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Abstract. In this work, gas-liquid hydrodynamics of a Rushton turbine was studied using 
Computational Fluid Dynamics.  Different stirring conditions commonly used in fungal culture 
applications are simulated. Several scenarios are predicted related to gas-liquid mass transfer 
limitation. The above, reflected by low air dispersion reached and bubble size determinations 
caused by the non-Newtonian rheology, leading the process to obtain k!a values only in the 
order of 30 h-1 at high, stirring speeds. However, the high-power consumption in fungal culture 
in agitated tank bioreactors can be disadvantages in large-scale prototypes applied in non-
Newtonian fluids. These Findings shown in this research should be considered as a primary 
criterion for optimizing mass transfer problems in large scale fungal culture applications. 

1. Introduction 
Performing required oxygen supply in aerobic cell cultures is still a common challenge in bioprocess 
engineering. In the case of filamentous culturing, mycelial growths are generally viscous and its non-
Newtonian behavior influences transport and leads to reduced oxygen transfer [1]. Rushton turbine type 
impellers are extensively used in a large-scale application, but its potential implementation for mixing 
non-Newtonian fluids is doubtful based on its hydrodynamics disadvantages [1]. For this reason, 
knowing a detailed hydrodynamic behavior allows elucidating the basis for an improved mixing device. 
Computational fluid dynamics is a powerful software for simulating an aerobic process [2] due to its 
versatile codes for modelling multiphase applications. Even bubble breakup and coalescence from 
population balance models should be analyzed from computational fluid dynamics (CFD) since these 
phenomena lead to the formation of oxygen gradients and dissolved gases that can affect productivity 
in the aerobic process. The applicability of CFD is currently extended in areas of mixing equipment 
design, including from fluid rotation models in one phase [3-7], to the use of population balance models 
[8-25]. In addition to those mentioned, it is essential to highlight some cases of success in the design of 
devices using CFD, as reported by Gelves [26]. They designed a stirring-aeration system that managed 
to increase the transfer of oxygen 34 times higher than a conventional device in the culture of CHO cells 
for pharmaceutical applications. Later, Niño [27] proposed a device to improve mixing from CFD 
applied to the culture of animal cells in perfusion mode. Currently, the improvement of a stirring device 
is limited to empirical models that do not take into account hydrodynamics or transport phenomena that 
govern a bio-process. Based on the latter, these stages of the process are intuitive and experimental. 

That is why the development of a prototype requires multiple steps, which is a disadvantage, due to 
the high costs and time of experimentation needed [28]. Based on the latter, one of the transcendental 
stages in agitation-aeration system design is to study the gas-liquid hydrodynamics widely used in the 
mixing of non-Newtonian solutions, which its effects on the bubble dispersion and mass transfer are still 
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poorly studied. For these reasons, this research is based on predicting possible mass transfer limitations 
using a conventional bioreactor (operated with Rushton Turbines) with applications in non-Newtonian 
fluids. 

2. Computational fluid dynamics model and experiments 
For modeling in CFD and experiments, a new Brunswick stirred tank bioreactor was used on a laboratory 
scale (10 litters of total volume) with 8 litters as working volume [29-33]. The tank that is characterized 
by the following dimensions: DT diameter: 0.21 m, height of the liquid (HL): 0.3 m, equipped with four 
baffles spaced at an angle of 90º with a width (Wb) of 0.1 DT, installed at a distance away from the 
walls of 0.010 m. The equipment has a six-blade Rushton turbine impeller with a diameter (Di) of 0.075 
m. The air is supplied through a diffuser of 0.06 m in diameter. The operating conditions for simulations 
in CFD were defined based on typical parameters for fungal culture. The stirring ranges specified were 
200 rpm, 400 rpm and 600 rpm and the aeration flow for all cases was adjusted to 1.0 vvm. To 
contemplate the viscosity achieved in a bioprocess, 0.25% xanthan gum was used. This allowed us to 
experimentally calculate the parameters of the viscosity model that were subsequently coupled to CFD. 
In this work, the Eulerian model was used and coupled to population balance models defined from 
Equation (1). 
 

!
!"
(ρ#n$) +	∇ ∙ )ρ#U++⃗ #n$- 	= 	 ρ# /Γ%!" − Γ&!" + Γ%!# − Γ&!#2.  (1) 

 
Where n$ is the bubble numbers of classes i, Γ%!"  and Γ%!#  are the birth rates due to coalescence and 

breakage, respectively, Γ&!"  and Γ&!#are the death rates. Previous research [34] has shown that 
fermentation of cultures with mycelium (highly viscous fluids) behave like a non-Newtonian fluid. 
Therefore, in this work, the power-law model was used to simulate the effects of viscosity 𝜇' as well as 
the algorithm of the discrete method [35-37] to solve the system of population balance equations for the 
bubbles. So that they are divided into different kinds of diameters as an input parameter. These equations 
are specified in [25,38,39]. Bubble breakup is modelled based on the interaction of the bubble’s sizes v 
with the turbulent eddies ξ. The breakup rate is defined according to Equation (2) [4]. 
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Coalescence between bubbles of size d$ and d1 is simulated considering the coalition of bubbles due 

to turbulence. Also, coalescence is usually defined as the product between collision frequency and 
coalescence efficiency, according to Coulaloglou and Tavlarides from Equation (3) [40]. 
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Where ε is the dissipation turbulence energy, σ is the surface tension, and ρ? is the liquid density. 

CFD model is verified considering the k?a values. Those latter were determined experimentally at a 10-
liter scale, using 0.25% Xanthan gum to simulate the rheology effect of fungal culture. 

For experimental determination of k?a, the bioreactor is gasified with air through the sparge and 
dissolved oxygen is monitored until saturation is reached. The dissolved oxygen concentration is 
measured using a sensor (InPro 6800, Mettler Toledo, Germany). Apparent viscosity is determined using 
a Brookfield DV-E viscometer applying cutting speeds in the range of 1 s-1 - 100 s-1, to monitor the shear 
stress τ obtained at each rate. To determine the aerated power consumption P@ the Equation (4) [41,42] 
was used. 
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Where PG@ is the un-gassed power, C is a constant, VH is the gas speed, N is the stirring speed, D$ is 

the impeller diameter, ρ is the liquid density and σ is the surface tension. The un gassed power is 
calculated from Equation (5). 
 

PG@ = NIρN$/D$J.     (5) 
 

Where NI is the power number, the experimental data of k?a were adjusted according to the 
expression Xie [43] based on Equation (6), to obtain a model to perform the verifications of data 
collected from CFD. 
 

k?a = C* O
A.
B
P
D.>J

[VH]D.**.    (6) 
 

In which P@ is determined from the model proposed by Gill [41], C* is a model constant. For liquid 
phase mass transfer coefficient k?	determination from CFD, the Equation (7) was used and developed 
for bubbles in a turbulence field using the power-law model for this type of non-fluid Newtonians [44]. 
 

k? = CKSD?[
3<!
L
]

%
$[%2)].    (7) 

 
Bubble interfacial area is calculated from Equation (8). 

 
a = M∝4

5&$
.      (8) 

 
D? is oxygen the diffusivity, K and n are rheological parameters, ∝# is the air volume fraction, d/8 

is the Sauter mean diameter. The k?a values obtained by CFD are calculated as the product between 
Equation (7) and Equation (8). The torque values M of the impellers were calculated by CFD, to 
determine the power consumed using the following mathematical expression based on Equation (9). 
 

P@ = 2πN$M.     (9) 

3. Results 
The main objective of this work was to analyze possible gas-liquid mass transfer in non-Newtonian 
fluids using a conventional Rushton turbine impeller. Air volume fraction, bubble sizes, velocity 
magnitude and k?a  mass transfer coefficient were evaluated at different stirring conditions commonly 
used for fungal applications. The air volume fraction contours from the bioreactor operated at different 
agitation conditions (200 rpm - 600 rpm) are presented in Figure 1. It is shown that air distribution is 
only dispersed in areas closed to the turbine, while areas near the bioreactor wall are poorly oxygenated. 
The above, due to the strong resistance exerted by the viscosity in domains low stirred. The latter is 
because the shear rate is not sufficient to deform the fluid resistance. In such a way that heterogeneous 
environments and gradients could be generated and would the aerobic culture growth. 

Based on mass transfer (detailed below), weak oxygenated zones are observed mainly at low stirring 
speeds (200 rpm). Even so, the increase in stirring speed (400 rpm and 600 rpm) fails to improve gas 
dispersion towards areas far from the impeller. This latter may indicate that limitations found are also 
associated with the geometry device. The above is supported by the characteristic hydrodynamics typical 
from a Rushton turbine [27], which is characterized by its ability to generate areas with varying degrees 
of mixing. These discrepancies can also be explained considering the velocity profiles. Figure 2 shows 
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the results of the velocity magnitude calculated from CFD at different operating conditions. It is 
observed highest velocity magnitude occurs in areas closed to the turbine at 200 rpm, while dead zones 
are shown far away from the stirring zone. This behavior can lead to the formation of air bubble ducts 
or "caverns" (a common term used in non-Newtonian fluids to describe the air accumulation) due to 
poor dispersion. 
 

   
(a) (b) (c) 

Figure 1. Air volume fraction contours. (a) N$: 200 rpm, (b) N$: 400 rpm, and (c) N$: 600 rpm. 
 

   
(a) (b) (c) 

Figure 2. Velocity magnitude contours v/vtip (-). (a) N$: 200 rpm, (b) N$: 400 rpm and (c) N$: 600 rpm. 
 

These limitations found significantly affect the bubble sizes in a bioreactor. That is why it is 
necessary to determine an integral parameter that allows the prediction of an average bubble diameter 
as a result of breakup and coalescence. Thus, population balance models have been coupled to 
hydrodynamics and the rheological model used in this work to calculate the Sauter mean diameter. The 
latter is an integral parameter that allows the phenomena impacts of mass transfer mentioned here. 
Figure 3 shows Sauter mean diameter simulated for a 10-liter bioreactor (Rushton turbine) operated at 
different stirring conditions. 

It is evident the high degree of coalescence that can be seen in all cases (Figure 3). The large-sized 
bubbles in the order of 5 mm - 10 mm negatively influences the bubble dispersion so that air remains 
less time in the bioreactor and the bubble breakup is weak. The latter generates stagnant areas at the 
bottom of the bioreactor, as shown in Figure 4, and air bubbles do not reach to be dispersed. Therefore, 
these areas of poor mixing tend to be dominated by the high resistance exerted by viscosity towards 
mass transfer due to insufficient values of shear velocity in these stagnant areas. This phenomenon can 
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be seen significantly at low, stirring speeds (200 rpm; see Figure 4), so that the turbine's rotation speed 
does not generate sufficient velocity profiles to cause breakage, bringing the process to a bubble 
coalescence state. When the stirring velocity is increased, better radial velocity profiles are generated to 
counteract the effects of air buoyancy. In this way, the breakup phenomenon takes special consideration, 
indicating that radial velocity is an essential factor for a device optimization focuses on increasing mass 
transfer in non-Newtonian fluids since smaller bubbles are generated. 
 

   
(a) (b) (c) 

Figure 3. Sauter mean diameter contours (m). (a) N$: 200 rpm, (b) N$: 400 rpm, and (c) N$: 600 rpm. 
 

   
(a) (b) (c) 

Figure 4. Mass transfer coefficient 𝑘'𝑎 (h-1). (a) N$: 200 rpm, (b) N$: 400 rpm, and (c) N$: 600 rpm. 
 

In a non-Newtonian fluid, the apparent viscosity is the primary resistance to the gas-liquid mass 
transfer since this limits the fluid layer deformation. So that the rheological parameters strongly 
influence the k?a values. The oxygen transfer rate can control the overall velocity of an aerobic 
biological process and as a consequence, it can determine the bioreactor capacity. For this reason, k?a 
has been widely used as an operating criterion in many aerobic processes [45]. k?a values were 
calculated from CFD using the Higbies penetration theory. The k?a value is obtained from the 
information calculated from the liquid phase mass transfer coefficient k? and the interfacial bubble area 
a [46]. The results of CFD simulations of the oxygen transfer coefficient are presented in Figure 4. 
Based on this information, similarities are observed between the values calculated by CFD and the data 
obtained experimentally (Table 1). The latter means that the breakup and coalescence models predict 
with a proper approach to the mass transfer phenomena involved in the criteria studied. 
 



6th International Week of Science, Technology and Innovation (6th IWSTI)

Journal of Physics: Conference Series 1587 (2020) 012012

IOP Publishing

doi:10.1088/1742-6596/1587/1/012012

6

 
 
 
 
 
 

Table 1. k?a values calculated from experimental data (Exp.) 
and CFD simulations. 
N"	(rpm) 200 400 600 
k!a (h-1) Exp. CFD Exp. CFD Exp. CFD 
Value 5.4 4.88 13.68 14.00 30.60 30.00 

 
The power consumption required by a mechanical stirrer is an essential parameter in the design of 

impeller devices applied to non-Newtonian fluids. In this study, the power consumption obtained by 
CFD was determined from Equation (9) by calculating the torque M (described previously). Additional 
to the above for verifying breakage and coalescence model impacts on the non-Newtonian fluid, an 
Equation (6) was used to calculate the gassed power consumption [41]. This, to compare the power data 
obtained by CFD and those determined by the expression above. In Figure 5, similarities are observed 
in the results obtained by CFD and the expression calculated for the power with aeration, which indicates 
that the formulation of the mathematical model obtained in this investigation shows an acceptable 
precision. 
 

  
Figure 5. (a) Gassed power impeller P@ (W) calculated from CFD and correlation (Gill). 
(b)	k?a values (h-1) calculated from CFD and expression (Xie). 

 
Figure 5 also shows the k?a  data by CFD and compared it with the expression of Xie [119], which 

was used as a reference point to verify the simulations with CFD. Acceptable accuracy is observed 
concerning the experimental data obtained in this investigation. The results demonstrate the proportional 
effect of power impeller required to increase k?a in each case. This event has already been verified by 
experimental research [47-49]. The challenges aimed to improve mass transfer in non-Newtonian fluids 
should be addressed to the dispersion of uniform bubbles to all bioreactor areas, as well as generation 
of flow patterns allowing to reduce the stagnant low mass transfer areas. According to the above, it is 
evident that the device designed also counteracts the effects of resistance to movement, which are 
induced by the viscosity of the non-Newtonian fluid studied (Xanthan Gum). 

4. Conclusions 
The CFD model used in this research simulates the most important effects that influence the k?a values 
in non-Newtonian fluids and have been satisfactorily verified concerning experimental data. Using CFD, 
mass transfer limitations were found associated with the geometry of the impeller device (Rushton 
Turbine). The above, explained by the low air dispersion and large bubble sizes. The Sauter mean 
diameter and flow patterns are some of the limiting variables to be taken into account in the design of a 
stirring-aeration device. 
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