC !"
!#
= Q̇, (1) 

 
where ρ is the density, C is the heat capacity and Q̇ is the rate of heat generation; the electric charge 

is calculated by means of Equation (2). 
 

∇ ∙ ,!$
!#
+ J-, (2) 

 
where D and J are the vectors of electric flux density and electric current density. 
Heat flow rate (Q) and electric current density (J) can be expressed, as shown in Equation (3) and 

Equation (4). 
 

Q = Π ∙ J − k ∙ ∇T, (3) 
 

J = σ ∙ (E − S ∙ ∇T), (4) 
 

where k is the thermal conductivity, and Π is the Peltier coefficient; the dielectric medium (D) and 
the scalar electric potential (E) are defined by Equation (5) and Equation (6). 

 
D = ε ∙ E, (5) 

 
E = −∇φ, (6) 

 
where	φ is the scalar electric potential; by unifying the previously described equations, it is possible 

to form Equation (7) and Equation (8), which describe the thermal and electrical phenomena of TEM 
[18]. 

 
ρC !"

!#
+ ∇ ∙ (∏∙ J) − ∇ ∙ (k ∙ ∇T) = Q̇, (7) 

 
 

∇ ,ε ∙ ∇ !%
!#
- + ∇ ∙ (σ ∙ S∇T) + ∇(σ ∙ ∇φ) = 0. (8) 

 
Finally, the calculation of the electrical power and the efficiency of the TEM was carried out using 

Equation (9) and Equation (10). 
 

P&'&( = I) ∙ R'*+,, (9) 
 

η =
P&'&(
Q-.

. (10) 

 
To solve this series of equations, the finite element method was used, which allows simulating the 

electrical and thermal effects. In addition, it allows considering the effects of seebeck, Joule, Peltier, and 
Thomson. The thermal effects of radiation and convection are ignored in the study, as they are 
depreciable in most conditions. 

3. Results 
This section shows the linear and polynomial fit of the seebeck coefficient and its effect on the Thomson 
coefficient as a function of different temperature levels. Additionally, the estimate of electrical power 
and TEM efficiency with and without the Thomson effect is shown. 
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3.1. Lineal variation of the seebeck coefficient 
As a first approximation, it was assumed that the Seebeck coefficient (S/.) varies linearly with 
temperature, as shown in Equation (11) [1]. 
 

S/. = b* + b0T. (11) 
 

By changing the parameters b* and b0 it is possible to obtain different values of the Seebeck 
coefficient. Figure 2 shows the relationship of this coefficient with different temperature conditions. 

The results in Figure 2 show that the seebeck coefficient increases with increasing parameter b0. In 
the case of b0 = 	0, an average Seebeck coefficient is obtained for the analyzed temperature range. This 
behavior is directly related to the mathematical model used to calculate S/.. Therefore, a higher value 
of b0 implies an increase of equal magnitude in the slope of the linear functions shown in Figure 2. 
Based on Equation (11), the Thomson coefficient (τ/.) is calculated, as shown in Equation (12) [19]. 
 

τ/. = T ∙ ,1!"
,#

= T ∙ b0. (12) 
 

The relationship between the Thomson coefficient and the temperature is shown in Figure 3. The 
results show a considerable increase in the Thomson coefficient with increasing temperature levels. For 
an increase in the b0  value from 0.25 to 0.28, it was observed that the Thomson coefficient increases 
52% faster for each change in temperature. This drastic increase in τ/. implies a considerable decrease 
in TEM efficiency. For the value of b0 = 0, it is obtained that τ/. does not present any change in the 
temperature range, which is a consequence of the absence of variation in the value of the Seebeck 
coefficient. 
 

 

 

 
Figure 2. Linear dependence of the 
seebeck coefficient with temperature.  Figure 3. Linear dependence of the 

Thomson coefficient with temperature. 

3.2. Polynomial variation of the seebeck coefficient 
Although linear dependence allows one to observe the effect of temperature on TEM performance, it is 
an unrealistic assumption of the process. Because of this, an adjustment of the Seebeck coefficient is 
performed using a third-degree polynomial function, as shown in Equation (13) [1]. 
 

S/. = a* − a0T + a)T) − a2T2, (13) 
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where a*,	a0, a) and a2 are positive parameters. Among these four factors, it is observed that a) is 
the most influential in the value of the Seebeck coefficient. Through changes in a) different values of 
the Seebeck coefficient are obtained in relation to various temperature values. The results obtained are 
shown in Figure 4. 

The results shown in Figure 4 indicate that the seebeck coefficient begins to decrease for a 
temperature value greater than 550 K. The decrease in S/. is greater for high-temperature levels, which 
is a consequence of the polynomial function described in Equation (13). For this condition, the Thomson 
coefficient is defined, as shown in Equation (14) [19]. 
 

τ/. = T ∙
dS/.
dt

= −T ∙ (a0 − 2a)T + 3a2T)) (14) 

 
Thomson coefficient values for different temperature conditions are shown in Figure 5. It is observed 

that the τ/. values grow in an approximately linear way for low-temperature levels. However, above 
650 K, the Thomson coefficient values show a reduction. This is a consequence of the increase in the 
influence of the quadratic and cubic term of Equation (14). 
 

 

 

 
Figure 4. Polynomial dependency of the 
seebeck coefficient.  Figure 5. Polynomial dependence of the 

Thomson coefficient with temperature. 
 

To consider the influence of the Thomson effect, the results of TEM power and efficiency are 
compared in three different cases, which are defined in Table 1. 
 

Table 1. Cases for TEM performance analysis. 
Case Condition Equation 

Case 1 Without Thomson effect [20] S!" = S!" ∙
T# + T$
2  

Case 2 Without Thomson effect [21] S!" =
S!"(T#) + S!"(T$)

2  

Case 3 With Thomson effect [1] S!" = a% − a&T + a'T' − a(T( 
 

The first two cases shown in Table 1 indicate a situation without the Thomson effect. Therefore, a 
constant value is assumed for the seebeck coefficient considering the temperatures T3 and T( located at 
the extremes of the TEM (see Figure 1). In the third case, the Thomson effect is considered using 
Equation (13). The results of electrical power and efficiency TEM for the three cases are shown in Figure 
6. Figure 6 (a) show the TEM electrical power and Figure 6(b) show the efficiency with Tc=300 K and 
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Th= 950 K. Additionally the Figure 6, shows that the electrical power and energy conversion efficiency 
of TEM is reduced when the Thomson effect is considered, as it is in a range of the parameter a2 between 
2.6 - 2.75. However, for higher values of a2, the estimation of power and efficiency of the TEM is higher 
when considering the Thomson effect. This indicates that ignoring the Thomson effect can lead to a 
higher or lower estimate of the actual performance of the TEM. This behavior is attributed to the 
cumulative effect of heat flow at the hot end of TEM [22]. 

In general, considering the Thomson effect allows an average estimate of the TEM performance to 
be made. It was observed that in case 3, the power and efficiency are approximately 5.25 W and 13% 
for the range analyzed. For the cases without Thomson effect (case 1 and case 2) a variation of 31% and 
32% is observed in the electric power and efficiency of the TEM. 
 

 

 

 
(a)  (b) 

Figure 6. (a) TEM electrical power and (b) efficiency with Tc=300 K and Th= 950 K. 

4. Conclusions 
In the present paper, a mathematical model was performed to analyze the Thomson effect on the general 
performance of thermoelectric modules. Using finite element methods, the equations that describe the 
thermal and electrical phenomena characteristic of TEM were solved. Two types of relationships 
between temperature and the seebeck coefficient were analyzed in the study, which was linear and 
polynomial. The results obtained allowed concluding that the Thomson effect causes a negative impact 
on the performance of the TEM when it operates at a low-temperature difference, and the seebeck 
coefficient is high. However, for large temperature differences and small seebeck coefficients, the 
prediction of TEM performance is higher when considering the Thomson effect. 

On average, by not considering the Thomson effect, an overestimation of the electrical power and 
the efficiency of the TEM is observed, which can reach values close to 6 W and 14.5%. However, 
depending on the temperature level, ignoring the Thomson effect causes an underestimation of the TEM 
performance, reaching a maximum value of power and efficiency of 4.5 W and 12%. The results show 
that the previous problem can be solved by considering the Thomson effect since it predicts an 
approximately constant value of electrical power and efficiency for a wide temperature range. Therefore, 
this last estimate of TEM performance is more appropriate, since TEMs are normally exposed to 
temperature variations in their operating conditions. The average values obtained for power and 
efficiency when considering the Thomson effect are 5.25 W and 13%. In general, the inclusion of the 
Thomson effect allows a more precise definition of the performance that can be obtained in 
thermoelectric modules. Therefore, the methodology developed in the study provides a guide for 
identifying the appropriate characteristics of TEMs in order to achieve high levels of efficiency. 
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