

GESTIÓN DE RECURSOS Y SERVICIOS BIBLIOTECARIOS

Código FO-SB-12/v0

ESQUEMA HOJA DE RESUMEN

Página 1/1

RESUMEN TRABAJO DE GRADO

AUTUK(ES):	
NOMBRE(S): ELISBETH VANNESA	APELLIDOS: PEÑA CACERES
NOMBRE(S): MARIA ANDREA	APELLIDOS: DIAZ CONTRERAS
FACULTAD: INGENIERL	A
PLAN DE ESTUDIOS: INGENIERIA CI	IVIL
DIRECTOR:	
NOMBRE(S): FERNANDO	APELLIDOS: ORTEGA RINCON
	DISEÑOS DE LAS OBRAS DE PROTECCION
MADGENIES DE LA MIERDADA LA	FLORESTA SECTOR LA ESPERANZA CLICUTA.

TITULO DEL TRABAJO (TESIS): DISENOS DE LAS OBRAS DE PROTECCION MARGENES DE LA QUEBRADA LA FLORESTA SECTOR LA ESPERANZA CUCUTA-NORTE DE SANTANDER. DISTRITO DE RIEGO ZULIA

RESUMEN

El desarrollo del proyecto tiene como objetivo diseñar las obras de protección de márgenes para la quebrada La Floresta. Los resultados presentan los estudios topográficos con el fin de conocer la geometría del río, el perfil longitudinal, secciones transversales del cauce y puntos de interés especial para la quebrada la Floresta desde el km 4 hasta el km 5 del corregimiento Buena Esperanza. Se realiza el estudio de suelos teniendo en cuenta los ensayos de humedad natural, pesos unitarios, granulometría, límites de consistencia y degradación, compresión incofinada para la quebrada la Floresta desde el km 4 hasta el km 5. Igualmente, se realiza el estudio hidrológico para obtener los caudales máximos para la determinación de las cotas de inundación en la quebrada. Se diseñan las defensas de protección con Gaviones, Hexápodos y piedras sueltas, escogiendo la más adecuada en las riberas de ambas márgenes para la quebrada la Floresta en el tramo seleccionado. Por último, se establece la ubicación de las obras de defensa en la quebrada la Floresta y se calcula el presupuesto de obra.

PALABRAS CLAVES: topografía, estudio de suelos, hidrología, caudal.

CARACTERISTICAS:

PÁGINAS: 227 PLANOS: ILUSTRACIONES: CD ROOM: 1

	Elaboró		Revisó		Aprobó
Equip	oo Operativo del Proceso	Co	omité de Calidad	Comité de Calidad	
Fecha	24/10/2014	Fecha	05/12/2014	Fecha	05/12/2014

COPIA NO CONTROLADA

DISEÑOS DE LAS OBRAS DE PROTECCION MARGENES DE LA QUEBRADA LA FLORESTA SECTOR LA ESPERANZA CUCUTA. NORTE DE SANTANDER. DISTRITO DE RIEGO ZULIA

ELISBETH VANNESA PEÑA CACERES MARIA ANDREA DIAZ CONTRERAS

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS DE INGENIERÍA CIVL

SAN JOSÉ DE CÚCUTA

2016

DISEÑOS DE LAS OBRAS DE PROTECCION MARGENES DE LA QUEBRADA LA FLORESTA SECTOR LA ESPERANZA CUCUTA. NORTE DE SANTANDER. DISTRITO DE RIEGO ZULIA

ELISBETH VANNESA PEÑA CACERES MARIA ANDREA DIAZ CONTRERAS

Trabajo de grado presentado como requisito para optar al título de Ingeniero Civil

Director

FERNANDO ORTEGA RINCON

Especialista en el área de Hidráulica e Hidrología

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

FACULTAD DE INGENIERÍA

PLAN DE ESTUDIOS DE INGENIERÍA CIVIL

SAN JOSÉ DE CÚCUTA

2016

www.ufps.edu.co

ACTA DE SUSTENTACION DE TRABAJO DE GRADO

FECHA:

22 DE SEPTIEMBRE DE 2016

HORA: 4:00 p. m.

LUGAR:

SALA 3 - EDIFICIO CREAD - UFPS

PLAN DE ESTUDIOS:

INGENIERIA CIVIL

TITULO DE LA TESIS:

"DISEÑO DE LAS OBRAS DE PROTECCION EN MARGENES DE LA

QUEBRADA LA FLORESTA SECTOR LA ESPERANZA CUCUTA,

NORTE DE SANTANDER, DISTRITO DE RIEGO ZULIA".

JURADOS:

ING. NELSON JAVIER CELY CALIXTO

ING. JUAN CARLOS SAYAGO ORTEGA

DIRECTOR:

INGENIERO FERNANDO ORTEGA RINCON.

NOMBRE DE LOS ESTUDIANTES:

CODIGO CALIFICACION

NUMERO

LETRA

ELISBETH VANNESA PEÑA CACERES

1111218

4,0

CUATRO, CERO

MARIA ANDREA DIAZ CONTRERAS

1111229

4.0

CUATRO, CERO

APROBADA

FIRMA DE LOS JURADOS

ING NELSON JAVIER CELY GALIXIO

ING. JUAN CARTOS SAYAGO ORTEGA

Vo. Bo.

UVIER ANDRES ZAMBRANO GALVIS

Coordinador Comité Curricular

Betty M.

Av. Gran Colombia No. 12E-96 Colsag Teléfono: 5776655 Cúcuta - Colombia

Contenido

	pág.
Introducción	18
1. Problema	20
1.1 Planteamiento del Problema	20
1.2 Formulación del problema	21
1.3 Justificación	21
1.3.1 A nivel del estudiante	21
1.3.2 A nivel de la comunidad	21
1.4 Objetivos	22
1.4.1 Objetivo general	22
1.4.2 Objetivos específicos	22
1.5 Alcances y Delimitaciones	23
1.5.1 Alcance	23
1.5.2 Limitación y delimitaciones	24
1.5.2.1 Delimitación espacial	25
1.5.2.2 Delimitación temporal	25
2. Marco Referencial	26
2.1 Antecedentes	26
2.2 Marco Teórico	28
2.2.1 Topografía	28
2.2.2 Geotecnia	28
2.2.3 Hidrología	30
2.2.4 Diseño de la obra	31

2.3 Marco Conceptual	31
2.4 Marco Legal	34
3. Diseño Metodológico	36
3.1 Metodología	36
3.1.1 Obtención, solicitud e interpretación de la información existente relacionada	
con el proyecto	37
3.1.2 Definición de las variables hidráulicas e hidrológicas de la quebrada La floresta	37
3.1.3 Modelación Hidráulica según parámetros establecidos con el software HEC	
RAS, obtención e interpretación de resultados obtenidos	38
3.1.4 Calculo de la socavación en las zonas especificadas en la modelación del cauce	
con el HEC RAS con diferentes metodologías	38
3.1.5 Recopilación de diseños de obras de protección usadas debido a problemas de	
socavación en márgenes de ríos o quebradas	38
3.1.6 Selección y diseño de la obra de protección que mejor se ajusta a las necesidades	
del proyecto y elaboración del diseño	38
3.1.7 Elaboración presupuesto definitivo de la obra seleccionada	39
4. Aspecto generales de la zona	40
4.1 Generalidades	40
4.2 Recolección de Información	42
4.2.1 Batimetría	42
4.2.2 Estudios de suelo	42
4.2.3 Estaciones Hidrológicas	43
4.3 Análisis de la Información Obtenida	6
5. Definición de las Variables Hidráulicas e Hidrológicas de la Quebrada la Floresta	45

5.1 Cálculo de la Cota de Inundación	45
5.1.1 Extrapolación de caudales	46
5.2 Pendiente Hidráulica	47
5.3 Variables Geométricas	47
5.3.1 Numero de Froude	48
5.4 Cálculo de los Parámetros Hidráulicos	48
6. Calculo del Caudal de Diseño para Diferentes Periodos de Retornos t = 10, 50 y 100	
años Obtenidos a partir de las Variaciones de la Profundidad de Flujo con el Software He	ec-
Ras 4.0	52
7. Socavación	53
7.1 Socavación General	53
7.2 Calculo de Socavación	54
7.2.1 Calculo del diámetro medio de las partículas del lecho del rio	54
7.2.2 Método Lischtvan-Levediev	54
7.2.3 Cálculo de la socavación general por Lischtvan-Levediev	58
7.2.4 Método Altunin	59
7.2.5 Calculo de la Socavación generada por la curva método Altunin	60
8. Estado del Arte	61
8.1 Obras de Protección de Orillas	61
8.1.1 Criterios generales de diseño	62
8.1.1.1 Caudales de diseño	62
8.1.1.2 Análisis morfológico e hidráulico	63
8.1.1.3 Determinación de la longitud a proteger	63
8.1.1.4 Tipo de obra	64

8.1.1.5 Especificaciones de diseño	64
8.2 Protecciones Longitudinales	64
8.2.1 Muros	64
8.2.1.1 Muros masivos rígidos	64
8.2.1.2 Muros masivos Flexibles	66
8.2.1.3 Muros de Tierra Reforzada	68
8.2.1.4 Estructuras ancladas	69
8.2.1.5 Estructuras enterradas	71
8.2.1.6 Revestimientos	72
8.3 Enrocado o RIPRAP	77
8.4 Bloques de Concreto	78
8.4.1 Bloques de piedra o de concreto pegados con concreto.	79
8.5 Revestimientos de concreto	80
8.5.1 Placas prefabricadas de concreto	82
8.5.2 Armazones o marcos de concreto	82
8.5.3 Revestimiento con paneles metálicos tridimensionales	82
8.5.4 Geotextiles rellenos de concreto	83
8.6 Colchones de Gaviones o Colchoneta Reno	83
8.6.1 Colchones sintéticos rellenos de bloques de roca	84
8.7 Revestimientos de Asfalto	85
8.8 Revestimientos con Suelo	86
8.8.1 Revestimiento con arcilla	86
8.8.2 Revestimiento con suelos estabilizados	86
8.8.3 Estabilización con cemento	86

8.8.4 Tratamiento químico	87
8.8.5 Chunam.	87
8.9 Revestimientos Blandos	87
8.9.1 Esterillas sintéticas	88
8.9.2 Revestimiento con mantos orgánicos	88
8.9.3 Textiles orgánicos	89
8.9.4 Revestimiento con tela de yute o de fique	89
8.9.5 Textiles prefabricados	89
8.10 Obras Complementarias para la Protección de Erosiones y Socavación	90
8.10.1 Obras Biomecánicas área Plantas o semillas	90
8.10.1.1 Siembra de semillas	90
8.10.1.2 Siembra por estacas, estolones y ramas en taludes	91
8.10.1.3 Siembra de Cespedotes	92
8.10.1.4 Siembra de pasto Vetiver	92
8.11 Determinación de la Obra de Protección a Escoger	93
9. Diseño de Obras de Protección	95
9.1 Consideraciones para el Diseño	95
9.1.1 Variables del flujo	95
9.1.2 Parámetros del cauce	95
9.1.3 Materiales disponibles para construcción	95
9.1.4 Posibilidad de avalanchas y otras amenazas	95
9.2 Elementos a Diseñar	96
9.2.1 Localización en planta	9
9.2.2 Altura la obra de proteccion marginal	97

9.3 Definición y Cálculo de las Variables del Diseño	98
9.3.1 Longitud de protección	98
9.3.2 Pendientes longitudinales, transversales y laterales del espigón	98
9.3.3 Altura de la protección y cantidad de elementos a instalar	99
9.3.4 Dimensionamiento de la protección al pie del talud	101
9.3.5 Verificación de los elementos a instalar	102
9.3.5.1 Ecuación de Pilarczyk	102
10. Presupuesto	109
10.1 Analisis de Precios Unitarios	109
10.2 Presupuesto Final	109
11. Conclusiones	111
12. Recomendaciones	113
Referencias Bibliografícas	115
Anexos	118