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Abstract: A bicarbonate-peroxide (BAP) system was evaluated to improve the quality of industrial
tannery wastewater using an I-optimal experimental design with four variables (temperature, initial
pH, bicarbonate, and H2O2 concentration). The response variables were COD removal, ammonia
nitrogen removal, and nitrate concentration. The most critical variables were optimized using a The
process was carried out in 500 mL reactors, the operational volume of 250 mL, and the agitation
was at 550 rpm. A new I-optimal reaction surface design at two levels (bicarbonate concentration
0.01–0.3 mol/L and H2O2 0.05–0.35 mol/L) was used to obtain the optimal data of the experimental
design. Optimal conditions were validated by one-way ANOVA statistical analysis using Prism
software. Temperatures above 50 ◦C promote the efficiency of the BAP system, and slightly acidic
initial pHs allow stabilization of the system upon inclusion of bicarbonate and peroxide in the
concentration of bicarbonate, which is critical for the reaction with peroxide and formation of reactive
oxygen species. With the validated optimal data, removal percentages above 78% were achieved for
nitrites, ammonia nitrogen, chromium, TSS, BOD, conductivity, chromium, and chlorides; for COD
and TOC, removal percentages were above 45%, these results being equal and even higher than other
AOPs implemented for this type of water.

Keywords: BAP system; bicarbonate; AOPs; hydrogen peroxide; COD; ammonium oxidation;
tannery wastewater

1. Introduction

The tanning industry generates highly polluting waste, especially in its effluents. The
operational processes of this industry require large amounts of water; it has been reported
that an average of 10–25 m3 of water is consumed in the various stages of the process, and
an average of 8 to 20 m3 of wastewater may be generated; this amount may vary depending
on the technological development of each industry [1]. These effluents are characterized by
high levels of pollutants from organic matter such as meat particles, hair, blood, soluble
proteins, and fertilizer; in addition, there is the inorganic load of dyes, chromium salts as
tanning agents, sulfur and lime salts, and other recalcitrant compounds [2]. These effluents
also contain heavy metals such as lead (Pb2+), cadmium (Cd2+), chromium (Cr6+), zinc
(Zn2+), copper (Cu2+), and iron (Fe3+) [3], as well as solvent–bone pollutants [4] that alter
the natural characteristics of the ecosystems into which these effluents are discharged if
they are not treated beforehand, and which can have harmful effects on those who consume
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them; liver and kidney damage, skin irritation, chronic bronchitis, nasal irritation, cancer,
and DNA (deoxyribonucleic acid) abnormalities leading to mutations and malformations,
as well as other complications in the digestive system, are possible harmful effects [5,6].
It is estimated that the waste generated by this industry in the form of water accounts for
just over 300 million tons of toxic wastewater and approximately 64,320 tons of sludge [7],
making the treatment of wastewater from the leather industry a challenge.

Advanced oxidation processes (AOPs) have proven to be a favorable alternative for
the treatment of tannery effluents; these processes generate highly reactive species such as
hydroxyl radicals (-OH) and other oxidizing species that can degrade organic compounds,
emerging contaminants, dyes, heavy metals and different recalcitrant compounds present
in wastewater, such as tannery wastewater [8,9]. These techniques were developed as an
alternative to conventional treatment methods such as coagulation–flocculation, sedimenta-
tion, and biological treatment [10]. AOPs can remove a wide range of organic and inorganic
contaminants, including those that are not biodegradable [11,12]. Studies show that AOPs
are effective in treating tannery effluents, including ozone, Fenton, and H2O2/UV [13,14].
Fenton is one of the most widely used processes in the treatment of tannery effluents; the
generation of hydroxyl radicals (-OH) occurs by the reaction of H2O2 with ferrous ions
(Fe2+); it has been reported that this process can achieve 93% COD (Chemical Oxygen
Demand), 98% BOD (Biochemical Oxygen Demand), and 62% chromium removal in com-
bined processes with biological processes [15]; however, the Fenton process has limitations,
such as the high cost of chemicals, sludge generation, and the need to carefully control
the pH. Ozonation is another process used in tannery effluent treatment, involving ozone
(O3) as a potent oxidizing agent to degrade pollutants in wastewater. It has been found
that this system can effectively remove color (80–90%), odor, and organic compounds from
tannery wastewater (60–80% COD), partly due to rapid reaction kinetics. This process does
not generate chemical residues and can eliminate by-products generated during oxida-
tion. However, ozone generation and exhaust gas management costs can be significant
challenges [16]. Photocatalysis is another widely studied process in tannery wastewater
treatment, using H2O2 activated by ultraviolet (UV) light to generate reactive species (-OH
and superoxide radicals) that degrade organic pollutants. It has shown promising results
in the treatment of tannery wastewater, especially in the degradation of dyes and aromatic
compounds, achieving 70% COD, 76% chromium, and 60% color removal. However, pho-
tocatalytic processes require UV light sources, and their effectiveness can be affected by
the presence of suspended solids or high concentrations of organic matter, characteristics
present in tannery effluents [17].

The use of H2O2 in combination with ultraviolet light has been shown to reveal trace
organic pollutants in tannery effluents [13]. Although these systems are efficient at the
time of treatment, the complexity of the process and the high cost of expansion have
hampered their adoption in the tanning industry, especially in developing countries. The
H2O2 bicarbonate system (BAP) is an advanced oxidation process that has proven to be
an alternative for treating complex wastewater, especially in the presence of dyes. In this
system, the use of H2O2 and bicarbonate (HCO3

−) produces hydroxyl radicals and other
species, such as peroxymonocarbonate (HCO4

−) and superoxide ions (O2
−), which are

highly reactive and can break down organic and recalcitrant contaminants in wastewa-
ter [18]. Recent studies have shown that the BAP system can be used to degrade a wide
range of organic pollutants, dyes, heavy metals, nitrogenous compounds such as N-NH3
(ammoniacal nitrogen) and N-NO2

− (nitrite), and other pollutants contained in wastewater
containing dyes and organic compounds similar to those found in tannery wastewater,
such as dyeing and other wastewater [19]. One of the aspects that draws attention to the
BAP system concerns the low cost of implementation compared to other AOPs or other
treatment systems, such as biological or physicochemical systems, due to the low use of
sophisticated equipment, a low-complexity infrastructure, short reaction times [14], and
low consumption of reagents, since the bicarbonate, in addition to activating H2O2, can
also contribute to the neutralization of acidic effluents often produced in tanneries [20].
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The BAP system is subject to the influence of several variables that can significantly
affect its efficiency and performance and must be considered [21]. Some of the most
important factors to be considered are the hydrogen peroxide concentration, which can
affect the formation of hydroxyl radicals and, consequently, the efficiency of oxidation of
organic compounds [22]. On the other hand, the bicarbonate concentration directly affects
the pH of the wastewater and, consequently, the degradation of the acidic pollutants it
contains [23]. Moreover, the pH of the system plays a fundamental role in the formation
and stability of hydroxyl radicals, which are critical factors in the oxidation process [24].
Finally, it is essential to mention that temperature also plays a fundamental role in this
process, as it acts as a catalyst for the reactions; as the temperature increases, the rate of the
reactions involved also increases [25].

Currently, there are no reports on the use of a BAP system in the treatment of tannery
wastewater, so this work aims to contribute to the knowledge of the potential applications
of the BAP system in the treatment of tannery wastewater, including the optimization
of process parameters such as pH, temperature, H2O2 concentration, and bicarbonate
concentration to maximize the removal of contaminants. The response surface analysis
method was used to determine the effects of these variables on the BAP system. In this
analysis, experiments were conducted in which the variables of interest were systematically
varied, and the response of the process was measured using the data collected. Based on
this information, it was possible to determine the optimal conditions, which were later
statistically validated to maximize the efficiency of the BAP system.

2. Materials and Methods
2.1. Tannery Wastewater

The tannery wastewater was obtained from a cattle skin tannery in Cúcuta (Norte de
Santander, Colombia). A composite sample was obtained in duplicate and collected for
30 min during the working day, with a volume of 300 mL per sample. The sample was
kept cold at 4 ◦C and with H2SO4 (sulfuric acid) for COD analysis. Characterization and
analysis were performed at the water laboratory and the INNOVALGAE laboratory of the
Universidad Francisco de Paula Santander (UFPS).

2.2. Physicochemical Characterization of the Tannery Effluents

The Tannery wastewater was physiochemically characterized at the UFPS Water
Laboratory, according to the 23rd edition of Standard Methods for the Examination of
Water and Wastewater (Table 1). Measurements were performed in triplicate.

Table 1. Physicochemical characterization.

Parameter Units Standard
Methods Parameter Units Standard

Methods

COD

mg/L

5220C Phosphates mg/L 4500-P C
BOD 5210B-4500-OG pH pH 4500B

TOC (Total organic
carbon) 5310B Conductivity µS/cm 2510B

NO3
− (Nitrates) 4500-NO3

− B TSS (Total
Suspended Solids)

mg/L

2540D

NO2
− (Nitrites) 4500-NO2

− B Cr6+ 3111D
NH3 (Ammonia

nitrogen) 4500-NH3 F Chlorides 4500-ClB

2.3. Experimental Analysis

An experimental design with three levels of I-optimal reaction area, as in Table 2, was
used and analyzed with Design Expert software. The variables evaluated were temper-
ature, initial pH, bicarbonate concentration, and hydrogen peroxide concentration, and
the response variables were COD removal percentage, ammonia nitrogen removal percent-



ChemEngineering 2023, 7, 62 4 of 16

age, and nitrate concentration. The experimental design resulted in 28 experiments; each
experiment was performed in triplicate.

Table 2. Experimental design.

Factor Unit Level
−1 0 1

H2O2 mol/L 0.1 0.3 0.5
Bicarbonate mol/L 0.1 0.3 0.5

pH pH units 4 5 6
Temperature ◦C 50 65 80

The wastewater was passed through a grease trap for 5 min and then sedimented for
30 min in the pilot plant of the UFPS Operations Laboratory. A catalytic reactor of 600 mL
and an operating volume of 250 mL was used, with temperature and pH control (Figure 1).
Stirring was performed at 550 rpm. HCl (hydrochloric acid) and NaOH (sodium hydroxide)
at a concentration of 0.1 mol/L were used for pH control. The H2O2 concentration was
35%, from which the concentrations used in the experimental design were calculated.
Finally, 90% commercial purity grade sodium bicarbonate was used to determine the
design concentrations.
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Figure 1. Experimental setup for the bicarbonate/hydrogen peroxide process.

2.4. Analytical Methods
2.4.1. TOC Determination

TOC was quantified using a TORCH TOC analyzer from TELEDYNE (Cincinnati, OH,
USA). The operating conditions were sample volume of 0.5 mL, water chase volume of
1.0 mL, injection line rinse on, injection line rinse volume of 0.5 mL, acid volume of 0.5 mL,
ICS parge flow 200 mL min/L, carrier gas delay time of 0.40 min, ICS parge time of 50 min,
detector sweep flow of 500 mL/min, furnace sweep time of 1.0 min, and system flow of
200 mL/min.

2.4.2. COD Determination

The quantification of the COD was determined by the method 5220 C-Closed reflux
of the 23rd edition of Standard Methods [26], using potassium dichromate as an oxidant
agent in an acid medium. For this, its digestion was carried out by adding 1.5 mL of
digester solution and 3.5 mL of catalyst solution to 2.5 mL of sample; it was stirred in the
vortex, heated for 2 h at 150 ◦C, and let cool to room temperature (25 ◦C). The sample was
then transferred to a larger vessel, and 0.05 to 0.10 mL (1 to 2 drops) of ferroin indicator
was added and stirred rapidly on a magnetic stirrer while titrating with standardized
0.10 mol/L FAS. The endpoint was an abrupt color change from blue-green to reddish
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brown. The calculation was performed using the formula (1). The COD calibration curve
was generated from 5 patterns of potassium acid phthalate, made up of 5 concentrations 0,
50, 100, 250, and 500 mg/L. Each experiment was carried out by duplicate.

COD mg O2/L =
(B − A) ∗ M ∗ 8000

mL sample

where

B = mL FAS used for sample;
A = mL FAS used for blank;
M = molarity of FAS;
8000 = milliequivalent weight of oxygen ∗ 1000 mL/L.

2.4.3. Nitrate Quantification

For nitrates, the ultraviolet spectrophotometric detection method was used (SM-4500-
NO3

−B), scanning initially at a wavelength of 250 to 200 nm. Subsequently, the second
derivative was calculated on the spectrophotometer in the range of 230 to 220 nm, and this
record was used to determine the nitrate concentration.

2.4.4. Hydrogen Peroxide Determination

The methodology proposed by [27] was used to determine the concentration of hydro-
gen peroxide. A 1 L colorimetric solution was prepared using ammonium metavanadate
(7.0188 g) and sulfuric acid (19.989 mL) in deionized water in a 1 L volumetric flask. A total
of 1.033 mL of colorimetric solution was used, and 1 mL of sample was added and made
up to 10 mL in a volumetric balance. The reading was made at a wavelength of 450 nm
using a TERMO GENESYS UV-VIS spectrophotometer.

2.5. Data Analysis

The results from the experimental design were analyzed using the custom analysis in
Design Expert 13. Prisma 8.0 software was used to analyze the data. Likewise, to determine
the validation of the results between the expected value yielded by the experimental design
and those obtained experimentally, ten replicates were used, and the statistical significance
was determined using the Holm–Sidak method, with alpha = 0.05. Each row was analyzed
individually without assuming a consistent SD number of t-tests equal to 10.

3. Results and Discussion
3.1. Physicochemical Characterization of Tannery Wastewater

Table 3 shows the physicochemical characterization of the tannery effluents eval-
uated in this study. The tannery effluent used in this study had a high COD concen-
tration (6535.66 ± 15.33 mg/L), indicating low biodegradability given the BOD concen-
tration (1245.52 ± 7.45 mg/L), resulting in a BOD/COD ratio of 0.19, similar to other
studies [18,28–31]. The BOD/COD ratio allows determination of the degree of biodegrad-
ability of wastewater; values < 0.4 indicate low biodegradability of the effluent and the pres-
ence of recalcitrant compounds; and typical values in the range of 0.1–0.4 BOD/COD [32]
have been reported for tannery effluents. The low biodegradability may be due to phenolic
compounds, red and black dyes, and other recalcitrant compounds used in leather washing
and tanning [33]. A dark brown color characterizes tannery wastewater due to the different
dyes used in the process; a strong odor is due to volatile organic compounds, organic and
inorganic carbon, nitrogen and phosphorus compounds, fats, and other highly polluting
compounds such as total dissolved solids (TDS), chlorides, sulfates, and heavy metals like
zinc (Zn) and chromium (Cr), among others [1,4,34–36]. These characteristics were similar
to those found in this study, although the concentration of chromium was lower compared
to other studies. Regarding pH, acidic values between 3.4 and 5.5 and basic values between
8 and 11 have been reported [3,37]. In this study, the pH remained within slightly acid
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values (5.45); this parameter can affect the biodegradability of tannery effluents. Values
above 12 or below 4.5 can cause inhibition in the different microorganisms; likewise, the
high turbidity of the effluents affects the photosynthetic activity [29].

Table 3. Physicochemical characterization of tannery wastewater.

Parameter Units This Research [13] [23] [24] [25] [26]

COD

(m/L)

6535.66 ± 15.33 6720 ± 5.34 5250–9600 4500 ± 329 6970 ± 72.10 1646
BOD 1245.52 ± 7.45 4368 ± 2.34 n.r. 400 ± 36 2068.8 ± 91.41 572
TOC 1683.23 ± 15.87 n.r. 2060–2710 74.69 ± 4.85 n.r. n.r.

Nitrites 1.46 ± 0.087 0.15 ± 0.0035 n.r. n.r. n.r. n.r
Nitrates 42.44 ± 0.82 641 ± 4.34 n.r. 215.46 ± 10.11 n.r 4.1

Ammonia nitrogen 157.36 ± 1.29 180 ± 2.4 115–136 129.65 ± 7.75 40.10 ± 36.77 n.r
Phosphates 26.44 ± 0.55 31.05± n.r. 194.61 ± 9.8 n.r. 7.2

pH pH 5.45 ± 0.1 4.5 ± 0.1 3.5–3.7 8.9 ± 0.1 5.75 ± 0.74 7.5
Conductivity µS/cm 1083 ± 2.11 n.r. 4400–5500 n.r. 6930 ± 1.32 10,415

Total Suspended Solids
(m/L)

1038 ± 3.44 4960.56 ± 2.3 256–289 60 ± 2.8 2820 ± 165.82 1756
Cr 1.23 ± 0.01 0.17 ± 0.002 2705–3800 n.r. n.r. 79.2

Chlorides 1600.45 ± 7.36 n.r. 26,513–31,103 237.97 ± 10.29 643.30 ± 76.55 2417

n.r.: not registered.

3.2. Experimental Design
3.2.1. COD

The results of the experimental design for COD are shown in Table 4. The model
F-value of 22.57 implies that the model is significant (p < 0.0001); there is only a 0.01%
chance that such a high F-value is due to noise. Similarly, p-values less than 0.0500 indicate
that the model terms are significant. In this analysis, it is found that H2O2, bicarbonate,
pH, and temperature affect the process and the H2O2 and pH interaction, and finally, the
quadratic adjustment of pH and temperature is significant in the process. The lack of fit
F-value of 0.43 implies that the lack of fit is not significant relative to the pure error. There is
an 89.38% chance that such a large F-value of lack of fit is due to noise. The non-significant
lack of fit is good.

Table 4. Analysis ANOVA for COD.

Response Source Sum of Squares df Mean Square F-Value p-Value

COD removal

Model 283.07 7 40.44 22.57 <0.0001 *
A-Peroxide 9.58 1 9.58 5.34 0.0336 *

B-Bicarbonate 67.89 1 67.89 37.89 <0.0001 *
C-Ph 0.6720 1 0.6720 0.3750 0.5484 **

D-Temperature 46.31 1 46.31 25.84 <0.0001 *
AC 8.24 1 8.24 4.60 0.0467 *
C2 26.64 1 26.64 14.86 0.0013 *
D2 98.58 1 98.58 55.02 <0.0001 *

Residual 30.46 17 1.79
Lack of Fit 15.44 12 1.29 0.4282 0.8938 **
Pure Error 15.02 5 3.00
Cor Total 313.53 24

* Significant and ** not significant.

Figure 2 shows the response surface for COD, where a lower concentration of bicar-
bonate and peroxide enhances COD removal.
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COD removal in a BAP system depends on several factors that play an important role
in the efficiency of the COD degradation process. Some reports on effluents containing
dyes similar to those used in the tanning industry have indicated that the initial COD
concentration is an important factor [18,38,39]. Very high COD concentrations may require
longer reaction times and high doses of H2O2 and bicarbonate to achieve significant COD
removal due to the complexity of the tannery wastewater matrix [40]. Although there are
no reports on applying the BAP system in tannery wastewater, the effects of bicarbonate
and H2O2 dosing have been reported in wastewater from dyeing plants comparable to
tanneries. Regarding bicarbonate, it was found that it can affect the total pH and alkalinity
of wastewater, so determining the optimal dose of bicarbonate is essential to keep the pH
in the range where oxidation reactions occur and the generation of hydroxyl radicals (-OH)
is efficient [41,42]. As for H2O2, the dose supplied to the system is crucial for generating
a significant number of hydroxyl radicals to ensure the oxidation process of organic com-
pounds and the reduction in COD. Excess H2O2 can increase the COD concentration of the
wastewater. Moreover, residual H2O2 acts as a scavenger of (-OH), negatively affecting the
removal of various organic pollutants [2]. As for pH and temperature, these parameters
can affect the rate of oxidation reactions. It has been pointed out that at temperatures above
50 ◦C in effluents containing dyes and high COD concentrations, such as those found in
tannery effluents, the reactions proceed easily because the reactants can favorably overcome
the reaction energy barrier, which enables the degradation of COD [25]. In terms of pH,
under alkaline conditions, bicarbonate may decompose into CO2 or CO3

2−, which may
reduce the activation of H2O2; under low pH conditions, the interaction between HCO3

−

and H2O2 is beneficial for the formation of HCO4
−, but may not lead to the formation of

(-OH); a high pH was beneficial for the formation of % HO) and HCO4
−. However, when

the pH is very high, it promotes the formation of singlet oxygen (1O2), the least oxidative
species in the BAH system, thus affecting the pollutant oxidation process [24,43]. Finally, it
is essential to highlight that bicarbonate can increase the total pH of tannery wastewater
so that the initial pH under weakly acidic conditions allows the increase to a low alkaline
pH that guarantees the optimal range for the BAP system, which was demonstrated in
the results of the experimental analysis and obtained the optimal conditions, which were
subsequently validated in this work.

3.2.2. Nitrification

Table 5 shows the experimental design results for ammonia nitrogen removal. The
results for ammonia nitrogen removal showed that the design was significant (F = 34.37);
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there is only a 0.01% chance that such a significant F value is due to noise. p-values less
than 0.0500 for this case indicate that the model terms are significant. It is evident that
the variables H2O2 concentration, bicarbonate, pH, temperature, and H2O2 temperature
interaction presented a linear behavior and are significant in the model. Likewise, the
model’s quadratic trend of pH and temperature is significant. The F-value for lack of fit of
1.13 implies that the lack of fit is not significant relative to the pure error. There is a 48.14%
chance that such a large F-value of lack of fit is due to noise.

Table 5. Analysis ANOVA for ammonia nitrogen removal and nitrate generated.

Response Source Sum of Squares df Mean Square F-Value p-Value

Ammonia nitrogen removal

Model 3481.02 7 497.29 34.37 <0.0001 *
A-Peroxide 289.65 1 289.65 20.02 0.0003 *

B-Bicarbonate 725.70 1 725.70 50.16 <0.0001 *
C-pH 431.42 1 431.42 29.82 <0.0001 *

D-Temperature 237.69 1 237.69 16.43 0.0008 *
AD 322.22 1 322.22 22.27 0.0002 *
C2 112.57 1 112.57 7.78 0.0126 *
D2 1084.14 1 1084.14 74.94 <0.0001 *

Residual 245.93 17 14.47
Lack of Fit 179.51 12 14.96 1.13 0.4814 **
Pure Error 66.42 5 13.28
Cor Total 3726.96 24

Nitrate generated

Model 26,673.60 7 3810.51 22.05 <0.0001 *
A-Peroxide 229.36 1 229.36 1.33 0.2652 **

B-Bicarbonate 3307.45 1 3307.45 19.14 0.0004 *
C-pH 10.23 1 10.23 0.0592 0.8107 **

D-Temperature 6392.97 1 6392.97 37.00 <0.0001 *
AC 2476.85 1 2476.85 14.33 0.0015 *
C2 1383.59 1 1383.59 8.01 0.0116 *
D2 15,172.05 1 15,172.05 87.81 <0.0001 *

Residual 2937.41 17 172.79
Lack of Fit 2131.32 12 177.61 1.10 0.4925 **
Pure Error 806.10 5 161.22
Cor Total 29,611.01 24

* Significant and ** not significant.

For the case of nitrate generation (Table 5), the model F-value of 22.05 implies that
the model is significant; there is only a 0.01% chance that such a large F-value is due to
noise. p-values less than 0.0500, in this case, indicate that the model terms are significant.
The variables of bicarbonate, temperature, and the H2O2-pH interaction were found to be
significant when they have linear behavior; while pH and temperature with the quadratic
trend are significant in the model. The F-value for lack of fit of 1.10 implies that the lack of
fit is not significant relative to the pure error. There is a 49.25% chance that such a large
F-value for lack of fit is due to noise. Figure 3 shows the response surface for ammonium
nitrogen removal and nitrate generation.

One of the essential aspects of implementing a BAP system for tannery wastewater
is the oxidation of ammonium nitrogen to nitrate. This less toxic compound can have
added value for cultivating microorganisms such as microalgae and cyanobacteria that use
nitrate as a growth source [44]. There are no reports in the literature on the oxidation of
ammonium nitrogen to nitrate by a BAP system in tannery wastewater. However, recent
studies with tannery-like dyeing waters have indicated that the oxidation of ammonium
nitrogen (NH3-N) to nitrate (NO3

−) depends on several factors. The pH plays a fundamen-
tal role in the oxidation of ammonium nitrogen to nitrite and subsequently to nitrate in
various oxidation processes; very high pH values favor the conversion of N-NH3 to N-NO2,
while slightly acidic values favor the oxidation of N-NO2 to N-NO3 and the addition of
bicarbonate can maintain the pH in the optimal range (5–8) for the complete oxidation of
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N-NH3 [45,46]. The dosage of bicarbonate and H2O2 is crucial for the N-NH3 oxidation
process; the formation of reactive oxygen species (ROS) depends on the reaction of bicar-
bonate and H2O2 and the pH of the medium to allow the formation of reactive species such
as peroxymonocarbonate (HCO4

−), superoxide ions (O2
−), or OH—radicals [31], as shown

in this work, where the interaction between peroxide and hydrogen is important for the
BAP process. Another important factor is temperature, which can accelerate the oxidation
process. Research with various AOPs has found that higher temperatures accelerate the
reaction rate and the degradation of nitrogen compounds produced when dyes are used
during the tanning process [47].
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3.3. Process Optimization

According to the previous design, the concentration of both peroxide and bicarbonate
significantly affects both the removal of COD and the generation of NO3; therefore, in order
to improve both responses, a Central Composite Design was employed (2 factors, 3 levels,
and 13 experiments). Table 6 shows the levels of both factors. For each experiment, pH
was kept constant at 5.1, the temperature was maintained at 57.5 ◦C, and the mixing of the
samples was performed at 550 rpm.

Table 6. Central Composite Design for process optimization.

Factor Unit Level
−∝ −1 1 +∝

Hidrogen Peroxide
mol/L

−0.0121 0.05 0.35 0.4121
Sodium Bicarbonate −0.0501 0.01 0.3 0.3601

The results of the CCD design can be found in Table 7. The results of the experimental
design for the COD case show that the model F-value of 13.54 implies that the model is
significant; there is only a 0.12% chance that such a large F-value is due to noise. p-values
less than 0.0500 indicate that the model terms are significant. In this case, the trend of the
variables is quadratic, with H2O2 and bicarbonate being significant in the model. Values
greater than 0.1000 indicate that the model terms are not significant. The lack of fit F-value
of 0.52 implies that the lack of fit is not significant relative to the pure error; there is a
72.70% chance that such a significant lack of fit F-value is due to noise. For the case of
nitrate generated from ammonium oxidation, the design results showed that the model
F-value of 61.12 implies that the model is significant. There is only a 0.01% chance that
such a large F-value is due to noise. p-values less than 0.0500 indicate that the model terms
are significant. H2O2 concentration is significant in the model when it follows a quadratic
trend, while for bicarbonate concentration, this is significant when it takes both a linear and
quadratic trend. Values greater than 0.1000 indicate that the model terms are not significant.
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The lack of fit F-value of 3.88 implies that the lack of fit is not significant relative to the pure
error. There is a 10.88% chance that such a large F-value of lack of fit is due to noise.

Table 7. Analysis ANOVA for the removal of COD and nitrate formation.

Response Source Sum of Squares df Mean Square F-Value p-Value

COD removal

Block 14.25 1 14.25
Model 1334.02 4 333.50 13.54 0.0012 *

A-Peroxide 0.3019 1 0.3019 0.0123 0.9146 **
B-Bicarbonate 48.31 1 48.31 1.96 0.1989 **

A2 667.31 1 667.31 27.10 0.0008 *
B2 716.90 1 716.90 29.12 0.0006 *

Residual 196.98 8 24.62
Lack of Fit 67.67 4 16.92 0.5233 0.7270 **
Pure Error 129.31 4 32.33
Cor Total 1545.25 13

Nitrate generated

Block 462.26 1 462.26
Model 92,843.95 4 23,210.99 61.12 <0.0001 *

A-Peroxide 255.65 1 255.65 0.6731 0.4357 **
B-Bicarbonate 55,471.02 1 55,471.02 146.06 <0.0001 *

A2 28,148.85 1 28,148.85 74.12 <0.0001 *
B2 11,519.11 1 11,519.11 30.33 0.0006 *

Residual 3038.29 8 379.79
Lack of Fit 2415.56 4 603.89 3.88 0.1088 **
Pure Error 622.72 4 155.68
Cor Total 96,344.50 13

* Significant and ** not significant.

The surface response of the interaction between H2O2 and bicarbonate concentration
for COD removal and nitrate generation (Figure 4) shows that the optimal concentration of
bicarbonate was 0.175 mol/L, while that of H2O2 was 0.2 mol/L. The highest COD removal
and nitrate generation were maximized by the software.
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Figure 4a shows that the response surface analysis between bicarbonate concentration
and H2O2 dosage had a statistically significant effect on the COD removal rate at the
central level of initial pH and temperature. As shown in Figure 4a, the COD removal
rate was favored by bicarbonate and peroxide concentration up to the central level and
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then decreased rapidly with ozone concentration. Therefore, the COD removal rate was
affected from the concentration of 0.06 mol/L to 0.3 mol/L, where the COD removal
rate was favored. For the case of peroxide in this study, it was found that values above
0.23 mol/L affect the COD degradation process, decreasing the removal rate; studies of
AOPs using H2O2 have indicated the importance of determining the optimal dosage of
peroxide since high dosages can affect the process and increase the concentration of COD in
the wastewater [48], as could be evidenced in this study. On the other hand, Figure 4b shows
that the response surface analysis between the bicarbonate concentration and the H2O2
dose had a statistically significant effect on the rate of oxidation of ammonium to nitrate
at the central level of initial pH and temperature. The oxidation rate was favored by both
the bicarbonate and peroxide concentration; dosages between 0.01 mol/L and 0.4 mol/L
in the case of bicarbonate facilitated the oxidation process of ammonium to nitrate, as
did peroxide dosages between 0.05 mol/L and 0.23 mol/L. To the best of the authors’
knowledge, there is no evidence in the literature regarding the influence of bicarbonate
concentration on ammonium removal. However, Ref. [46] reported that the removal of
ammonium through the ozonation process could be affected by high concentrations of
bicarbonate since it can make the medium too alkaline and therefore interferes with the
generation of nitrates, hence the importance of determining the optimal dose. Regarding
the influence of H2O2 on the removal of ammonium, it has been reported that the oxidation
of ammonium to nitrate occurs due to the release of oxygen radicals and the degradation
of azo dyes present in these types of effluents, such as tannery effluents, which leads to the
search for ways to optimize dosages that do not exceed the optimum and interfere with the
oxidation rate [49].

The results of the experimental design and response surface in this work allowed the
determination of the variables to confirm the following process conditions: a temperature
of 57 ± 0.2 ◦C, a pH of 5.1 ± 0.1, a bicarbonate concentration of 0.175 mol/L, and an
H2O2 concentration of 0.2 mol/L. Ten experiments (one original plus nine replicates) were
performed to confirm these conditions, and a t-test was performed using Prism (GraphPad,
Version 10.0.0). Figure 5 shows the results of the verification of the optimal conditions.
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the experimentally determined value for the percentage of COD removal (a) and nitrate formation (b).

It can be observed that in the case of COD, there are no significant differences be-
tween the observed and expected values, while in the case of nitrates, there are significant
differences between the experimentally determined value and the expected value. How-
ever, the experimentally determined value is higher, indicating an efficient nitrification
process. Figure 6 shows the percentage removal of the different pollutants using the
optimization variables.
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It can be demonstrated that the BAP process for the treatment of tannery wastewater
achieves removal of over 78% for nitrites, ammonium nitrogen, chromium, TSS, BOD,
conductivity, chromium, and chlorides (Table 8); based on Colombian regulations for
tannery wastewater discharges, it can be seen that the BOD, TSS, chromium, and chloride
parameters are below the maximum permissible values. Regarding nitrogen compounds
(nitrites and ammoniacal nitrogen) and phosphates, the regulations do not indicate an
allowable value, but only indicate analysis and reporting; in this sense, the toxicity of
ammoniacal nitrogen in these effluents may vary depending on the species exposed, the
duration of exposure, and the specific characteristics of the wastewater. However, authors
have indicated that high concentrations of ammonia nitrogen and phosphates can generate
eutrophication in the water bodies where they are discharged and be toxic to aquatic
organisms, hence the importance of eliminating these compounds [50]. Concerning COD,
removal of 49.5% was demonstrated, and the ratio of BOD/COD was 0.11 after the BAP
process; several authors have reported COD removals between 40 and 50%, which are
similar to those reported in this study [20,40,51]. The achieved removals for chromium,
TOC, and BOD are, in some cases, superior to other AOPs for tannery wastewater [30,47,52];
the removal rates depend on the physicochemical properties of the wastewater and the
concentration of the initial pollutant load [53], as well as on the factors evaluated in this
work. The optimal values obtained during the process allowed the treatment of tannery
wastewater due to the reactive species generated by the interaction of bicarbonate with
peroxide, producing an effluent that can be used by microorganisms such as microalgae or
cyanobacteria, which can improve the physicochemical conditions of the effluent and also
produce biomass with potential industrial interest [1,19].
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Table 8. Final concentration of contaminant parameters using BAP system.

Parameter Units Initial Value Final Value

COD

(m/L)

6535.66 ± 15.33 3136.8 ± 9.54
BOD 1245.52 ± 7.45 336.29 ± 3.48
TOC 1683.23 ± 15.87 925.78 ± 8.26

Nitrites 1.46 ± 0.087 0.015 ± 0.0012
Ammonia nitrogen 157.36 ± 1.29 10.07 ± 1.55

Phosphates 26.44 ± 0.55 7.92 ± 0.16
pH pH 5.45 ± 0.1 8.8 ± 0.15

Conductivity µS/cm 1083 ± 2.11 113.72 ± 1.35
Total Suspended Solids

(m/L)
1038 ± 3.44 176.46 ± 0.95

Cr 1.23 ± 0.01 0.086 ± 0.01
Chlorides 1600.45 ± 7.36 352

3.4. Treatment Costs Evaluation

To determine the cost feasibility for the application of the BAP system treatments
in tannery wastewater, the costs of each of the variables analyzed in the experimental
system were determined. The treatment costs were calculated taking into account the
experimental conditions and the data obtained from the optimization process, namely a
temperature of 57 ± 0.2 ◦C, a pH of 5.1 ± 0.1, a bicarbonate concentration of 0.175 mol/L,
an H2O2 concentration of 0.2 mol/L, and a reaction time of V = 1 L. The energy prices
and reagents used were as follows: 1.66 EUR/Kg H2O2 50% (w/v), 0.96 EUR/Kg sodium
bicarbonate, 0.19 EUR/kWh energy value in Cúcuta (Colombia) for industrial applications;
and 0.8 Kwh heating equipment. Table 9 shows the costs of different AOPs used to treat
tannery wastewater.

Table 9. System costs and BAP and other AOPs used in tannery wastewater treatment.

Treatment Method Total Cost (EUR/m3) Reference

BAP 30.05 This research
Photo-Fenton (PEF) 78.30 * [54]

UV 69.48 *
[55]UV/H2O2 44.89 *

O3 140.32 * [56]
O3 13.10 * [57]

EC/PEF 31.8 * [58]
Conventional 81.4 * [54]

* Values updated to 2023.

In the available literature, few studies present the costs of different AOPs in tan-
nery wastewater; analyzing the different costs of the implementation of AOPs for the
treatment of tannery wastewater, the BAP and O3 systems presented the lowest costs.
It is essential to indicate that the BAP system implemented in this research used raw
wastewater without pretreatment. In contrast, the ozone system reported by [57] worked
with an effluent with a lower organic load than the one used in this study. The pol-
lutant load in tannery effluents is a variable that influences the cost of treatment, af-
fecting the amount of energy required, the reaction time, and the reagents to be con-
sumed. Some studies have implemented various combinations of AOPs, such as ozone,
UV, and H2O2, and found that energy consumption and treatment cost was in the order of
UV > UV/H2O2 > UV/O3 > UV/O3/H2O2 > O3/H2O2 > O3 > O3 [55]. In contrast to the
BAP system, there is still no report of the costs of this process, but it can be indicated that
the system is more economical than the photocatalytic processes, and in comparison with
ozone, the system is more favorable to implement and operate, which makes it a promising
strategy not only for the treatment of tannery effluents but of their possible reuse in the
process, allowing sustainability of the water resource.
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The future use of AOPs and the BAP system is mainly in its coupling to biological
systems, such as the use of microalgae and cyanobacteria that can improve effluents and
generate biomass and metabolites of interest, such as lipids, carotenoids, and phycocyanins,
as well as in evaluating the photoperiod conditions and dilutions of the wastewater that
allow for the establishment of the effectiveness of coupling.

4. Conclusions

In this work, the effect of bicarbonate concentration, hydrogen peroxide, Ph, and
temperature on implementing a BAP system for treating tannery wastewater was analyzed
using response surface analysis. The BAP system buffers the pH and maintains it through-
out the tannery wastewater treatment process; the generation of ROS gives it a particular
advantage as an activating agent for hydrogen peroxide. The HCO3

−-H2O2 system can
degrade the organic pollutants in the tannery wastewater and oxidize the nitrogen species
present, resulting in an effluent with a lower pollutant load, which proves the promoting
effect of bicarbonate in the degradation of the analyzed pollutants based on H2O2. The
analysis of the reaction surface showed that temperatures above 50 ◦C promote the effi-
ciency of the BAP system and that slightly acidic initial pH values allow the stabilization of
the system at the time of the inclusion of bicarbonate and peroxide in the treatment process.
It is important to further investigate the efficiency of the BAP system in the treatment of
tannery wastewater and to couple the system with biotechnological processes, such as the
use of microalgae and cyanobacteria, as well as with other AOPs, such as UV or ozone,
which allow the integration of a process leading to the reintegration of treated wastewater
into tannery production systems in terms of the circular economy.
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