Mostrar el registro sencillo del ítem

dc.contributor.authorContreras Ropero, Jefferson Eduardo
dc.contributor.authorLidueñez Ballesteros, Valentina S.
dc.contributor.authorRodríguez Bohórquez, Angie D.
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorLópez Barrera, German Luciano
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorSamantha J., Bryan
dc.contributor.authorZUORRO, Antonio
dc.date.accessioned2024-04-10T16:40:21Z
dc.date.available2024-04-10T16:40:21Z
dc.date.issued2022-11-17
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6870
dc.description.abstractThis study evaluates the role of different LED lights (white, blue/red), intensity (µmol m−2 s −1 ), and photoperiod in the production of biomass and phycocyanin-C, allophycocyanin and phycoerythrin (C-PC, APC, and PE respectively) from a novel thermotolerant strain of Oscillatoria sp. Results show that a mixture of white with blue/red LEDs can effectively double the biomass concentration up to 1.3 g/L, while the concentration of the selected phycobiliproteins increased proportionally to biomass. Results also indicate that high light intensities (>120 µmol m−2 s −1 ) can diminish the final concentration of C-PC, APC, and PE, significantly reducing the overall biomass produced. Finally, the photoperiod analysis showed that longer light exposure times (18:6 h) improved both biomass and phycobiliproteins concentration. These results demonstrate that the application of LEDs to produce a novel strain of Oscillatoria sp can double the biomass concentration, and the photoperiod regulation can eventually enhance the final concentration of specific phycobiliproteins such as APC and PE.eng
dc.format.extent14 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherApplied Sciences (Switzerland)spa
dc.relation.ispartofAppl. Sci. 2022, 12, 11664. https://doi.org/10.3390/app122211664
dc.rightsunder the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2076-3417/12/22/11664spa
dc.titleThe Effect of LEDs on Biomass and Phycobiliproteins Production in Thermotolerant Oscillatoria sp.eng
dc.typeArtículo de revistaspa
dcterms.referencesZuorro, A.; Leal-Jerez, A.G.; Morales-Rivas, L.K.; Mogollón-Londoño, S.O.; Sanchez-Galvis, E.M.; García-Martínez, J.B.; BarajasSolano, A.F. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria Sp. through Media Optimization. ACS Omega 2021, 6, 10527–10536. [CrossRef]spa
dcterms.referencesZuorro, A.; Lavecchia, R.; Maffei, G.; Marra, F.; Miglietta, S.; Petrangeli, A.; Familiari, G.; Valente, T. Enhanced lipid extraction from unbroken microalgal cells using enzymes. Chem. Eng. Trans. 2015, 43, 211–216. [CrossRef]spa
dcterms.referencesBarajas-Solano, A.F.; Guzmán-Monsalve, A.; Kafarov, V. Effect of Carbon-Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccus braunii UIS 003. Chem. Eng. Trans. 2016, 49, 247–252. [CrossRef]spa
dcterms.referencesGarcía-Martínez, J.B.; Ayala-Torres, E.; Reyes-Gómez, O.; Zuorro, A.; Andrés, F.; Barajas-Solano, B.; Crisóstomo, C.; BarajasFerreira, B. Evaluation of a Two-Phase Extraction System of Carbohydrates and Proteins from Chlorella vulgaris Utex 1803. Chem. Eng. Trans. 2016, 49, 355–360. [CrossRef]spa
dcterms.referencesZuorro, A.; Maffei, G.; Lavecchia, R. Kinetic Modeling of Azo Dye Adsorption on Non-Living Cells of Nannochloropsis oceanica. J. Environ. Chem. Eng. 2017, 5, 4121–4127. [CrossRef]spa
dcterms.referencesZuorro, A.; Malavasi, V.; Cao, G.; Lavecchia, R. Use of Cell Wall Degrading Enzymes to Improve the Recovery of Lipids from Chlorella sorokiniana. Chem. Eng. J. 2019, 377, 120325. [CrossRef]spa
dcterms.referencesChittapun, S.; Jonjaroen, V.; Khumrangsee, K.; Charoenrat, T. C-Phycocyanin Extraction from Two Freshwater Cyanobacteria by Freeze Thaw and Pulsed Electric Field Techniques to Improve Extraction Efficiency and Purity. Algal Res. 2020, 46, 101789. [CrossRef]spa
dcterms.referencesVega-Gálvez, A.; Miranda, M.; Clavería, R.; Quispe, I.; Vergara, J.; Uribe, E.; Paez, H.; Di Scala, K. Effect of Air Temperature on Drying Kinetics and Quality Characteristics of Osmo-Treated Jumbo Squid (Dosidicus gigas). LWT-Food Sci. Technol. 2011, 44, 16–23. [CrossRef]spa
dcterms.referencesFalkeborg, M.F.; Roda-Serrat, M.C.; Burnæs, K.L.; Nielsen, A.L.D. Stabilising Phycocyanin by Anionic Micelles. Food Chem. 2018, 239, 771–780. [CrossRef]spa
dcterms.referencesFratelli, C.; Burck, M.; Amarante, M.C.A.; Braga, A.R.C. Antioxidant Potential of Nature’s “Something Blue”: Something New in the Marriage of Biological Activity and Extraction Methods Applied to C-Phycocyanin. Trends Food Sci. Technol. 2021, 107, 309–323. [CrossRef]spa
dcterms.referencesOjit, S.K.; Indrama, T.; Gunapati, O.; Avijeet, S.O.; Subhalaxmi, S.A.; Silvia, C.; Indira, D.W.; Romi, K.; Thadoi, D.A.; Tiwari, O.N.; et al. The Response of Phycobiliproteins to Light Qualities in Anabaena circinalis. J. Appl. Biol. Biotechnol. 2015, 3, 1–6. [CrossRef]spa
dcterms.referencesPez Jaeschke, D.; Rocha Teixeira, I.; Damasceno Ferreira Marczak, L.; Domeneghini Mercali, G. Phycocyanin from Spirulina: A Review of Extraction Methods and Stability. Food Res. Int. 2021, 143, 110314. [CrossRef] [PubMed]spa
dcterms.referencesSeghiri, R.; Legrand, J.; Hsissou, R.; Essamri, A. Comparative Study of the Impact of Conventional and Unconventional Drying Processes on Phycobiliproteins from Arthrospira platensis. Algal Res. 2021, 53, 102165. [CrossRef]spa
dcterms.referencesTavanandi, H.A.; Raghavarao, K.S.M.S. Ultrasound-Assisted Enzymatic Extraction of Natural Food Colorant C-Phycocyanin from Dry Biomass of Arthrospira platensis. LWT 2020, 118, 108802. [CrossRef]spa
dcterms.referencesLee, E.; Pruvost, J.; He, X.; Munipalli, R.; Pilon, L. Design Tool and Guidelines for Outdoor Photobioreactors. Chem. Eng. Sci. 2014, 106, 18–29. [CrossRef]spa
dcterms.referencesChaneva, G.; Furnadzhieva, S.; Minkova, K.; Lukavsky, J. Effect of Light and Temperature on the Cyanobacterium Arthronema africanum—A Prospective Phycobiliprotein-Producing Strain. J. Appl. Phycol. 2007, 19, 537–544. [CrossRef]spa
dcterms.referencesSloth, J.K.; Wiebe, M.G.; Eriksen, N.T. Accumulation of Phycocyanin in Heterotrophic and Mixotrophic Cultures of the Acidophilic Red Alga Galdieria sulphuraria. Enzyme Microb. Technol. 2006, 38, 168–175. [CrossRef]spa
dcterms.referencesTang, J.; Jiang, D.; Luo, Y.; Liang, Y.; Li, L.; Shah, M.M.R.; Daroch, M. Potential New Genera of Cyanobacterial Strains Isolated from Thermal Springs of Western Sichuan, China. Algal Res. 2018, 31, 14–20. [CrossRef]spa
dcterms.referencesMehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green Extraction of Value-Added Compounds Form Microalgae: A Short Review on Natural Deep Eutectic Solvents (NaDES) and Related Pre-Treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [CrossRef]spa
dcterms.referencesZuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [CrossRef]spa
dcterms.referencesCuellar García, D.J.; Rangel-Basto, Y.A.; Barajas-Solano, A.F.; Muñoz-Peñalosa, Y.A.; Urbina-Suarez, N.A. Towards the Production of Microalgae Biofuels: The Effect of the Culture Medium on Lipid Deposition. Biotechnologia 2019, 100, 273–278. [CrossRef]spa
dcterms.referencesQuintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. Water 2019, 11, 1526. [CrossRef]spa
dcterms.referencesPrates, D.d.F.; Radmann, E.M.; Duarte, J.H.; Morais, M.G.d.; Costa, J.A.V. Spirulina Cultivated under Different Light Emitting Diodes: Enhanced Cell Growth and Phycocyanin Production. Bioresour. Technol. 2018, 256, 38–43. [CrossRef] [PubMed]spa
dcterms.referencesHoi, S.K.; Winayu, B.N.R.; Hsueh, H.T.; Chu, H. Light Factors and Nitrogen Availability to Enhance Biomass and C-Phycocyanin Productivity of Thermosynechococcus Sp. CL-1. Biochem. Eng. J. 2021, 167, 107899. [CrossRef]spa
dcterms.referencesKlepacz-Smółka, A.; Pietrzyk, D.; Szel ˛ag, R.; Głuszcz, P.; Daroch, M.; Tang, J.; Ledakowicz, S. Effect of Light Colour and Photoperiod on Biomass Growth and Phycocyanin Production by Synechococcus PCC 6715. Bioresour. Technol. 2020, 313, 123700. [CrossRef] [PubMed]spa
dcterms.referencesHo, S.H.; Liao, J.F.; Chen, C.Y.; Chang, J.S. Combining Light Strategies with Recycled Medium to Enhance the Economic Feasibility of Phycocyanin Production with Spirulina platensis. Bioresour. Technol. 2018, 247, 669–675. [CrossRef] [PubMed]spa
dcterms.referencesBergmann, P.; Trösch, W. Repeated Fed-Batch Cultivation of Thermosynechococcus elongatus BP-1 in Flat-Panel Airlift Photobioreactors with Static Mixers for Improved Light Utilization: Influence of Nitrate, Carbon Supply and Photobioreactor Design. Algal Res. 2016, 17, 79–86. [CrossRef]spa
dcterms.referencesWu, H.-L.; Wang, G.-H.; Xiang, W.-Z.; Li, T.; He, H. Stability and Antioxidant Activity of Food-Grade Phycocyanin Isolated from Spirulina Platensis. Int. J. Food Prop. 2016, 19, 2349–2362. [CrossRef]spa
dcterms.referencesKhatoon, H.; Kok Leong, L.; Abdu Rahman, N.; Mian, S.; Begum, H.; Banerjee, S.; Endut, A. Effects of Different Light Source and Media on Growth and Production of Phycobiliprotein from Freshwater Cyanobacteria. Bioresour. Technol. 2018, 249, 652–658. [CrossRef]spa
dcterms.referencesPark, J.; Dinh, T.B. Contrasting Effects of Monochromatic LED Lighting on Growth, Pigments and Photosynthesis in the Commercially Important Cyanobacterium Arthrospira maxima. Bioresour. Technol. 2019, 291, 121846. [CrossRef]spa
dcterms.referencesLuimstra, V.M.; Schuurmans, J.M.; Verschoor, A.M.; Hellingwerf, K.J.; Huisman, J.; Matthijs, H.C.P. Blue Light Reduces Photosynthetic Efficiency of Cyanobacteria through an Imbalance between Photosystems I and II. Photosynth. Res. 2018, 138, 177–189. [CrossRef] [PubMed]spa
dcterms.referencesBlanken, W.; Cuaresma, M.; Wijffels, R.H.; Janssen, M. Cultivation of Microalgae on Artificial Light Comes at a Cost. Algal Res. 2013, 2, 333–340. [CrossRef]spa
dcterms.referencesSchulze, P.S.C.; Barreira, L.A.; Pereira, H.G.C.; Perales, J.A.; Varela, J.C.S. Light Emitting Diodes (LEDs) Applied to Microalgal Production. Trends Biotechnol. 2014, 32, 422–430. [CrossRef]spa
dcterms.referencesZhao, Y.; Wang, J.; Zhang, H.; Yan, C.; Zhang, Y. Effects of Various LED Light Wavelengths and Intensities on Microalgae-Based Simultaneous Biogas Upgrading and Digestate Nutrient Reduction Process. Bioresour. Technol. 2013, 136, 461–468. [CrossRef] [PubMed]spa
dcterms.referencesTeo, C.L.; Atta, M.; Bukhari, A.; Taisir, M.; Yusuf, A.M.; Idris, A. Enhancing Growth and Lipid Production of Marine Microalgae for Biodiesel Production via the Use of Different LED Wavelengths. Bioresour. Technol. 2014, 162, 38–44. [CrossRef] [PubMed]spa
dcterms.referencesAssunção, J.; Pagels, F.; Tavares, T.; Malcata, F.X.; Guedes, A.C. Light Modulation for Bioactive Pigment Production in Synechocystis Salina. Bioengineering 2022, 9, 331. [CrossRef]spa
dcterms.referencesOkamoto, A.; Imamura, M.; Tani, K.; Matsumoto, T. The Effect of Using Light Emitting Diodes and Fluorescent Lamps as Different Light Sources in Growth Inhibition Tests of Green Alga, Diatom, and Cyanobacteria. PLoS ONE 2021, 16, e0247426. [CrossRef]spa
dcterms.referencesMehariya, S.; Goswami, R.K.; Verma, P.; Lavecchia, R.; Zuorro, A. Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies 2021, 14, 2282. [CrossRef]spa
dcterms.referencesBanayan, S.; Jahadi, M.; Khosravi-Darani, K. Pigment Productions by Spirulina Platensis as a Renewable Resource. J. Appl. Biotechnol. Rep. 2022, 9, 614–621. [CrossRef]spa
dcterms.referencesVan Hieu, H.; Quang-Tuong, L.; Cong Doan, B. The Production of High Phycocyanin by Applications of Red Light-Emitting Diodes (LEDs) In Vitro Algae Growth on Spirulina platensis. J. Nano-Electron. Phys. 2021, 13, 3034-1–3034-4. [CrossRef]spa
dcterms.referencesRangel-Basto, Y.A.; García-Ochoa, I.E.; Suarez-Gelvez, J.H.; Zuorro, A.; Barajas-Solano, A.F.; Urbina-Suarez, N.A. The Effect of Temperature and Enzyme Concentration in the Transesterification Process of Synthetic Microalgae Oil. Chem. Eng. Trans. 2018, 64, 331–336. [CrossRef]spa
dcterms.referencesMao, R.; Guo, S. Performance of the Mixed LED Light Quality on the Growth and Energy Efficiency of Arthrospira platensis. Appl. Microbiol. Biotechnol. 2018, 102, 5245–5254. [CrossRef] [PubMed]spa
dcterms.referencesBorlongan, I.A.; Suzuki, S.; Nishihara, G.N.; Kozono, J.; Terada, R. Effects of Light Quality and Temperature on the Photosynthesis and Pigment Content of a Subtidal Edible Red Alga Meristotheca papulosa (Solieriaceae, Gigartinales) from Japan. J. Appl. Phycol. 2020, 32, 1329–1340. [CrossRef]spa
dcterms.referencesBarajas-Solano, A.F.; Gonzalez-Delgado, A.D.; Kafarov, V. Effect Of Thermal Pre-Treatment On Fermentable Sugar Production Of Chlorella vulgaris. Chem. Eng. Trans. 2014, 37, 655–660. [CrossRef]spa
dcterms.referencesPagels, F.; Lopes, G.; Vasconcelos, V.; Guedes, A.C. White and Red LEDs as Two-Phase Batch for Cyanobacterial Pigments Production. Bioresour. Technol. 2020, 307, 123105. [CrossRef]spa
dcterms.referencesUrbina-Suarez, N.A.; Ayala-González, D.D.; Rivera-Amaya, J.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water 2022, 14, 346. [CrossRef]spa
dcterms.referencesMehar, J.; Shekh, A.; Nethravathy, M.U.; Sarada, R.; Chauhan, V.S.; Mudliar, S. Automation of Pilot-Scale Open Raceway Pond: A Case Study of CO2 -Fed PH Control on Spirulina Biomass, Protein and Phycocyanin Production. J. CO2 Util. 2019, 33, 384–393. [CrossRef]spa
dcterms.referencesKovaˇc, D.; Babi´c, O.; Milovanovi´c, I.; Mišan, A.; Simeunovi´c, J. The Production of Biomass and Phycobiliprotein Pigments in Filamentous Cyanobacteria: The Impact of Light and Carbon Sources. Appl. Biochem. Microbiol. 2017, 53, 539–545. [CrossRef]spa
dcterms.referencesGarcía-López, D.A.; Olguín, E.J.; González-Portela, R.E.; Sánchez-Galván, G.; De Philippis, R.; Lovitt, R.W.; Llewellyn, C.A.; Fuentes-Grünewald, C.; Parra Saldívar, R. A Novel Two-Phase Bioprocess for the Production of Arthrospira (Spirulina) maxima LJGR1 at Pilot Plant Scale during Different Seasons and for Phycocyanin Induction under Controlled Conditions. Bioresour. Technol. 2020, 298, 122548. [CrossRef] [PubMed]spa
dcterms.referencesMilia, M.; Corrias, F.; Addis, P.; Zitelli, G.C.; Cicchi, B.; Torzillo, G.; Andreotti, V.; Angioni, A. Influence of Different Light Sources on the Biochemical Composition of Arthrospira Spp. Grown in Model Systems. Foods 2022, 11, 399. [CrossRef]spa
dcterms.referencesTayebati, H.; Pajoum Shariati, F.; Soltani, N.; Sepasi Tehrani, H. Effect of Various Light Spectra on Amino Acids and Pigment Production of Arthrospira platensis Using Flat-Plate Photobioreactor. Prep. Biochem. Biotechnol. 2021, 51, 1–12. [CrossRef] [PubMed]spa
dcterms.referencesSzwarc, D.; Zieli ´nski, M. Effect of Lighting on the Intensification of Phycocyanin Production in a Culture of Arthrospira platensis. Proceedings 2018, 2, 1305. [CrossRef]spa
dcterms.referencesYim, S.K.; Ki, D.W.; Doo, H.S.; Kim, H.; Kwon, T.H. Internally Illuminated Photobioreactor Using a Novel Type of Light-Emitting Diode (LED) Bar for Cultivation of Arthrospira platensis. Biotechnol. Bioprocess Eng. 2016, 21, 767–776. [CrossRef]spa
dcterms.referencesBachchhav, M.B.; Kulkarni, M.V.; Ingale, A.G. Enhanced Phycocyanin Production from Spirulina platensis Using Light Emitting Diode. J. Inst. Eng. Ser. E 2017, 98, 41–45. [CrossRef]spa
dcterms.referencesXie, Y.; Jin, Y.; Zeng, X.; Chen, J.; Lu, Y.; Jing, K. Fed-Batch Strategy for Enhancing Cell Growth and C-Phycocyanin Production of Arthrospira (Spirulina) platensis under Phototrophic Cultivation. Bioresour. Technol. 2015, 180, 281–287. [CrossRef]spa
dcterms.referencesWalter, A.; Carvalho, J.C.D.; Soccol, V.T.; Bisinella, A.B.; Faria, D.; Ghiggi, V.; Soccol, C.R. Study of Phycocyanin Production from Spirulina platensis Under Different Light Spectra. Braz. Arch. Biol. Technol. 2011, 54, 675–682. [CrossRef]spa
dcterms.referencesMarkou, G. Effect of Various Colors of Light-Emitting Diodes (LEDs) on the Biomass Composition of Arthrospira platensis Cultivated in Semi-Continuous Mode. Appl. Biochem. Biotechnol. 2014, 172, 2758–2768. [CrossRef]spa
dcterms.referencesChen, H.B.; Wu, J.Y.; Wang, C.F.; Fu, C.C.; Shieh, C.J.; Chen, C.I.; Wang, C.Y.; Liu, Y.C. Modeling on Chlorophyll a and Phycocyanin Production by Spirulina platensis under Various Light-Emitting Diodes. Biochem. Eng. J. 2010, 53, 52–56. [CrossRef]spa
dcterms.referencesLee, S.H.; Lee, J.E.; Kim, Y.; Lee, S.Y. The Production of High Purity Phycocyanin by Spirulina platensis Using Light-Emitting Diodes Based Two-Stage Cultivation. Appl. Biochem. Biotechnol. 2016, 178, 382–395. [CrossRef]spa
dcterms.referencesSivasankari, S.; Vinoth, M.; Ravindran, D.; Baskar, K.; Alqarawi, A.A.; Abd_Allah, E.F. Efficacy of Red Light for Enhanced Cell Disruption and Fluorescence Intensity of Phycocyanin. Bioprocess Biosyst. Eng. 2021, 44, 141–150. [CrossRef]spa
dcterms.referencesNiangoran, N.U.F.; Buso, D.; Zissis, G.; Prudhomme, T. Influence of Light Intensity and Photoperiod on Energy Efficiency of Biomass and Pigment Production of Spirulina (Arthrospira platensis). OCL-Oilseeds Fats Crop. Lipids 2021, 28, 37. [CrossRef]spa
dcterms.referencesSilkina, A.; Kultschar, B.; Llewellyn, C.A. Far-Red Light Acclimation for Improved Mass Cultivation of Cyanobacteria. Metabolites 2019, 9, 170. [CrossRef] [PubMed]spa
dcterms.referencesKim, J.K.; Mao, Y.; Kraemer, G.; Yarish, C. Growth and Pigment Content of Gracilaria tikvahiae McLachlan under Fluorescent and LED Lighting. Aquaculture 2015, 436, 52–57. [CrossRef]spa
dcterms.referencesVelea, S.; Ilie, L.; Filipescu, L. Optimization of Porphyridium purpureum Culture Growth Using Two Variables Experimental Design: Light and Sodium Bicarbonate. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2011, 73, 81–94.spa
dcterms.referencesBarajas-Solano, A.F. Optimization of Phycobiliprotein Solubilization from a Thermotolerant Oscillatoria Sp. Processes 2022, 10, 836. [CrossRef]spa
dcterms.referencesAndersen, R.A.; Berges, J.A.; Harrison, P.J.; Watanabe, M.M. Appendix A—Recipes for Freshwater and Seawater Media. In Algal Culturing Techniques; Andersen, R.A., Ed.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 429–538.spa
dcterms.referencesBennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435. [CrossRef]spa
dcterms.referencesPatil, G.; Chethana, S.; Sridevi, A.S.; Raghavarao, K.S.M.S. Method to Obtain C-Phycocyanin of High Purity. J. Chromatogr. A 2006, 1127, 76–81. [CrossRef]spa
dcterms.referencesAntelo, F.; Anschau, A.; Costa, J.; Kalil, S. Extraction and Purification of C-Phycocyanin from Spirulina platensis in Conventional and Integrated Aqueous Two-Phase Systems. J. Braz. Chem. Soc. 2010, 21, 921–926. [CrossRef]spa
dcterms.referencesMoheimani, N.R.; Borowitzka, M.A.; Isdepsky, A.; Sing, S.F. Standard Methods for Measuring Growth of Algae and Their Composition BT—Algae for Biofuels and Energy; Borowitzka, M.A., Moheimani, N.R., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 265–284. [CrossRef]spa
dcterms.referencesLamela, T.; Marquez-Rocha, F.J. Phycocyanin Production in Seawater Culture of Arthrospira maxima. Ciencias Mar. 2000, 26, 607–619. [CrossRef]spa
dcterms.referencesSchipper, K.; Das, P.; Al Muraikhi, M.; AbdulQuadir, M.; Thaher, M.I.; Al Jabri, H.M.S.J.; Wijffels, R.H.; Barbosa, M.J. Outdoor Scale-up of Leptolyngbya Sp.: Effect of Light Intensity and Inoculum Volume on Photoinhibition and -Oxidation. Biotechnol. Bioeng. 2021, 118, 2368–2379. [CrossRef] [PubMed]spa
dcterms.referencesJung, C.H.G.; Waldeck, P.; Sykora, S.; Braune, S.; Petrick, I.; Küpper, J.-H.; Jung, F. Influence of Different Light-Emitting Diode Colors on Growth and Phycobiliprotein Generation of Arthrospira platensis. Life 2022, 12, 895. [CrossRef] [PubMed]spa
dcterms.referencesHotos, G.N.; Antoniadis, T.I. The Effect of Colored and White Light on Growth and Phycobiliproteins, Chlorophyll and Carotenoids Content of the Marine Cyanobacteria Phormidium Sp. and Cyanothece Sp. in Batch Cultures. Life 2022, 12, 837. [CrossRef] [PubMed]spa
dcterms.referencesZanolla, V.; Biondi, N.; Niccolai, A.; Abiusi, F.; Adessi, A.; Rodolfi, L.; Tredici, M.R. Protein, Phycocyanin, and Polysaccharide Production by Arthrospira platensis Grown with LED Light in Annular Photobioreactors. J. Appl. Phycol. 2022, 34, 1189–1199. [CrossRef]spa
dc.identifier.doi/10.3390/app122211664
dc.relation.citationeditionVol.12 No. 22 (2022)spa
dc.relation.citationendpage14spa
dc.relation.citationissue22 (2022)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume12spa
dc.relation.citesContreras-Ropero, J.E.; Lidueñez-Ballesteros, V.S.; Rodríguez-Bohórquez, A.D.; García-Martínez, J.B.; Urbina-Suarez, N.A.; López-Barrera, G.L.; BarajasSolano, A.F.; Bryan, S.J.; Zuorro, A. The Effect of LEDs on Biomass and Phycobiliproteins Production in Thermotolerant Oscillatoria sp. Appl. Sci. 2022, 12, 11664. https://doi.org/ 10.3390/app122211664
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposallight:dark cycleeng
dc.subject.proposallight intensityeng
dc.subject.proposallight qualityeng
dc.subject.proposalC-PCeng
dc.subject.proposalphotosynthesiseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).